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Abstract—A trend towards energy-efficiency, security and
privacy has led to a recent focus on deploying deep-neural
networks (DNN) on microcontrollers. However, limits on compute
and memory resources restrict the size and the complexity of
the machine-learning (ML) models deployable in these systems.
Computation-In-Memory architectures based on resistive non-
volatile memory (NVM) technologies hold great promise of sat-
isfying the compute and memory demands of high-performance
and low-power, inherent in modern DNNs. Nevertheless, these
technologies are still immature and suffer from both the intrinsic
analog-domain noise problems and the inability of representing
negative weights in the NVM structures, incurring in larger
crossbar sizes with concomitant impact on Analog-to-Digital
Converters (ADCs) and Digital-to-Analog Converters (DACs). In
this paper, we provide a training framework for addressing these
challenges and quantitatively evaluate the circuit-level efficiency
gains thus accrued. We make two contributions: Firstly, we
propose a training algorithm that eliminates the need for tuning
individual layers of a DNN ensuring uniformity across layer-
weights and activations. This ensures analog-blocks that can be
reused and peripheral hardware substantially reduced. Secondly,
using Network Architecture Search (NAS) methods, we propose
the use of unipolar-weighted (either all-positive or all-negative
weights) matrices/sub-matrices. Weight unipolarity obviates the
need for doubling crossbar area leading to simplified analog
periphery. We validate our methodology with CIFAR10 and
HAR applications by mapping to crossbars using 4-bit and 2-bit
devices. We achieve up to 92.91% accuracy (95% floating-point)
using 2-bit only-positive weights for HAR. A combination of the
proposed techniques leads to 80% area improvement and up to
45% energy reduction.

Index Terms—Deep Neural Networks, DNN, memristor,
RRAM, MRAM, PCRAM

I. INTRODUCTION

The deployment of DNN applications on always-ON IoT
devices suffers from stringent limitations on memory, compu-
tation capabilities and memory-bandwidth [1], leading to com-
plex trade-offs between model-size, performance and energy-
consumption. This trade-off is addressed in the prior-art
through a combination of algorithmic approaches (network-
pruning and weight elision, quantization [2], [3]), system-
design solutions (NN accelerators, vectorized instructions [2],
[4]–[6]) and process-technology innovations (3D-integration,
emerging non-volatile memory technologies [4], [7]).

Computation In Memory (CIM) architectures drastically
reduce memory-bandwidth requirements [1], [8], while taking
advantage of the quantization and pruning solutions. Emerging
resistive switching technologies such as Phase-Change Mem-

ory (PCM) and memristors or Resistive Random Access Mem-
ories (RRAM) behave as analog synapses placed in crossbar
arrays [8]–[13]. By executing the multiply-accumulate (MAC)
operation in these highly-integrated structures in the analog-
domain, NVM crossbars naturally provide the parallelization
of the matrix-vector multiplication, the kernel behind most
DNN operations. Moreover, as the weights are encoded in the
non-volatile resistive elements and not transferred from offchip
external memory, energy consumed due to data movement is
significantly reduced, potentially enabling orders of magnitude
improvements in energy and computing efficiency.

Despite the promise of performance and energy consump-
tion improvements, the stark reality remains that emerging
NVM technologies are still relatively immature and suffer
from intrinsic analog-domain shortcomings such as device
variability, sensitivity to temperature variations and no intrinsic
capability for representing negative values. These constraints
are considerable technological challenges that need to be over-
come before CIM architectures using NVM can be deployed
in mass market.

Addressing these substantial challenges entirely through
innovative circuit-design can severely dent potential efficiency
gains. As an illustrative example, mapping negative weights in
NVM devices requires independent analog-domain accumula-
tors for positive and negative weights, thereby potentially dou-
bling the analog-domain circuit overheads, including energy-
expensive ADCs and DACs [9], [13]. Similarly, differences in
the dynamic range of the activations across the DNN layers
require per-layer tuning of analog periphery. This limits the
opportunities for reusable analog macros [12], and creates a
significant gap between laboratory prototypes that rely upon
external probes and analyzers [9], [11], [14], and deployable
market products.

In this work we introduce a framework to train and effi-
ciently map the DNN to the NVM hardware, providing two
main contributions. Firstly, we enable the re-use of smaller,
less power-hungry, uniform analog modules across different
layers in the DNN, removing the need of per-layer full-
custom periphery design. By ensuring uniform scaling through
layers, independently of their morphology and size, area and
power benefits come together with shorter circuit design time,
closing the gap between reconfigurable blocks [9], [12] and
real reconfigurable solutions. Secondly, we investigate how
relaxing bipolar-weight matrices requirements can lead to
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Figure 1. NVM accelerator architecture and principle behind the NVM
based vector-matrix multiplication. Inputs are encoded as voltages, and drive
the crossbar through the horizontal row lines. Bitline currents naturally
accumulate the individual products of the input voltages and the NVM
conductances and are later digitized. In very deep neural-networks (NN)
crossbars are interconnected digitally.

additional periphery area savings, while reducing the crossbar
area by 2×. We prove that certain applications can be retrained
and directly mapped to unipolar weight matrices. Conversely,
for those deeper convolutional NN that cannot be completely
unipolar, we analyze the trade-off between the number of
unipolar channels (and therefore the energy/area savings) and
the accuracy loss.

The paper is structured as follows. Section II deepens
into the motivation and related work. Section III describes
the proposed methodology and framework, followed by the
achieved results on Section IV. Finally, we summarize and
conclude this paper in the conclusion section.

II. RELATED WORK

A. NVM Crossbars as MAC Engines

Machine Learning applications, and more specifically
DNN, use vector-matrix multiplication operations (also called
multiplication-accumulation or MACs operations) as a com-
mon underlying primitive for most algorithmic operations.
Resistive NVM elements (PCM, RRAM, MRAM) arranged
in crossbar topologies compute MAC operations in constant
time with significantly improved energy-efficiency [8], [10],
[11], [13] by mapping the fundamental MAC operation to
the analog-domain. Thus, an individual element in the weight
matrix is mapped to an individual NVM element whose
conductance value is programmed to a discrete conductance g
within a known range g ∈ [gON , gOFF ]. By encoding second
operand as a voltage v, the current through the device becomes
the multiplication of both operands i = vg.

The crossbar architecture automatically computes the addi-
tion of the individual dot-products. As depicted in Figure 1,
the set of accurately programmed conductances in the NVM
devices conforms to the matrix G = {gab}, a = [1, N ], b =
[1,M ]. Encoding the input vector as voltages V = {va}, the
current flowing through each one of the bitlines I = {ib}
corresponds to the accumulation of the partial products ib =∑N

a=1 vagab.

B. NVM Technology Level Challenges

Garcı́a-Redondo et al [15] provide a more detailed per-
spective on resistive switching NVMs. Three key challenges
are: endurance, variability, and device non-linearity. Limited
endurance after many writes is one of the main problems
that remains unsolved. As an example, in-crossbar training
methods have been proposed [11], but their applicability to
real products is still unclear due to this reduced lifetime.
Always-ON inference applications heavily rely on analog read
operations, and rarely re-write the weights encoded in the
crossbar. Consequently limited write-ability would not affect
the normal behavior. Second, variability and crossbar-related
errors heavily affect NVM-CMOS hybrid circuits. Neverthe-
less architectures as DNNs are naturally robust against the
noise that these problems may cause. More over, this defects
can be taken into account at training time, getting around
device faults [16]. Third, NVM elements suffer from non-
linearities that lead to errors during the weight-to-conductance
mapping. However, by engineering the physical device this
problem can be overcome.

As seen, technology problems related to inference ML ac-
celerators built with NVM technologies can be overcome. Next
section describes the challenges specific to the deployment of
ML algorithms in NVM crossbars.

C. NVM For Analog ML Accelerators: Circuit Challenges

In this section the three main challenges still to be addressed
at circuit level: operands precision, analog signals dynamic
range control and negative weights representation.

Challenges Related to Precision: For both digital and
emerging analog accelerators, the precision of the operands
and operations involved in the DNN determines the accuracy,
latency and energy consumption of the inference operation.
Consequently, the quantization of both weights and activations
is critical on the design of the accelerated system. Though
6 − 8-bit NVM devices have been demonstrated [9], vari-
ability or analog noise may compromise the encoding of
more than 2 to 4 bits per cell/weight. On the other hand,
the current accumulation taking place on the column bit-line
is not quantized and does not suffer from precision related
problems. Finally, the precision of the involved DACs and
ADCs greatly influences the total area and power consumption
[9], [17]. Thereby, the selection of the periphery precision (or
the design/use of multiple DACs/ADCs exhibiting different
bits) is critical for the system accuracy and efficiency.

Challenges Related to Dynamic Range: The dynamic range
of the analog signals decides the periphery design and recon-
figurability. Figure 2 describes how NN layers are deployed
in an NVM crossbar. Convolution kernels are decomposed by
sets of channels, and mapped to different columns. Then, the
kernels are unrolled and grouped to compute in parallel the
convolution operation. However, the input activations, weight,
accumulation signals and output activations do not share
common ranges across different channels and layers. This
non-uniform scaling across DNN layers imposes full-custom
blocks per stage –Figure 2 a) and b). The number of elements
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Figure 2. Common problems on the deployment of NN layers in NVM crossbars: Scaling isues on a) convolutional layers and b) fully connected layers are
often solved using full-custom periphery, while the handling of c) negative weights area and power overcosts.

in a layer and the range of the involved signals determine
the currents flowing through the bitlines. Different voltage or
current signals require per-layer full-custom periphery.

To the best of our knowledge, every offline learning work
in the literature that trains the DNN externally to the NVM
crossbar dynamically scale each DNN layer to the available
set of conductances in which we can program the device [18].
This process is independent of the input, weight and activation
value ranges of the layers. However, a reconfigurable system
deals with variable voltage/current signals with very different
ranges: though the crossbar weights can be reprogrammed, the
full-custom periphery constraints the deployment of different
NN graphs to only one. Consider the deployment of two
different fully connected layers, A and B, of the NN described
in Figure 2 b). The number of inputs n(XA) and neurons
n(YA) differs from those in layer B. Similarly, their ranges
[xA0, xA1], [yA0, yA1] will differ from the respective ones in
layer B. And more importantly, the weight matrices WA and
WB differ on their ranges [wA0, wA1], [wB0, xB1]. However,
both matrices WA and WB need to be mapped [18] to the same
available set of conductances the devices can be programmed
in, G. Thus for translating the i − th weight matrix to the
conductances range [g0, g1], the periphery generating the re-
quired voltage amplitudes vith and sensing the output currents
iith needs to be scaled accordingly, and therefore be different.
Full-custom blocks require higher design time [19], and limit
the deployment of different NNs in the same HW. Moreover,
should the NN weights be updated varying voltage/current
ranges, DACs/ADCs would require extra calibration processes.

Similarly, and to take fully advantage of the crossbar, the
deployment of convolutional layers requires mapping different
filters of the same layer to different columns in the tile. As
described in Figure 2 a), per-channel quantization methods
[20] lead to different weight/activation ranges. As voltage
inputs and S/H or ADC elements are shared across the filters,
analog/digital scaling stages would be required. Different S/H
and ADC designs leads to additional area, power consumption,
and higher design times [19].

Challenges Related To Weights Polarity: The conductance
in a passive NVM element can only be a positive number
g in the range [gOFF , gON ]. However, the NN weights, no
matter whether W ∈ R or W ∈ Z, contain both posi-
tive and negative values. Consequently, the use of bipolar
weights involves a problem when mapped to a only positive
conductance set. Traditionally positive and negative weights
are deployed separately in different areas of the crossbar [9],
[13]. This approach comes with the duplication of crossbar
area and energy consumption, and the addition of current
subtractors or highly-tuned differential ADC –hindering the
reconfigurability of the accelerator. As depicted in Figure 2
c), using this scheme, we double the crossbar area as per-
weight, one column computes the positive contributions, while
the other column the negative ones [7], [9], [13]. Moreover,
additional current subtraction blocks are required before/at the
ADC stages [7], [13]. Alternative solutions as [18] shifting the
weight matrices usually involve the use of biases dependent
on the inputs and additional periphery. Nevertheless, both
alternatives involve considerable area&energy overheads.



Status of NVM-based Reconfigurable Accelerators: A naive
deployment of a particular algorithm into a given crossbar re-
quires the periphery surrounding it to be full-custom designed.
Therefore, despite many efforts have been devoted to design
NVM based accelerators, most works presented in literature
describing different NN experiments rely on HW external to
the chip to assist the crossbar as supporting periphery [11],
[13], [14], [18]. To solve the issue, the first reconfigurable
CMOS-NVM processor includes per-column current dividers
as scaling stages, interfacing the high-precision ADCs before
the conversion takes place [7]. While achieving reconfigura-
bility, the system is penalized in terms of area and power.

III. HARD-CONSTRAINED HW QUANTIZED TRAINING

To address the reconfigurability versus full-custom periph-
ery design, and its dependence on the weights/activation preci-
sion, we have developed a framework to aid mapping the DNN
to the NVM hardware at training time. The main idea behind
it is the use of hard-constraints when computing forward and
back-propagation passes. These constraints, related to the HW
capabilities, impose the precision used on the quantization of
each layer, and guarantee that the weight, bias and activation
values that each layer can have are shared across the NN. This
methodology allows, after the training is finished, to map each
hidden layer Li to uniform HW blocks sharing:

• a single DAC/ADC design performing V() / act()
• a single weight-to-conductance mapping function f()
• a global set of activation values Yg = [y0, y1]
• a global set of input values Xg = [x0, x1]
• a global set of weight values Wg = [w0, w1]
• a global set of bias values Bg = [b0, b1].

Being the crossbar behavior defined by

iij =
∑

vikgikj + bij (1)

vik = V(xik) (2)
gikj = f(wikj) (3)
yij = act(iij), (4)

and every system variable within the sets Yg, Xg,Wg and Bg ,
every DAC/ADC performing V() and act() will share design
and can potentially be reused. To achieve the desired behavior
we need to ensure at training time that the following equations
are met for each hidden layer Li present in the NN:

Yi = {yij}, yij ∈ [y0, y1] (5)
Xi = {xik}, xik ∈ [x0, x1] (6)
Wi = {wikj}, wikj ∈ [w0, w1] (7)
Bi = {bij}, bij ∈ [b0, b1]. (8)

Commonly, the output layer activation (sigmoid, softmax)
does not match the hidden layers activation. Therefore for
the DNN to learn the output layer should be quantized using
an independent set of values Yo, Xo,Wo, Bo that may or not
match Yg, Xg,Wg, Bg . Consequently, the output layer is the
only layer that once mapped to the crossbar requires full-
custom periphery.
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Figure 3. Simplified version of the proposed quantized graph for crossbar-
aware training, automatically handling the global variables involved in the
quantization process, achieving uniform scaling across layers.

H 1 Quantized Training aided by Differentiable Architecture
Search [21]

Input: Set of global variables Vg = {Xg, Yg,Wg, Bg}
Initialize Vg
while not converged do

Update weights W
Compute non-differentiable vars in Vg
Update layer quantization parameters

end while

A. HW Aware Graph Definition

The NN graphs are generated by Tensorflow Keras libraries.
In order to perform the HW-aware training, elements control-
ling the quantization, accumulation clippings, and additional
losses, are added to the graph. Figure 3 describes these addi-
tional elements, denoted as global variables. For this purpose,
the global variable control blocks manage the definition, up-
dating and later propagation of the global variables. A global
variable is a variable used to compute a global set of values
Vg composed of the previously introduced Yg, Xg,Wg, Bg or
others. Custom regularizer blocks may also be added to help
the training to converge when additional objectives are present.

B. HW Aware NN Training

1) Differentiable Architecture and Variables Updating Dur-
ing Training: Each global variable can be non-updated during
training, –fixing the value of the corresponding global set in
Vg– or dynamically controlled using the related global vari-
able control. If fixed, a design space exploration is required in
order to find the best set of global variable hyperparameters
for the given problem. On the contrary, we propose the use
of a Differentiable Architecture (DA) [21] to automatically
find the best set of global variable values using the back-
propagation. In order to do that, we make use of DA to explore
the NN design space. To achieve it, we define the global
variables as a function of each layer characteristics –mean,
max, min, deviations, etc. If complying with DA requirements,
the global control elements automatically update the related
variables descending through the gradient computed in the
back-propagation stage. On the contrary, should a specific
variable not be directly computable by the gradient descent, it
would be updated in a later step as depicted in algorithm 1.



We also propose the use of DA on the definition of inference
networks that target extremely low precision layers (i.e. 2 bit
weights and 2 − 4 bits in activations), to explore the design
space, and to find the most suitable activation functions to
be shared across the network hidden layers. In Section IV
experiments we explore the use (globally, in every hidden
layer) of a traditional relu versus a customized tanh defined
as tanh(x − thg). Our NN training is able to choose the
most appropriate activation, as well as to find the optimal
parameter thg . The parameter thg is automatically computed
through gradient descent. However, to determine which kind
of activation to use, we first define the continuous activations
design space as

act(x) = a0relu(x) + a1tanh(x− thg), (9)

where {ai} = {a0, a1} = Ag . The selected activation as is
obtained after applying softmax function on Ag:

as = softmax(Ag), (10)

which forces either a0 or a1 to a 0 value once the training
converges [21].

2) Loss Definition: As introduced before, additional objec-
tives/constraints related to the final HW characteristics may
lead to non convergence issues (see Section III-C). In order to
help the convergence towards a valid solution, we introduce
extra LC terms in the loss computation that may depend on
the training step. The final loss LF is then defined as

LF = L+ LL2 + LL1 + LC , (11)

where L refers the standard training loss, {LL1,LL2} refer
the standard L1 and L2 regularization losses, and LC is the
custom penalization. An example of this particular regulariza-
tion terms may refer the penalization of weight values beyond
a threshold WT after training step N . This loss term can be
formulated as

LC = αC

∑
w

max(W −WT , 0)HV (step−N) (12)

where αC is a preset constant and HV the Heaviside function.
If the training would still provide weights whose values
surpass WT , HV function can be substituted by a non clipped
function relu(step−N). In particular, this LC function was
used in the unipolarity experiments located at Section IV.

3) Implemented Quantization Scheme: The implemented
quantization stage takes as input a random tensor T =
{tt}, tt ∈ R and projects it to the quantized space Q =
{qq+, qq−}, where qq+ = αQ2

q , qq− = −αQ2
q , and α ∈ R.

Therefore the projection is denoted as q(T ) = Tq , where
Tq = {tq}, tq ∈ Q. For its implementation we use fake quant
operations [20] computing straight through estimator as the
quantization scheme, which provides us with the uniformly
distributed Q set, always including 0. However, the quantiza-
tion nodes shown in Figure 3 allow the use of non-uniform
quantization schemes. The definition of the quantized space Q
gets determined by the minimum and maximum values given
by the global variables Vg .
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Algorithm 1 can consider either max/min functions or
stochastic quantization schemes [20]. Similarly, the quantiza-
tion stage is dynamically activated/deactivated using the global
variable doQ ∈ 0, 1, with could be easily substituted to support
incremental approaches [22]. In particular, and as shown in
Section III-C, the use of alpha-blending scheme [23] proves
useful when the weight precision is very limited.

C. Unipolar Weight Matrices Quantized Training

Mapping positive/negative weights to the same crossbar in-
volve double the crossbar resources and introducing additional
periphery. Using the proposed training scheme we can restrict
further the characteristics of the DNN graph obtaining unipolar
weight matrices, by redefining some global variables as

Wg ∈ [0, w1] (13)

and introducing the LC function defined by Equation 12.
Moreover, for certain activations (relu, tanh, etc.) the max-

imum and/or minimum values are already known, and so the
sets of parameters in Vg can be constrained even further.
These maximum and minimum values can easily be mapped to
specific parameters in the activation function circuit interfacing
the crossbar [19]. Finally, in cases where weights precision is
very limited (i.e. 2 bits), additional loss terms as LC gradually
move weight distributions from a bipolar space to an only
positive space, helping the training to converge.

In summary, by applying the mechanisms described in
Section III, we open the possibility of obtaining NN graphs
only containing unipolar weights.

IV. EXPERIMENTS AND RESULTS

We have evaluated the presented methodology using CI-
FAR10 and Human Activity Recognition (HAR) applications.
CIFAR10 [24] comprises the classification of 32x32 sized
images into 10 different categories. HAR classifies among in-
coming data from different sensors (accelerometer, gyroscope,
magnetometer, 3 channels each) into 12 different activities
(run, jump, etc.) To mimic a smartwatch scenario we used real
data from sensors placed in only one limb from [25] dataset.

Figure 4 describes the architectures used in each case:
CIFAR10 problem represents a good example of always-ON
medium sized DNNs, including multiple convolutional layers
and 310K parameters. HAR NN interfaces 9 input channels,
with a time-series data input of 100 samples each, followed
by 2 fully connected layers with a total of 133K parameters.
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Figure 5. CIFAR10 CNN. Comparison between 4-bit quantized training with
TensorFlow STE quantization and the proposed solution. 8-bit is shown as a
baseline.

Table I
CIFAR10 CNN QUANTIZATION SCHEMES COMPARISON. OUR PROPOSAL

BRINGS A 5.7× REDUCTION ON THE NUMBER OF DIFFERENT WEIGHTS.

Scheme Accuracy # Different Uniform
Weights DACs/ADCs

TF, 8-bit 88.10% 1372 No
TF, 4-bit 84.43% 91 No
Proposed, 4-bit 83.7% 16 Yes

A. Accuracy vs Uniform Scaling Trade-off Results: CIFAR10

After performing a quantization hyperparameter design ex-
ploration we conducted the quantized training of the use case
NN using both the standard STE approach in TensorFlow
library [20] and the proposed scheme. It is to be noted that
TensorFlow’s scheme does not quantize the bias. and thus
when mapped to the crossbars, additional quantization studies
would be needed. Figure 5 shows the evolution of the Deep
convolutional NN learning through the training process. When
quantized with 4-bit (weights and activations) our solution
gives accuracies only 0.7% away of the state of the art.
Moreover, and as described in Table I our solution provides
a significant reduction in the number of full-custom circuit
modules involved in the algorithm-to-HW mapping.

B. Unipolar Weights vs Accuracy Trade-off

1) FC DNN: HAR: In this experiment we apply the pro-
posed mechanisms to obtain a NN classifying different HAR
activities whose weights take only positive values. The DA
Algorithm 1 conducted the exploration of the NN design
space, determining the NN architecture and parameters set
that provided the best accuracy while using only positive
weights within the NN. To help the NN training to converge,
and following graph structure shown in Figure 3, custom
regularizers were required to penalize negative weights, and
a variation of alpha-blending quantization scheme [23] was
introduced. Figure 6 summarizes the experiment results. NNs
with bipolar weight matrices use relu as the hidden-layers

HAR 3FC

Standard STE
Proposed Bipolar
Proposed Unipolar

Figure 6. Comparison between TensorFlow STE quantization and proposed
solution. Accuracy levels are indistinguishable even with unipolar weight
matrices.
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activation. On the contrary, our design exploration algorithm
found act = tanh(x − thg) as a function best suiting NNs
based on unipolar weight matrices. The introduction of thg
shift on the tanh function allows the network to map a small
valued positive (negative) input to the activation as a small
valued negative (positive) at the output, . The proposed solu-
tion is as competitive as the standard one, while obtaining the
significant benefit of a reduced set of weights and uniform HW.
But more importantly, we demonstrate that small NN using
only unipolar weight matrices /ADC can correctly perform
classifications, aiding the deployment to NVM crossbars.

2) Deeper CNN: CIFAR10: For larger convolutional net-
works the imposed unipolarity constraint can be to restrictive
for the NN to correctly learn. We propose imposing the
constraint only to a certain amount of channels in each layer.
The ratio of unipolar/bipolar channels will determine the final
accuracy and the power and area savings.

Figure 7 describes the results of applying hard unipolar
weights constraint to the same CIFAR10 application, varying
the percentage of unipolar channels in each convolutional
stage from 0% (bipolar weights) to 100% (completely unipolar
weights), for the standard STE and uniform-scaling quanti-
zation approaches. It can be seen how a minimum number
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Figure 8. HW implementation differences between traditional and proposed
approach, highlighting the saved periphery by using a multiplexing scheme.

Table II
CHARACTERISTICS OF DESIGNED ADC AND DAC

Device Power@10 MHz @100 MHz Area

DAC 4b 3.2 µW 11.7 µW 101 µm2

DAC 8b 4.4 µW 13.6 µW 440 µm2

ADC 4b 1.28 µW 12.56 µW 1030 µm2

ADC 8b 1.64 µW 16.39 µW 7920 µm2

of channels in each convolutional layer is required by the
NN to learn. Unipolar percentages above 60% impose a
hard limitation, specially when the uniform-scaling training
scheme is used. However, it can be seen how for the 8-b STE
quantization scheme, by imposing 50% unipolar channels, we
can reduce a 25% the crossbar area/energy with a small 2%
accuracy penalty. For the 4-b scheme, a 20% area/energy
savings would come with a 4% accuracy reduction. Therefore
we can state that even for more complex problems, we can
greatly simplify the NN deployment forcing a percentage of
channels to be unipolar.

C. Energy and Area Benefits

Figure 8 describes the comparison of HW implementation,
where we consider [8], in which each PCM NVM element –
each parameter in our NN– consumes 0.2 µW, and has a 25F 2

area, equivalent to 0.075µm2. For the DAC/ADC character-
istics, we designed in house 4-bit and 8-bit elements, using
a 55 nm CMOS technology. Simulated power consumption
and area are gathered in Table II. A power/area overhead of
5/10% over the ADC figure for an integrated adapted current
subtractor is added in the case where bipolar weights are
present. Additional 5% power penalty is applied for ADCs
using current scaling. Regarding each one of the NN layers,
DACs and ADCs will only be multiplexed should the layer
maintain uniform scaling with the system. With our proposed
approach, all layers share the same input ranges, and only the
last layer ADCs would be different from the rest of the system.

Table III
ESTIMATED ENERGY PER INFERENCE: NUMBER OF NVM CELL READS

(POSITIVE (+) AND NEGATIVE(−) WEIGHTS), DAC/ADC OPERATIONS.

CIFAR10 TF 8 bits TF 4 bits Ours 4 bits
10/100 MHz 10/100 MHz 10/100 MHz

Total 1.6/0.19 µJ 1.59/0.18 µJ 1.58/0.18 µJ
NVM (±) ≈ 77e6 1.55/0.16 µJ 1.55/0.16 µJ 1.55/0.16 µJ
DAC ops ≈ 75e3 32.9/10.1 nJ 23.9/8.7 nJ 23.9/8.7 nJ
ADC* ops ≈ 115e3 22.6/22.6 nJ 18.4/18.1 nJ 16.5/16.2 nJ

HAR TF 8 bits TF 4 bits Ours 4 bits
10/100 MHz 10/100 MHz 10/100 MHz

Total 1.6/0.24 nJ 1.54/0.22 nJ 0.84/0.15 nJ
NVM (+) ≈ 34e3 0.7/0.07 nJ 0.7/0.07 nJ 0.7/0.07 nJ
NVM (−) ≈ 34e3 0.7/0.07 nJ 0.7/0.07 nJ 0 nJ
DAC ops ≈ 384 0.17/0.05 nJ 0.12/0.04 nJ 0.12/0.04 nJ
ADC* ops ≈ 268 0.052/0.05 nJ 0.04/0.03 nJ 0.03/0.03 nJ

1) Energy Estimation: To maximize the throughput per NN
layer we consider one DAC (ADC) per column (row). From
the power perspective, for each layer the total number of NVM
cell reads performing the multiplications (and automatically
the additions) would be

∑
Fi
KiXi for the convolutional layers

and XiYi for the fully connected ones, where Xi,Yi,Ki refer
the the size of inputs, outputs, and kernel respectively, and
Fi refers the number of filters of the i− th layer. Regarding
the DACs and ADCs utilization, a total of Xi and digital to
analog and YiFi analog to digital conversions are required. No
analog scaling system is required. The results describing the
power estimation per inference in both bipolar-CIFAR10 and
bipolar/unipolar-HAR applications is displayed in Table III.
It can be seen that as bipolar weights were needed in the
image solution, and due to the amount of multiplications
(> 38 million per inference), the saved power is almost
negligible. However, in very low power IoT applications, the
proposed solution requires only 55% of the energy compared
with traditional schemes, mainly due to the unipolar weight
matrices encoded in the NVM crossbar.

2) Area Estimation: In traditional deployments, being Fi

the number of filters present in a given layer Li, Fi full
custom different ADCs would be designed and placed for
that layer, freezing the applicability to a particular application.
However, with our proposed scheme we can deploy different
NN applications in the same hardware, using many smaller
and fixed-sized crossbars. We can feed the incoming inputs in
batches, reusing the kernels unrolled in the crossbar. Adopting
this second scheme for the CIFAR10 example, the largest
CNN unrolled layer requires an input of size 32x32x32. For
example, if the crossbar size available in our reconfigurable
system is 128x128, the layer can be batched in 256 operations.
If the hardware blocks were composed of 512x128 elements,
the layer could be batched in 64 operations. On the other hand,
for smaller NN this same hardware could fit entire layers: in
HAR benchmarch each layer can fit in a 128x128 crossbar.
For both crossbar size examples, every layer but the last would
reuse the 128 DAC/ADC pairs during inference.

Table IV summarizes the area estimation when considering



Table IV
ESTIMATED AREA USING 128x128 BASIC CROSSBAR BLOCKS.

CIFAR10 TF 8 bits TF 4 bits Ours 4 bits

Reconfigurable No No Yes

Crossbars 44 44 44
DACs 448 448 128
ADCs 896 896 256
Current subtractors 896 896 256

Total Area 8.05 mm2 1.1 mm2 0.22 mm2

HAR TF 8 bits TF 4 bits Ours 4 bits

Reconfigurable No No Yes

Crossbars 6 6 3
DACs 384 384 128
ADCs 268 268 256
Current subtractors 268 268 0

Total Area 2.51 mm2 0.35 mm2 0.28 mm2

crossbars composed of 128x128 elements (a very conservative
approach to avoid technology problems) and assisted by 128
DACs, 128 ADCs and additional periphery. For the traditional
approaches, we follow the deployment schemes in the litera-
ture, and consider that the number of ADCs present in each
layer does not need to match the crossbar column size, saving
considerable amount of area but avoiding reconfigurability. On
the contrary, by using the proposed solution the DACs and
ADCs are multiplexed. The benefits are noticeable: First, we
guarantee that the HW is uniform across the NN, ensuring
reconfigurability. Second, in CIFAR10 benchmark, the solu-
tion leads to up to 80% area saving –0.22 mm2 vs 1.1 mm2

for 4 bit accelerators. For HAR benchmark, up to 20% area
saving is achieved. When comparing against the traditional 8
bit deployment schemes, this area savings raise up to 97% for
CIFAR10 CNN benchmark and 89% for the HAR NN.

V. CONCLUSIONS

ML at the edge requires accelerators that efficiently compute
inference in constrained devices, and NVM based analog
accelerators are promising candidates due to their low power
capabilities. However the full-custom per-layer design of the
periphery interacting with the crossbars hinder the reconfig-
urability of the whole system.

This work has presented the first solution that aids the
algorithm deployment in uniform crossbar/periphery blocks,
at training time. With no accuracy penalty, the method is able
to simplify the design of the crossbar periphery, significantly
reducing the overall area and power consumption, and enabling
real re-usability and reconfigurability. Moreover, we have
demonstrated that DNN with unipolar weight matrices can cor-
rectly perform bio-signals classification tasks while solving the
negative/positive weights problem inherent to NVM crossbars,
and therefore reducing by half the crossbar area/energy and
significantly simplifying the periphery design. We validated
our solution against two different always-ON sensing appli-
cations, CIFAR10 and HAR, obtaining competitive accuracies
while simplifying the whole system design.
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