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Abstract—U-Net has been considered as an outstanding deep
learning neural network in medical image segmentation prob-
lems. The segmentation results of the U-Net based model,
however, are always too conservative and smooth. MufiNet, a
segmentation model using multiple U-Net chains (with multiple
encoder-decoder branches), is proposed in this paper. It can fuse
the receptive fields obtained from different scales. The convolu-
tion layer of 1 x 1 is introduced to add the residual connection
to enhance the adaptability to the depth of the network. The
multi-scale fusion module with residuals is combined with the
U-Net chain architecture to retain more information flow paths,
and the multi-scale context information is used to improve the
performance and robustness of the segmented network. MufiNet
model is extensively evaluated on three datasets in this paper,
including two benchmark datasets (lung segmentation and skin
cancer lesion segmentation) and cervical cancer dataset jointly
constructed with a hospital. The experimental results show
that MufiNet could yield better performance in medical image
segmentation tasks than U-Net and LadderNet models.

Index Terms—U-Net chain, medical image segmentation, multi-
scale, fusion

I. INTRODUCTION

Image segmentation is a fundamental problem and com-
plex task in the field of image processing and computer
vision, because the segmentation result will directly affect
the performance of the subsequent processing steps [1]. The
purpose is to segment areas of interest (such as tumor areas,
organs) in medical images to extract relevant features, and
then classify them at the pixel level to cluster similar pixels
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together. This could greatly improve clinical processes. For
disease diagnosis, disease progression detection and treatment
planning are crucial. However, it is very difficult to obtain
large amounts of labeled data in the medical field.

The emergence of U-Net brings the possibility to solve this
problem. U-Net [2] simply splices the feature map generated
by the encoder with the upper sampling feature map of the cor-
responding decoder in each stage to form a trapezoid structure.
By skipping the connection, each stage allows the decoder to
learn the relevant features lost in the corresponding encoder
pooling. U-Net achieved the best results on the EM dataset and
still performed well without large enough medical image data.
After that, many researchers continued to conduct in-depth
research on U-Net, and also proposed many U-Net variants.
Oktay et al. [3] proposed a new attention gate (AG) model for
medical imaging. Alom et al. [4] combined a recursive residual
convolutional neural network with U-Net for medical image
segmentation. Zhuang [5] proposed LadderNet, which formed
a more complex network structure by adding more U-Nets.
However, during the encoding process of high-dimensional
features, the original pixel context will gradually lose spatial
resolution in the convolution process. In order to obtain fine
segmentation results, a multi-scale context [6] is proposed.
Zhao et al. [7] uses the pyramid pool module and the proposed
Pyramid Scenario Analysis Network (PSPNet) to aggregate the
context information based on different regions to mine global
context information. However, the pyramid pool module pro-
posed by PSPNet may lose pixel-level positioning information.
In medical image segmentation, accurate segmentation of the



region of interest is crucial. Chen et al. [8] proposed to use
different ratios of hole convolution and atrous spatial pyramid
pooling (ASPP). Hole convolution expands the receptive field
of convolution kernel, and ASPP used the input convolution
feature layer of multiple sampling rates and effective field
filters to capture the object and context information on multiple
scales. But hole convolution will generate a lot of computing
resources and may also cause the grid effect, which has no
advantages or disadvantages for small object segmentation.

We proposed an effective multi-scale fusion module, called
MufiNet, based on the U-Net chain. In the encoder and
decoder part, three 3x3 convolutions are used to get the
feature representation of different scales, and the receptive
fields obtained from different scales are fused together. In
addition, a 1x1 [9] convolution layer is introduced to add the
residual connection to improve segmentation performance by
preserving more information flow paths and fusing multi-scale
receptive fields.

The contributions can be summarized as follows:

e By using 1x1 convolution to keep the size of the feature
map unchanged (i.e. without loss of resolution), nonlinear
characteristics are added, and the residual connection is
introduced to enhance the adaptability to network depth.

o A “multi-scale fusion” strategy is proposed to fuse fea-
tures at different scales to generate more complex seman-
tic information. Combined with U-Net chain architecture,
more accurate target boundary segmentation is achieved,
which makes the model have better performance and
robustness.

« Construct a cervical cancer image segmentation dataset.
The performance of the medical image segmentation task
model based on end-to-end is evaluated. It is experi-
mentally observed that the proposed model achieves the
best performance in different medical datasets including
lung segmentation, skin cancer lesion segmentation, and
cervical cancer segmentation.

II. RELATION WORK
A. Medical Image Segmentation

In recent years, the development of deep learning in the
field of medical treatment has been widely concerned. Medical
image segmentation [1] has also become a hot topic in recent
years. Most models that achieve excellent performance in
medical image segmentation tasks are improved by FCN or
U-Net. In the FCN [10] architecture, the fully connected layer
of the classic CNN after the convolution layer is replaced
with the convolution layer. It can accept input images of
any size and upsample the feature map obtained by the last
convolution layer. And add skip architecture between the same
depth layers, combining the local information learned from the
shallow layer of the network with the more complex informa-
tion learned from the deep layer. In the U-Net [2] structure, it
includes a shrink path that captures contextual information and
a symmetrical expansion path that allows precise positioning.
Unlike FCN, the U-Net model does not directly perform the

upsampling operation on the feature map obtained by the
last convolution layer, but instead maps the high-dimensional
feature to the low-level feature by transposing convolution.
[11], [12], [13] are all improved from these networks. A classic
idea is used in these networks, which is the encoder-decoder
structure.

B. Multi-Scale Context

The smaller receptive field can only see smaller objects.
Due to there are big differences between the shapes and sizes
of various organs and tumor areas in medical images, a larger
receptive field is needed to see larger objects. The simplest
way to enhance the receptive field is downsampling, and
upsampling simply restore the results of the downsampling to
the original size. and it is impossible to completely recover the
lost information, so using only a simple convolution operation
cannot solve this problem. He et al. [14] proposed spatial pyra-
mid pooling, which divides the features of the convolutional
layer into different sizes, extracts features of fixed dimensions
from each size and then fuses the features extracted from each
block together. EncNet [15] introduces the Context Encoding
Module to capture the global context information and highlight
the category information associated with the scene. Using
multi-scale context features, these methods also achieve better
performance on various benchmarks. As far as we know, these
parallel multi-scale processing operations have not been used
in the U-Net chain structure.

Different from previous work, in the task of medical image
segmentation, we combine the receptive fields obtained from
different scales and add residual connections to combine low-
level semantic information with high-level semantic informa-
tion. And then transfer it to the network structure composed of
multiple pairs of encoder-decoders to capture more complex
features. Besides, the performance of proposed method is
verified on multiple widely different datasets.

III. METHOD
A. FCNs

MufiNet consists of multiple pairs of encoder-decoder
branches and has additional skip connection between each
corresponding branch pair can be regarded as a collection
of multiple FCNs. Its unique structure greatly increases
the number of effective paths, and retains more informa-
tion flow paths, thereby capturing more and more complex
feature information and generating more accurate segmen-
tation results. Due to computational constraints, our ex-
periment takes two pairs of encoder-decoders as examples,
as shown in Fig. 1(a). It can be seen that a variety of
information flow paths are provided in the U-Net chain,
and the number of effective paths has increased from 5
to 108, for example: (1) I1—=I1I1—112—113—114—14;
2) IN—=12—13—14; 3) I1=12—13—113—114—14; (4)
IN—12—I3—113—1113—1114—114—14. However, due
to the complex structure of many pairs of encoders and
decoders, the model hierarchy is getting deeper and deeper,
which leads to the loss of low-level information of the image,
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(a) Network Architecture

(b) Multiscale fusion
Residual Block

Fig. 1. The overall architecture of the proposed image segmentation network. We replace the sequence of two convolutional layers with shared weights in
the LadererNet architecture with the proposed Multiscale fusion Residual Block.

which has an impact on the boundary information. In addition,
for different medical image segmentation tasks, the region of
interest that needs to be segmented is often irregular and have
large differences in size, so the model should be more robust.
To solve these problems, we propose to fuse receptive fields
of different scales and add residual connections.

B. Encoder-Decoder

In the encoder part, we use the convolution operation with
a step size of 2 from small receiving field features to large
receiving field features, so that the feature map is halved and
the number of channels is doubled. In the decoder part, we
use a deconvolution operation with a step size of 2 from large
receiving field features to small receiving field features, so
that the feature map is doubled and the number of channels is
halved. And adding skip connections between corresponding
layers to fuse features at different levels of abstraction.

C. “Multi-Scale Fusion” Strategy

In the LadderNet model, after each convolutional layer and
the transposed convolutional layer, two 3x3 convolutional
layers sharing the same weight are used. The simplest way
to extract features from different receptive fields is a parallel
multi-branch network, including the basic Inception module of
the Inception network [17], hole convolution [8], and directly
using different size pooling operations. It can be seen from

these models that the parallel structure can extract the features
of different scale receptive fields at the same level, and then
transfer them to the next level after fusion, which can balance
the calculation amount and performance of the model more
flexible. The simplest way to extend U-Net is to combine
3%x3, 5x5 and 7x7 parallel convolution operations, which
is helpful to improve the performance and robustness of the
network. However, MufiNet is based on the U-Net chain,
and the additional convolutional layer makes the calculation
amount and memory requirements of the network increase
exponentially. Inspired by the DeepLabv3+ [18] network, two
33 convolution operations are similar to a 5x5 convolution
operation, and three 3x3 convolution operations are similar
to a 7x7 convolution operation. Therefore, a series of 3x3
convolution sequences can be used instead of 5x5 and 7x7
convolution operations, as shown in Fig. 1(b). The output
of the second and third 3x3 convolution operations can be
considered to be equivalent to the 5x5 and 7x7 convolution
operations. The feature maps extracted from the receptive
fields of different scales are then subjected to concatenation
operation. In order to achieve the same number of input and
output channels, we set the number of filters of the three
consecutive convolution layers to (0.2,0.3,0.5) X Inputchanneis
where Inputchanner 15 the number of input channels, because
such parameter setting makes MufiNet has better convergence



TABLE I
ARCHITECTURE AND NUMBER OF NETWORK PARAMETERS.

Model Number of parameter(million)
U-Net 078
32—64—128—25—512 :
MufiNet(3x3, 5x5, 7x7) 42.89
20—40—80—160—320 :
MufiNet(improved 3 3x3) 073
20—40—80—160—320 :

in both the training and testing phases.

D. Residual Connection

Instead of adding the original input directly to the output of
the receptive field fused with different scales, we convolute the
original input with a 11 [9] convolution so that each pixel can
be linearly combined on different channels to achieve cross-
channel information integration, which can extract features
from the spatial dimension and the channel dimension respec-
tively. The non-linear activation is added to the learning repre-
sentation of the previous layer, which improves the expression
ability of the network, preserves the low-level information of
the image, makes the final segmentation result more precise,
and realizes the accurate target boundary location.

IV. THE EXPERIMENTS

A. Implementation Details

MufiNet adopts the complex structure of U-Net chain and
evaluates it with 20—40—80—160—320 architecture. In the
traditional five-layer U-Net model, in order to make the num-
ber of parameters comparable to proposed model, the number
of filters is set to 32—64—128—256—512. The required
network parameters are 0.73M and 0.78m respectively. The
network parameters required for the unimproved parallel 3x3,
5x5, and 7x7 models are 42.89M. The improvement in this
paper greatly reduces the network parameters and speeds
up the model training. In addition, semantic segmentation is
performed using ADAM optimization techniques and cross-
entropy loss. And 70% of the samples were used for training
and 30% for testing. During the training process, 10% of the
training samples are randomly selected as validation data, and
the remaining 90% of the data is used to train the model.
During the training, we set the total learning epoch to 100.
Due to there will be no performance improvement in later
learning.

The only preprocessing for the input images is to adjust
their size to 256x256 pixels to fit the GPU memory for
calculation, then divide the pixel value by 255. Set the image
as a grayscale image with pixel values in [0 ... 1]. Again, no
application-specific post-processing is performed. Finally, at
the end of the network, a softmax function is used for pixel-
level classification to calculate the probability of the target
category, and its output range is also in [0 ... 1]. Therefore,
we set the threshold to 0.5 to get the final segmentation result.

B. Database Summary

a) Lung Segmentation: The Lung Nodule Analysis
(LUNA) competition held at the Kaggle Data Science Bowl
in 2018 aims to find lung lesions in 2D and 3D CT images.
The dataset contains 267 2D samples. The initial resolution of
each sample is 512x512, which is scaled to 256x256 due to
computational limitations.

b) Skin Cancer Lesion Segmentation: This dataset is
from the 2017 kaggle competition dataset on skin lesion seg-
mentation. The dataset contains a total of 2000 samples. Each
sample has a variety of resolutions, and due to computational
limitations, we scale it to 256 x256.

c) Cervical cancer Segmentation: Finally, we performed
experiments on our own data set, which was provided by
the hospital with the original data, including the colposcopy
images and test reports of 6974 patients. According to the
inspection report and image quality, the images that meet
the inspection criteria were selected, and a total of 2363
images were obtained.The initial resolution of each sample is
5184 %3456, which is scaled to 256 x256 due to computational
limitations.

The ground truth for lung segmentation and skin lesion
segmentation datasets are provided by the official website, and
the ground truth for cervical segmentation dataset is marked
by the professional doctor. However, the regions of interest
segmented by different doctors also differ to some extent. In
addition, the borders of the lesion are very hard to be defined
even for specialist, especially true in the case of skin lesions.

C. Quantitative Analysis Approaches

In order to analyze the experimental results quantitatively,
we used several indicators to evaluate the performance of
MufiNet, including accuracy (AC), sensitivity (SE), specificity
(SP) and Jaccard Similarity (JS). To do this, we first calcu-
lated True Positive (TP), False Positive (FP), True Negative
(TN), and False Negative (FN). The different indicators are
calculated as follows:

ACZTP+§J€11T~“JJ\D]+FN M
SE = Tiji—PFN @
5P = TNT—IJ—V FP %
Gl o @

Among them, V, represents the segmentation result of
ground truth, and V.4 represents the predicted segmentation
result.

In addition, area under curve (AUC) is common evaluation
methods for medical image segmentation. To further evaluate
the performance of different neural networks, we also compare
the indicator.



TABLE II
EXPERIMENTAL RESULTS OF THE PROPOSED METHOD FOR LUNG
SEGMENTATION AND COMPARISON WITH THE U-NET, LADDERNET AND
RESMODELW/OCONV.RESMODELW/OCONV REPRESENTS THE
IMPROVED RESIDUAL MODEL WITHOUT 1 X 1 CONVOLUTION IN THIS

TABLE III
EXPERIMENTAL RESULTS OF THE PROPOSED METHOD FOR SKIN CANCER
LESION SEGMENTATION AND COMPARISON WITH U-NET AND
LADDERNET METHODS.

PAPER. Method AC SE SP IS AUC
U-Net 0.9314 | 0.9479 | 0.9263 | 0.9314 | 0.9371
Method AC SE SP JS AUC LadderNet 0.9422 | 0.8792 | 0.9532 | 0.9422 | 0.9428
U-Net 0.9774 | 0.9734 | 0.9827 | 0.9774 | 0.9691 ResModelW/OConv | 0.9502 | 0.8733 | 0.9644 | 0.9502 | 0.9487
LadderNet 0.9853 | 0.9781 | 0.9874 | 0.9853 | 0.9759 MufiNet 0.9510 | 0.8708 | 0.9650 | 0.9510 | 0.9492
ResModelW/OConv | 0.9869 | 0.9802 | 0.9879 | 0.9869 | 0.9764
MufiNet 0.9878 | 0.9839 | 0.9889 | 0.9874 | 0.9793
Some sample output from the test phase is shown in Fig.
2. U-Net, LadderNet, ResModelW/OConv and the proposed
D. Results

a) Lung Segmentation: In the past fifty years, many
countries have reported a significant increase in the incidence
and mortality of lung cancer. Accurate segmentation and
localization of lung areas of interest to doctors in CT images
has also become critical. In this implementation, set the batch
size to 32, and set the learning rate as 0.001, 0.0001 on the
Oth and 20th epoch respectively.

Table II shows the quantitative results of different methods
in the lung segmentation task. In terms of accuracy, specificity,
sensitivity, JS and AUC, we will compare the proposed model
with U-Net, LadderNet and the improved residual model
without 1x1 convolution in this paper (ResModelW/OConv).
Compared with U-Net and LadderNet, ResModelW/OConv
achieves better performance in each indicator. It can be proved
that the proposed multi-scale fusion strategy is effective.
The proposed model provided the highest AUC and reached
0.9793. The accuracy of the proposed method reaches 0.9878,
which is 1.04%, 0.25%, and 0.09% higher than U-Net, Lad-
derNet, and ResModelW/OConv, respectively. In addition, we
calculated JS during the test phase and reached 0.9878. The
proposed model also produced higher SE (0.9839) and SP
(0.9889). This proves that adding a 1x1 convolution residual
model can enhance the adaptability of the model to the depth
of the network. The experimental results show the superiority
of the proposed network.
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Fig. 2. Comparison of lung segmentation results. From left to right: (a) Input
image. (b) Ground Truth. (c) U-Net segmentation results. (d) LadderNet seg-
mentation results. (¢) ResModelW/OConv segmentation results. (f) MufiNet
segmentation results.

model are almost perfect in the task of lung segmentation.
The proposed model shows state-of-the-art performance for
sensitive areas. Observing the first line of Fig. 2, we can see
that LadderNet may segment some discrete areas incorrectly.
ResModelW/OConv and the proposed model avoid the discrete
regions caused by the wrong classification of some regions
and concentrate the target regions together. From the second
and third lines, we can see that in order to avoid the holes in
the lung, U-Net and LadderNet are more conservative for the
performance of boundary segmentation. ResModelW/OConv
and the proposed model greatly avoid this kind of interference.
However, in the second line of Fig. 2, the ResModelW/OConv
model incorrectly links the left and right lungs, and the pro-
posed model successfully achieves finer segmentation details.

b) Skin Cancer Lesion Segmentation: The skin lesion
dataset contains melanoma images and non-melanoma images.
For non-melanoma images, the segmentation area is less
obvious, and other interference items may be included in
the melanoma images. So in this implementation, we set the
initial number of channels to 30, and learn more features by
increasing the number of filters. Set the batch size to 16, and
set the learning rate as 0.01, 0.001 on the Oth and 20th epoch,
respectively.

Table III shows the quantitative results of different methods
in the skin cancer segmentation task. In terms of accuracy,
specificity, sensitivity, JS and AUC, we compare the pro-
posed model with U-Net, LadderNet and ResModelW/OConv.
MufiNet produces the highest accuracy, SP, JS, and AUC
for this task, and also produces a high SE. It is easy to
produce higher SE or SP if only one type of prediction, while
other indicators are based on the prediction of two types of
prediction to evaluate the whole model. ResModelW/OConv
and the proposed model generate the next highest and highest
accuracy, SP, JS, and AUC for this task, respectively, and a
higher SE. It is easy to produce higher SE or SP if only one
type of prediction, while other indicators are based on the
prediction of two types of prediction to evaluate the whole
model. ResModelW/OConv and the proposed model have the
second highest and highest accuracy, JS and AUC. Therefore,
compared with U-Net and LadderNet, ResModelW/OConv
and the proposed model achieve better performance in the
task of segmentation of complex medical images with large
differences in regions of interest and sensitive boundaries.

Observing the first and second rows of Fig. 3, we can
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Fig. 3. Comparison of skin cancer segmentation results. From left to right:
(a) Input image. (b) Ground Truth. (c) U-Net segmentation results. (d)
LadderNet segmentation results. (¢) ResModelW/OConv segmentation results.
(f) MufiNet segmentation results.

see that the U-Net is still overly conservative and cannot be
identified for areas with less cancerous changes. LadderNet,
ResModelW/OConv and the proposed network perform better.
But the boundaries drawn by LadderNet are too smooth.
Observe that in the third and fourth lines, for images with
more than one spot, U-Net and LadderNet will incorrectly
segment some interference terms, and cannot obtain contin-
uous segmented regions, but instead obtain a set of several
segmented regions. The proposed network is almost perfect. It
is worth mentioning that from the input image of the fifth line,
the segmentation results of U-Net, LadderNet and ResMod-
elW/OConv are not ideal, because the difference between
foreground and background is too small even the human eye
can hardly distinguish the region of interest. U-Net is even
worse, it can not make any prediction, and can not segment
the pathological area completely. The proposed model is not
perfect, but its performance is far better than other models.
It can be seen that for more challenging medical images, the
proposed model performs better. It further demonstrates the
reliability and robustness of the proposed model.

c) Cervical cancer Segmentation: Cervical cancer seg-
mentation is very important for analyzing diseases related to
cervical cancer. For example, in colposcopy, the main focus
is the cervical region, so cervical cancer segmentation and
cervical cancer pattern classification can be applied to identify
other problems. In this implementation, set the batch size to
32 and set the learning rate as 0.001, 0.0001 on the Oth and
20th epoch, respectively.

Table IV shows the quantitative results of this experiment
compared with U-Net, LadderNet and ResModelW/OConv in

TABLE IV
EXPERIMENTAL RESULTS OF THE PROPOSED METHOD FOR CERVICAL
CANCER SEGMENTATION AND COMPARISON WITH U-NET AND
LADERERNET METHODS.

Method AC SE SP IS AUC
U-Net 0.9496 | 0.9203 | 0.9630 | 0.9496 | 0.9407
LadderNet 0.9532 | 0.9222 | 0.9725 | 0.9532 | 0.9434
ResModelW/OConv | 0.9551 | 0.9267 | 0.9729 | 0.9551 | 0.9498
MufiNet 0.9572 | 0.9295 | 0.9746 | 0.9572 | 0.9521

the cervical cancer segmentation task. The proposed model
achieves the highest in five indicators: accuracy, specificity,
sensitivity, JS and AUC. The experimental results show that
the indicators of the proposed model are better than other
models.
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Fig. 4. Comparison of cervical cancer segmentation results. From left to
right: (a) Input image. (b) Ground Truth. (c) U-Net segmentation results. (d)
LadderNet segmentation results. (¢) ResModelW/OConv segmentation results.
(f) MufiNet segmentation results.

From the first two lines of Fig. 4, we can clearly ob-
serve that U-Net, LaddeNet, ResModelW/OConv and the
proposed model can effectively segment the cervical region.
But U-Net is more conservative and the segmentation result
is too smooth. LadderNet will appear too smooth or over-
segmentation. ResModelW/OConv performed unsatisfactorily
in the first line of Fig. 4 due to the influence of interferences,
and the segmentation results of the network we proposed are
almost consistent with ground truth. From the third and fourth
lines, it can be observed that when U-Net, LadderNet and
ResModelW/OConv are large for the target area of interest,
the phenomenon of insufficient or excessive segmentation
will occur. However, the proposed network performs better in
both cases and achieves more accurate target positioning. The
proposed network can reach the highest AUC (0.9521), which
is 1.14% , 0.87% and 0.23% higher than U-Net, LadderNet
and ResModelW/OConv respectively. This also proves that the
proposed network achieves higher performance and robustness



in end-to-end image segmentation tasks.

V. CONCLUSION

In this paper, we propose MufiNet for semantic segmen-
tation by fusing the features learned from different scale
receptive fields and adding residual connection. It is helpful to
extract complex features, which are essential for the boundary
delineation of medical images, and are indispensable for
edge-sensitive image segmentation tasks. We evaluated the
performance of MufiNet on three different medical image
segmentation tasks, including lung segmentation, skin cancer
lesion segmentation, and cervical cancer segmentation. Com-
pared with U-Net and LadderNet, MufiNet shows the best
performance on all three datasets. It segments finer image
boundaries and has stronger robustness. MufiNet can also be
used in other semantic segmentation tasks.

ACKNOWLEDGMENT

This work was supported by National Key R&D Pro-
gram of China 2018 AAA0100500, NSFC Grant No.61832008,
61751211,61772413, 61802299.

REFERENCES

[11 G. J. S. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi,
M. Ghafoorian, J. A. W. M. V. Der Laak, B. Van Ginneken, and
C. I. Sanchez, “A survey on deep learning in medical image analysis,”
Medical Image Analysis, vol. 42, pp. 60-88, 2017.

[2] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” pp. 234-241, 2015.

[3] O. Oktay, J. Schlemper, L. L. Folgoc, M. C. H. Lee, M. P. Heinrich,

K. Misawa, K. Mori, S. Mcdonagh, N. Hammerla, B. Kainz et al.,

“Attention u-net: Learning where to look for the pancreas,” arXiv:

Computer Vision and Pattern Recognition, 2018.

K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling in deep

convolutional networks for visual recognition,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 37, no. 9, pp. 1904—

1916, 2015.

[14]

[4]

[5]

[6]

[7]
[8]

[9]

[10]

(11]

(12]

[13]

[15]

[16]

[17]

[18]

M. Z. Alom, M. Hasan, C. Yakopcic, T. M. Taha, and V. K. Asari,
“Recurrent residual convolutional neural network based on u-net (r2u-
net) for medical image segmentation.” arXiv: Computer Vision and
Pattern Recognition, 2018.

J. Zhuang, “Laddernet: Multi-path networks based on u-net for medical
image segmentation,” arXiv: Computer Vision and Pattern Recognition,
2018.

C. Galleguillos and S. Belongie, “Context based object categorization:
A critical survey,” Computer Vision and Image Understanding, vol. 114,
no. 6, pp. 712-722, 2010.

H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing
network,” pp. 6230-6239, 2017.

L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
“Deeplab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected crfs,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 40, no. 4, pp. 834-848,
2018.

M. Lin, Q. Chen, and S. Yan, “Network in network,” arXiv: Neural and
Evolutionary Computing, 2013.

J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” pp. 3431-3440, 2015.

V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep con-
volutional encoder-decoder architecture for image segmentation,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 39,
no. 12, pp. 2481-2495, 2017.

S. Jegou, M. Drozdzal, D. Vazquez, A. Romero, and Y. Bengio, “The
one hundred layers tiramisu: Fully convolutional densenets for semantic
segmentation,” pp. 1175-1183, 2017.

G. Lin, A. Milan, C. Shen, and L. Reid, “Refinenet: Multi-path refinement
networks for high-resolution semantic segmentation,” pp. 5168-5177,
2017.

H. Zhang, K. J. Dana, J. Shi, Z. Zhang, X. Wang, A. Tyagi, and
A. Agrawal, “Context encoding for semantic segmentation,” pp. 7151—
7160, 2018.

J. Zhuang, J. Yang, L. Gu, and N. C. Dvornek, “Shelfnet for fast se-
mantic segmentation,” arXiv: Computer Vision and Pattern Recognition,
2018.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
pp. 1-9, 2015.

L. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, “Encoder-
decoder with atrous separable convolution for semantic image segmen-
tation,” pp. 833-851, 2018.





