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Abstract—Disorganized urban growth has led cities to chaos,
which has brought countless challenges for their development in
several sectors, such as traffic organization, public safety, and
transportation. Vehicular re-identification (ReID) technologies
have become increasingly important in this context since these
allow to produce insights capable of benefiting many areas. As
recently, methods frequently resorted to Deep Learning and
Convolutional Neural Networks (CNNs), especially in the design
of loss functions capable of improving the learning capacity of
CNNs. Couple and triplet loss techniques have gained promi-
nence, but their effectiveness depends on the mining of samples
to converge properly. In this paper, we investigate a new simple
approach for vehicle ReID by combining sample mining strategy
and approximate nearest neighbor (ANN) method to improve
retrieval quality. By relying only on relatively low-dimensional
deep features, we were able to obtain state-of-the-art performance
on the VeRi-776 dataset in terms of mAP, HIT@1, and HIT@5
metrics, but using relatively simple CNN and ANN methods,
which are feasible in CPU for real-time scenarios.

Index Terms—CNN, Deep Learning, Vehicle Re-Identification.

I. INTRODUCTION

Object re-identification (RelD) is a prominent research field
that recently attracted the attention of the computer vision
community [1], [2]. ReID refers to the matching of different
objects appearing in images captured by different cameras, i.e.,
RelD is an important aspect of the Multi-Target Multi-Camera
(MTMC) tracking problem. Initially applied to people, ReID
consists of detecting and re-identifying subjects. Person RelD
can rely on many face recognition techniques developed and
enhanced over the years [1]. Some of these have also been
applied to vehicle re-identification [3].

In particular, vehicle ReID emerges as a potential key tool
for building solutions to many problems faced in modern trans-
portation, safety, catastrophe, and emergency management,
and other aspects of urban center administration [3]. When
applied to public safety, the vehicle RelD enables finding sus-
pects or stolen vehicles [4] even with license plate adulteration
where traditional automatic license plate recognition (ALPR)
and part identification methods usually fail in this case [2],
[5], [6]. This is because vehicle ReID methods rely mainly
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on holistic appearance, i.e., are capable of benefiting from
discerning features like model, make, color, stickers, numbers,
scratches, etc [7]-[9].

Practical vehicle RelD is a challenging task due to many
complicating underlying aspects, such as multiple viewing
angles, occlusion, weather, and the presence of near-identical
instances of same make, model, and color [10]. That is,
vehicles usually present high intra-class variance and low inter-
class variance [3], [6], [9].

Recent advances in Deep Learning and Convolutional Neu-
ral Networks (CNNs) have led to significant improvements in
the state-of-the-art of many fields, especially image, speech,
text, and audio processing [11]. Remarkable CNN models
introduced breakthroughs in face recognition and object detec-
tion, for example [1], [12], [13], while dramatically reducing
the human effort in designing methods to acquire specific,
problem-driven visual features from images [14]. Concerning
RelID, deep neural networks are widely used to produce
highly distinctive vector representations for objects, i.e., vector
embeddings which are a key component of most vehicle
ReID methods [5]. The typical dimension of vehicle vector
embeddings used in state-of-the-art is increasing with time
along with more complex neural network architectures in
order to improve results on reference vehicle RelD datasets
[2], [3], [5]-[7], [15], [16]. In addition, crafty design of loss
functions and training strategies is a key aspect for obtaining
a competitive RelD method [1], [10].

Triplet Loss [17] is a recurrent element in most similar
works, either as the main method or as a variation of it [2],
[3], [10]: the general hypothesis assumed is that the most
discern embeddings obtained by adopting this loss function
favors RelD retrieval quality improvements.

In this work, we propose a vehicle RelD system designed
for public safety that relies on a CNN architecture to produce
a relatively low-dimensional vector embedding with state-of-
the-art performance. Experimental evaluation shows that a
less accurate deep metric in terms of instance matching can
lead to better RelD performance. Moreover, the adoption of
Approximate Nearest Neighbors (ANN) methods can provide



significant quality improvements at low retrieval times. These
are the main contributions of this paper:

o We describe a method and system for vehicle RelD.

o« We adopt a simple, “lightweight” network for feature
extraction with competitive results contrasting to state-
of-the-art methods.

e Our experimental evaluation shows that ReID perfor-
mance is not exactly determined by matching accuracy
based on metric optimization in terms of the traditional
triplet loss function.

o Our results show that ANN methods can improve RelD
quality by a significant margin.

The remaining of this work is organized as follows. Section

IT discusses related work. Our methodology is described
throughout Section III. Section IV is devoted to experimental
evaluation, which has produced the results discussed in Section
V. Finally, the conclusions are presented in Section VI.

II. RELATED WORK

Similar to Person RelD, which relies on face recognition
technology, Vehicle ReID may resort to existing vehicle recog-
nition algorithms that are mostly based on ALPR methods.
However, this approach has serious limitations [3]. ALPR
algorithms provide the license plate text, which raises concerns
about privacy [5]. Depending on the capture conditions, the li-
cense plate information is not sufficiently reliable to accurately
identify a vehicle, as ALPR algorithms are subject to errors.
Also, license plates may be purposely replaced by car thieves
or malicious people. Finally, images in which the license plate
does not appear or is obstructed become virtually useless even
when these contain other discerning characteristics [2].

The rest of this section is devoted to a discussion about
vehicle RelD concerning the available datasets, evaluation,
and performance metrics, and the most representative methods
found in our literature review.

A. Datasets for Vehicle RelD

PKU VehicleID is a large benchmark dataset proposed by
Hongye Liu et al. [6], which contains 221,567 images from
26,328 vehicles captured from a video monitoring system
operating under normal condition. There are about 8.42 images
per vehicle. There is no standard division of the samples in the
dataset for training and testing purposes. Consequently, there
is a chance that results obtained from other researchers may
present subtle but little to insignificant divergence.

VeRi-776 [7] has been the most used benchmark for vehicle
ReID. The images from this dataset were collected from 20
non-overlapping cameras of video traffic in China with a
variety of camera angles vehicle viewpoints, illuminations,
and occlusions. consists of 776 identities for training and 200
identities for testing.

CityFlow [8] is a public dataset that is onlinefor the AI City
Challenge carried out by NVIDIA at CVPR 2019. This dataset
is the largest-scale in terms of spatial coverage and the number
of cameras in an urban environment. It consists of more
than 3 hours of synchronized HD videos from 40 cameras

across 10 intersections, with the largest distance between two
simultaneous cameras being 2.5 km. CityFlow contains more
than 200K annotated bounding boxes of vehicles with different
viewing angles, scenes, and models. There is some information
in the dataset about camera geometry and calibration to
be used in the spatiotemporal analysis. A subset from this
dataset is available for the task of image-based vehicle re-
identification: CityFlow-RelD dataset contains 56,277 images,
being 36,935 for training and 18,290 for RelD based on 1,052
query images. A total of 333 vehicles is captured 35 cameras
for training. Moreover, there are 333 vehicles not found in the
training set, obtained from 5 different cameras, available for
evaluation. Based on recent results and activity, the CityFlow-
RelD dataset is more challenging than VeRi [3], and it is
still growing, so this dataset may replace VeRi as the golden
standard in the field of vehicle RelD.

Finally, VeRi-Wild [9] contains images captured from 174
cameras under different scenarios across one month (30x24h).
These cameras are distributed in a large urban district of
more than 200 km?. A remarkable effort was carried out to
build and annotate this database: there are 12 million images
from 40,671 unique vehicles under different capture, traffic,
lighting, backgrounds, resolutions, viewpoints, occlusion, and
especially challenging weather conditions. Results published
so far suggest this is the most challenging dataset so far.

B. Retrieval, Evaluation and Performance Metrics

The problem of vehicle RelD can be formalized as follows.
Given an integer k£ and an input query image ¢ of a vehicle
identified by an integer vid,, considering a large image col-
lection S, return an ordered list of k£ images that more closely
are from the same vehicle vid, according to a given similarity
metric (see Fig. 1). Considering performance evaluation, one
must consider an integer (), the number of query images used
to retrieve ranked lists in the test dataset.

Let us consider a single query, where GT'P is the total num-
ber of ground truth positive images for the query and T'Pseen
is 1 when the ¢ —th image found in response to that query is a
true positive. So, Average Precision AP(q) for a given query
image ¢ measures how accurate the returned list of images is.
AP(q) is defined as:

k
1 T Pseen
AP = 1
GTP ; 7 M
In its turn, the overall performance of re-identification for
a dataset is usually expressed in terms of Mean Average

Precision (mAP), which is defined as:

9 AP
MmAP = M 2)

Q

Moreover, the image-to-track HIT@Q1 and HIT@5 metrics
are also used in most recent publications [2], [3], [9], [16].
Many works are also adopting the Cumulative Match Curve
(CMCOC) to describe the probability that the target vehicle ID
vid, appears in results of different sizes (k). CMC is more
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Fig. 1. Vehicle RelD: given a query image g (at left, highlighted in blue) return & images of the same vehicle (correct retrievals are highlighted in green).
Evaluation metrics should be sensitive to the position of good matches in the resulting ranked list: given the same query image in the last two rows (e),
the very last row displays better performance since the wrong retrieval occurs later in the list. These are actual results from our TL-GNT (odd rows), and
CL-NGT (even lines) approaches. The image aspect ratio is kept for a better understanding of how the results can vary. Best viewed in color.

frequently reported in publications adopting the VehicleID
dataset. CMC can be computed from gt(q, k), which is 1 when
vid, appears in the top-k results of the list

> gt(g. k)

CMC =
Q

3)

C. Methods for Vehicle RelD

By considering RelID from an information retrieval perspec-
tive, there are usually three steps when applying deep metric
learning. The first step is to derive a discerning embedding
vector for representing a vehicle image. Then, to adopt a
similarity metric, such as Euclidean or Cosine distances.
And finally, to perform a search using the selected metric
and a suitable acceleration data structure. Zhong et al. [18]
emphasized the key role of re-ranking for improving accuracy
given that most methods do not need additional training. They
proposed k-reciprocal encoding to favor true matches during
the search step. These authors carried out experimentation in
well-known datasets for person RelD and showed that their
encoding can improve retrieval performance by a fair margin.
In fact, many works have adopted some re-ranking technique
for improving their vehicle RelD results [4].

Liu et al. [15] [7] provided a baseline for VeRi-776 dataset
by using FACT (Fusion of Attributes and Color feaTures)
to combine a low-level color feature and high-level semantic

attribute. These authors also tested several found in content-
based image retrieval literature, such as BOW-SIFT, BOW-
CN, AlexNet, AlexNet + BOW-CN, and GoogLeNet [19].
However, none of these methods outperformed FACT.

Hongye Liu et al. [6] proposed Deep Relative Distance
Learning (DRDL) method to derive an end-to-end siamese
CNN that learns both a 1024-dimensional feature vector
representation and a similarity metric computation. DRDL is
inspired by linear discriminant analysis and is built on top of
VGGM-1024 [20] as coupled clusters loss to learn relative
distances for vehicles. Similarly to triplet loss, this function
considers distances to a cluster center, i.e., it can take more
than three samples into account. It should be noted that their
training procedure depends on vehicle model information, so
DRDL cannot be applied directly to datasets missing such
annotations.

PROVID (PROgressive Vehicle re-IDentification) [4] is a
framework based on deep neural networks that uses the
multimodal data, i.e., license plates, camera locations, and
contextual information, in large-scale video surveillance to
perform vehicle re-identification. PROVID adopts re-ranking
based on spatiotemporal information, which is measured in
terms of a spatiotemporal similarity metric computed as the
normalized product between ratios of temporal distance times
the physical distance across two cameras considering the max-



imum differences. PROVID use 1024-dimensional embedding
vectors extracted using GoogleLeNet [19] as representation.

Bai et al. [16] proposed group-sensitive-triplet embedding
(GS-TRE), a deep metric learning approach that incorporates a
group representation as an intermediate element between each
vehicle and the samples. They proposed an online grouping
strategy during training to build triplet samples at multiple
granularities across different vehicles, i.e., samples of the same
ID are partitioned into different groups, so the method could
foster the learning of fine-grained features. They build on top
of VGG-M-1024 [20], which contains 5 convolutional layers,
2 fully-connected layers, plus an L2 normalization layer that
outputs a 1024-dimensional embedding vector.

Kumar et al. [10] investigated the use of contrastive and
triplet loss functions for vehicle re-identification. These au-
thors formalized batch sampling (BS) [1] and adopted Mo-
bileNet [21] as backbone while discarding the usual L2
normalization layer [17] when producing a 128-dimensional
embedding vector. They carried out an extensive evaluation of
its application to vehicle ReID to propose a strong baseline
for this problem, which is competitive or outperforms recent
methods.

As most re-identification methods rely on global appear-
ance representations, He et al. [2] proposed a method for
preserving part-regularized discerning features for enhancing
the discrimination of very similar vehicles. They also built
on top of ResNet50 [22], but introducing a detection branch
for improving how local features are used for RelD. They
also apply global average pooling and 1x1 convolution before
producing a 256-dimensional feature embedding. The resulting
framework was trained on an end-to-end basis to obtain
remarkable ReID performance, thus surpassing most methods
published so far.

Cosine-MGN (CMGN) [3] is based on Multi Granularity
Network (MGN) [23]. CMGN is built on top of ResNet50
[22] and is one of the strongest ReID models found in liter-
ature. CMGN has two key modifications. First, the reduction
block, or costume head, had its reduction block improved by
replacing the pooling layer MaxPool2d with an AdaptiveCon-
catPool2d. A batch normalization layer was added before
and after each 2D convolution as well and the weights were
shared for each of 8 feature embedding vectors with 256
components, resulting in a 2048-dimensional representation.
Second, an angular margin layer, called Cosine was used
instead of all eight linear classification layers on MGN. The
loss function of CMGN is a combination of Triplet Loss and
Cosine CrossEntropy Loss with faster convergence.

D. Discussion

Vehicle Re-identification is an extremely active research
field in which CNN and deep metric learning are fundamen-
tal tools. ResNet50 is a common building block in many
promising results found in literature [2] [3]. Even though
the MobileNet backbone is faster for real-time and mobile
applications, it would be interesting to investigate how the
approach in [10] can improve results when ResNet50 is

adopted as the backbone network. VeRi sounds to be the most
prominent dataset in literature for comparing methods since
the seminal results in the field published in 2016. It should
be noted that VeRi is distributed with a clear division of the
samples between images for training and evaluation, providing
a standard set for use as a query and test. Future works will
likely turn their focus on even challenging datasets such as
CityFlow-ReID and VeRi-Wild due to their resemblance to
the unconstrained real-world problem.

As we can see from similar works found in literature,
researchers usually resort to increasingly higher-dimensional
feature embeddings trained with different strategies in order
to improve their results [2] [16] [3] (see Table IV). It is
worthy to mention that such improvement demands more
processing power, especially when “plain” fully-connected
layers are employed to compute the embeddings. On the other
hand, there is also evidence in the literature that competitive
methods can be obtained with relatively lower-dimensional
embeddings and simpler backbone architectures [10]. Finally,
a clever strategy for training the feature extraction, in particular
how batches are constructed before these can be fed into the
network, is also a key ingredient in most cases.

III. OUR APPROACH

As stated beforehand, the main goal of our approach is to
provide a viable solution for Vehicle ReID in the context of
public safety in Brazil. Also, our project is carried out under
hardware constraints, therefore the proposed re-identification
system must be capable of operating in CPUs without hard-
ware acceleration.

A. Overall System Architecture

Our system relies on cloud infrastructure and is designed
to operate over an entire city with about 2,000 cameras at
fixed locations in order to favor full-body shots from vehicles.
Fig. 2 presents an overview of the proposed VelD system
architecture. As one can see, captured images are sent to a
Frame Processing Service along with a timestamp,
camera ID, and position information. This service then resorts
to a robust vehicle detection algorithm, such as SSD [13] or
YOLO [12], that crops vehicle images. Naturally, the detection
process has a crucial impact on the overall performance of the
system, but this discussion is beyond the scope of this paper.

These image crops are then sent to a Deep Metric
Generation Service, so each vector embedding is
linked to the respective crop and metadata by a Storage
and Indexing Service. There are other services avail-
able in the system, such as ALPR and vehicle color, model,
and make classifiers, which can add more contextual, semantic
information to the underlying representation. However, explor-
ing such additional features goes beyond the scope of this
paper.

An offline step is responsible for generating specific search
datasets according to application criteria. For example, the
system can produce an index for the “most wanted vehicles”
or “target cars for an inspection”. The index is built on top of
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Fig. 2. Overview of our RelD system architecture.

in-memory ANN algorithms, which can also save the search
structure to disk in order to publish that search index for use
in remote devices or edge servers. A benefit from efficient
ANN algorithms is that, once the index is built, the search
can execute in real-time at a low cost given that such data fits
target system memory and provides efficient search.

There is spatiotemporal and context information that can
further improve results. However, this work focus on results
obtained using solely feature embeddings and approximate
nearest neighbors since this is the overall approach adopted
by most comparable methods we could find in literature.

The built indexes are sent to the RelD Service to allow
operators to perform vehicle searches through REST requests.
The service receives a vehicle image as input and returns the
Topr most similar vehicle images.

B. Deep Metric Learning

We build on top of ResNet architecture based on the fact
that it is an important element for both person and vehicle
RelD. Howeyver, different from most works found in literature,
we decided to adopt ResNet34 instead of Resnet50, as simpler
networks achieved considerable performance for vehicle ReID
[10]. Also, practical results' suggest that ResNet34 is capable
of handling complex shapes such as faces even with further
simplifications, something that could extend to vehicles. A
final 128-dimensional embedding is extracted from the last
layer fully-connected bottleneck.

1f(z1) = fla2)] < d )

1f(xa) = F@p)ll5 < If (@a) = f(zn)ll5 (5)

Two loss layers were adopted for the sake of comparison:
Coupled Loss (CL, Eq. 4), and Triplet Loss (TL, Eq, 5) [1],

Thttp://vis-www.cs.umass.edu/Ifw/results.html

[17]. CL is defined in terms of a global distance threshold
d, but also adding a margin e for deciding whether two 128-
dimensional embeddings, f(z1) and f(x2), of two vehicles,
belong to the same id. Thus, if the distance between the
embeddings is greater than d, then they belong to different
vehicles.

TL is similar, but its purpose is ensuring that an embedding
called positive, f(xzp), lies closer to an anchor, f(xz,), of the
same vehicle id than an embedding of a different vehicle,
f(zy), called negative. Two vehicles are different if the
distance between their embeddings is high. Conversely, these
are the same vehicle if that distance is low. High and low
values are usually defined by a threshold.

TL typically requires an L2 normalization beforehand to
avoid numerical issues during training [24], so the embedding
vector is extracted from this additional layer. Training is
carried out in two levels, as follows. At the training batch
construction level, we perform a uniform random selection
for obtaining N full-body images from V' vehicles forming
a batch tensor. The following preprocessing is applied for
each color image: rotation from —4.5 to 4.5 degrees; scaling
factor from 100 to 95%; displacement up to 1.5 the size at
each dimension; resized to 1502150 with no enhancements,
different from [3]; and color distortion by combining random
additive noise and gamma correction. Duplicate images are
allowed, which favors both the matching of near-duplicate
shots from the same vehicle and the challenges posed by
difficult cases.

In fact, by using backpropagation during training, a network
can only learn from cases in which the constraint imposed
by a loss function is violated. Online sample mining similar
to [25] is performed at the batch loss computation level, so
the training procedure benefits from hard negatives, which
typically improve quality and convergence. However, we also
combine hard negatives with random samples, which, different



from [10], also takes into account information from easy
negatives.

C. Approximate Nearest Neighbors

The main idea behind ANN is to obtain a dramatic im-
provement of search performance, which comes at the cost
of an acceptable loss in the accuracy, so an approximately
correct but fast result is reported [26] [27]. This means
that ANN methods can be used for different tasks, such
as classification, tagging, and recommendation. In addition,
there is clear evidence in the literature that, for some cases,
ANN can also provide unexpectedly enhancement of results
[28], [29]. We have chosen four representative state-of-the-
art ANN methods that are widely used in both research and
actual products [27], [30]-[32] to be evaluated in our strategy.
Moreover, we also explore an exact approach to this problem
[33].

FLANN [26] [30] was one of the first libraries to provide
ANN methods. FLANN incorporates many improved nearest-
neighbor search algorithms in metric spaces, such as the
many variants of the kd-tree and locality sensitive hashing
[26], [27]. FLANN adopts kd-tree, can scale to both high-
dimensional features and very large datasets, and is quite
efficient in building the indexing. Besides, this library features
auto-tuning, although this process has observable limitations
for handling high recall values [27].

ANNOY (Approximate Nearest Neighbors Oh Yeah) [27]
was developed by Erik Bernhardsson and is used by Spotify
for music recommendation. Its implementation resorts to an
elegant Binary Space Partition (BSP) tree using hyperplanes,
similar to those used for rendering purposes on early 3D
graphics. A random forest of BSP trees is built to improve
query results: the more trees, the more accurate results in less
“performance (time) for higher accuracy (quality)”. Default
settings are to use 2 * D, where D is dimensionality.

HNSW (Hierarchical Navigable Small World Graphs) [31]
is a graph-based method that separates links between nodes
in a search graph according to their length scale into different
layers, thus performing searches in a multi-layer graph. Con-
sequently, the evaluation of the nearest node occurs only on a
needed fixed portion of the connections for each element. The
main advantages of the HNSW method are its robustness and
its support to continuous incremental indexing.

NGT (Neighborhood Graph and Tree for Indexing High-
dimensional Data) is a graph-based ANN method initially
proposed to work with large scale, high-dimensional vector
space [32]. NGT improves k-nearest neighbor graph (KNNG)
by adjusting path and edge degrees derived from a KNNG,
i.e., an optimization in terms of the number of incoming
edges and outgoing edges influencing the search accuracy and
query time, respectively. In particular, the authors describe
how a significant speedup can be obtained by removing edges
that can be replaced by alternative search paths. NGT also
supports adding and removing items to the indexing, which is
an important feature for real-world applications. Experimental

evaluation shows that NGT can compete or even outperform
other methods [27], [32].

Finally, Blanco and Kumar [33] proposed nanoflann,for
building KD-Trees of datasets describing point clouds and
rotation groups. However, nanoflann does not focus on approx-
imate nearest neighbor searches but the exact nearest neighbor
performance by resorting to optimizations, such as adopting
squared distances and customizable memory access policies.

IV. EXPERIMENTAL EVALUATION

Our approach was implemented in C++ 11 on top of
CUDA 10.0 using Caffe, then porting our training strategy
to dlib after problems when producing the top-level batch
generation. We also have implemented ann-foolbox, a wrapper
for ANN algorithms relying heavily on templates to reduce
performance footprint by accessing low-level parameters in
detail, as opposed to ANN-Benchmarks written in Python
[27]. Our results focus on VeRi and VehicleID: we consider
these are well-suited for our specific application purposes since
license plate information is omitted. Moreover, their overall
structure is closer to the real-world data used by our system.

A. Experimental Setup

Our experiments were carried out in a PC equipped with
an Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz proces-
sor, 512GB SSD with nominal 396MB/s and 276MB/s R/W
speeds, 2x8GB SODIMM DDR4 synchronous 2667 MHz
RAM, NVIDIA TITAN Xp running on Ubuntu 18.04 LTS.
Since some ANN methods do not resort to GPU acceleration,
this feature was disabled for all algorithms in the RelD
experimentation after the embedding vectors were computed
for the sake of fair comparison.

B. Deep Metric Learning

Embedding models were trained over both VeRi and Vehi-
cleID. Our sample mining training strategy takes from 3 to
3.5 hours and 4 to 4.5 hours for CL (coupled loss) and TL
(triplet loss) versions of our CNN, respectively, using 10210
NzV batches and standard SGD parameters for training until
average loss cannot improve over 15,000 iterations. Triplet
loss converges more slowly, requiring more training iterations
(~ 166k) than coupled loss (~ 148k).

C. Comparing CL and TL Models

We compared the two best models considering vehicle
matching and RelD tasks. The matching performance was
computed exhaustively using data augmentation for tens of
millions of comparisons between each vehicle id. We also used
a model trained on VeRi for matching vehicles in VehicleID
and vice-versa. RelD performance was evaluated with no data
augmentation, despite better results that can be reported.

V. RESULTS

Both models obtained promising matching accuracy on their
respective training datasets. As the literature suggests, TL
models consistently and significantly outperformed their CL
counterparts, obtaining 99.34%, 95.74%, and 96.13% for VeRi



train, test, and query datasets against 96.25%, 92.66%, and
93.02% for CL models. Similar behavior is observed in the
case of VehicleID (see Table I). Also, we could observe that
TL models trained on a dataset (e.g., VeRi) were even better at
generalizing their matching results to the other dataset (e.g.,
VehicleID) by a significant margin. Moreover, both CL and
TL models trained on VeRi consistently obtained matching
accuracy above 91% (see Table II).

TABLE I
VEHICLE MACTHING: COUPLED LOSS

Dataset #classes | Train VeRi acc. | Train VehicleID acc.
VehicleID 800 91.56% 95.72%
VehicleID 1600 91.78% 95.74%
VehicleID 2400 91.79% 95.44%
VehicleID 3200 91.29% 95.67%
VehicleID 6000 91.86% 95.67%
VehicleID 13164 91.28% 95.58%
VeRi-Test 200 92.66% 73.38%

VeRi-Query 200 93.02% 74.89%
TABLE 11
VEHICLE MACTHING: TRIPLET LOSS

Dataset #classes | Train VeRi acc. | Train VehicleID acc.
VehicleID 800 93.98% 98.22%
VehicleID 1600 93.29% 97.59%
VehicleID 2400 94.26% 98.95%
VehicleID 3200 94.67% 98.79%
VehicleID 6000 93.53% 97.59%
VehicleID 13164 93.54% 97.75%
VeRi-Test 200 95.74% 88.63%

VeRi-Query 200 96.13% 88.79%

Experimental ReID performance results are summarized in
Table III for both CL and TL over VeRi dataset. An extensive
verification of parameters was carried out when using all ANN
methods regarding retrieval quality, speed, and preprocessing
to build the index. We emphasize that nanoflann actually
computes exact nearest neighbors, hence its results serve as
a baseline for comparison against brute-force approaches.
HNSW is faster up to 2 orders of magnitude: average search
took just 2ms for an entire query dataset, i.e., 1.1s for each
query while NGT, ANNOY, FLANN, and nanoflann took
2.4us, 33.5us, 49.1us, and 92.3us, respectively. Considering
the index build time, nanoflann, FLANN, HNSW, NGT, and
ANNOY took 6us, 47.1us, 129.3us, 261.0pus, and 684.1us
per item, respectively.

Surprisingly, CL embeddings outperform those obtained
by triplet loss for ReID by a fair margin despite its lower
vehicle pair matching accuracy, which we confirmed double-
checked by disabling data augmentation in the matching task.
Regarding mAP, all incarnations of TL-based methods are
competitive with recent results found in literature (see Tables
IIT and IV). Considering HIT, TL is still less effective than BS
[10] unless NGT is used for ranked list retrieval: there is a sub-
stantial improvement from 88.98% to 98.09% concerning the
HIT@1 metric. By adopting the optimized graph-based ANN
search method, TL-NGT can present competitive performance.
On the other hand, CL-NGT also benefits from this search

strategy and outperforms all vehicle ReID methods listed in
Table IV: this is an improvement of 1% and 2.33% over the
state-of-the-art in terms of mAP and HIT@1. However, there
are still challenging cases, even for human operators (see Fig.
3).

TABLE TII

REID PERFORMANCE ON VERI
Method | Loss | mAP | HIT@I | HIT@3 | HIT@S
CL [ 8543 | 9487 | 9642 | 9701
ANNOY TL | 77.66 | 8898 | 9256 | 9535
CL [ 8505 | 9458 | 9625 | 9762
FLANN TL | 7768 | 8892 | 9255 | 9535
CL [ 8562 | 9487 | 9654 | 98.03
HNSW TL | 7768 | 8898 | 9255 | 9535
namoflanme | CL | 8560 | 9487 | 9654 | 9803
TL | 77.68 | 8898 | 9255 | 9535
— CL [ 8620 | 9893 | 99.17 | 99.52
TL | 79.87 | 9809 | 9869 | 9838l

Fig. 3. Challenging situations found in both CL-NGT and TL-NGT. The
query image is highlighted in blue, while the correct results are highlighted
in green. The first two cases are difficult even for human operators: a careful
examination is needed to understand why similar cars actually have different
IDs. One can observe how hard is to find out that a little detail in the left
rear window can evidence similarity between the correct results and the query
image (72 and C2). The image aspect ratio is kept for better visualization of
differences. Best viewed in color.

TABLE IV
COMPARISON OF RESULTS ON VERI-776.
Method Backbone ED mAP | HIT@1 | HIT@5
FACT [7] - - 18.75 52.21 72.88
PROVID [4] GoogleLeNet | 1024 | 27.77 61.44 78.78
BS [10] MobileNet 128 67.55 90.23 96.42
GS-TRE [16] VGGM1024 1024 | 59.47 96.24 98.97
PR [2] ResNet50 256 74.30 94.30 98.70
CMGN [3] ResNet50 2048 | 85.20 96.60 -
TL-NGT ResNet34 128 79.87 98.09 98.81
CL-NGT ResNet34 128 86.20 98.93 99.52

VI. CONCLUDING REMARKS

This paper proposes an effective approach for real-time
vehicle ReID based on deep metric learning and ANN. Em-
bedding models trained on VeRi are quite accurate for vehicle
pair matching VehicleID. CL-NGT and TL-NGT show very
promising results since these outperformed recent, state-of-
the-art approaches in terms of mAP and HIT performance



metrics. Experimental results show that triplet loss actually
performs better than coupled loss by a fair margin in two
representative datasets. However, this apparent advantage did
not hold for RelD task using ANN: mAP, HITQI1, and
HIT@5 are consistently better for CL.

Our results suggest that the problems defined by triplet loss
and re-identification are similar but not equivalent. A clear
distance constraint found in coupled loss (Eq. 4) which is
lacking in triplet loss also seems to favor ReID performance.
So, researchers must be aware of counter-intuitive RelD
performance issues when resorting to deep metric learning.
Future works will focus on larger datasets [8], [9], other
objects (bikes, animals, etc), reinforcement learning, model
distillation, and the influence of object detection in RelD.
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