
Improved Stochastic Synapse Reinforcement

Learning for Continuous Actions in Sharply

Changing Environments

Syed Naveed Hussain Shah†

MS Office

Microsoft Corporation

Redmond, WA, USA

sayyed.naveed@gmail.com

0000-0002-7418-870X

Dean Frederick Hougen

Dept. of Computer Science

University of Oklahoma

Norman, OK, USA

hougen@ou.edu

0000-0001-5393-1480

Abstract—Reinforcement learning in continuous action spaces
requires mechanisms that allow for exploration of infinite possible
actions. One challenging issue in such systems is the amount of ex-
ploration appropriate during learning. This issue is complicated
further in sharply changing dynamic environments. Reinforce-
ment learning in artificial neural networks with multiparameter
distributions can address all aspects of these issues. However,
which equations are most appropriate for updating these pa-
rameters remains an open question. Here we consider possi-
ble equations derived from two sources: The classic equations
proposed for REINFORCE and modern equations introduced
for Stochastic Synapse Reinforcement Learning (SSRL), as well
as combinations thereof and variations thereon. Using a set of
multidimensional robot inverse kinematics problems, we find that
novel combinations of these equations outperform either set of
equations alone in terms of both learning rate and consistency.

I. INTRODUCTION

Reinforcement learning (RL) is an approach to machine

learning (ML) in which agents form policies for action

selection based on reward received from the environment given

environmental state and action selected. While RL is one of

the most commonly studied forms of ML, after supervised and

unsupervised learning, most research on reinforcement learning

has focused on static environments [1]. Static environments,

those that don’t change during the learning process, are more

easily learned than dynamic environments, which do. This is

particularly true for RL, in which an agent that is tasked with

maximizing rewards accumulated over time needs to decide

between exploration of new possibilities (which is appropriate

when the environment is largely unknown) and exploitation

of already acquired knowledge (which is appropriate when

the environment is well known). If an originally unknown

environment remains static for a long period of time, the agent

may gain sufficient experience with it for a (gradual) shift

from exploration to exploitation to be appropriate. However, if

the environment then changes radically, the agent’s previous

knowledge becomes outdated and counterproductive because

it suggests actions that are highly inappropriate for the new
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environment. Unfortunately, the agent typically has no way to

know whether or to what degree the environment has changed—

it merely observes, acts, and receives rewards—so it cannot

simply discard all prior knowledge when it receives a low

reward as the environment might be risky (in the formal sense

relating to stochasticity [2]) rather than dynamic.

While there have been some investigations into approaches

to RL in dynamic environments [3]–[6] much recent attention

in RL has incorporated mechanisms such as experience replay

[6]–[9] that are incompatible with dynamic environments.

The problem of dynamic environments is complicated when

the action space is continuous. In such environments, the agent’s

possible actions are unlimited, so discrete-action approaches

such as Q-learning cannot be used [10]. Instead, methods

such as policy gradient must be used to adjust policies toward

increasingly rewarding actions. This exacerbates the question

of exploration vs. exploitation—how much should the agent

adjust policy parameters to follow the gradient if the landscape

underlying that gradient might radically shift at any time?

Finally, perceptual aliasing [11], which can happen when

input states are discretizations of a continuous underlying world

to which the agent has no direct access, can result in desired

outputs that vary for the same perceived state even in static

and deterministic environments.

Here we investigate these very difficult RL problems using

variants on a connectionist artificial neural network (ANN)

approach with multiparameter distributions. Such approaches

are time-tested and fundamental mechanisms for learning

in continuous action spaces. In addition, these mechanisms

can be combined with additional mechanisms such as deep

preprocessing layers to allow for learning from raw pixels;

however, here we study these mechanisms in isolation, so as

not to conflate the targets of the study with extraneous factors.

In particular, we start with the well known foundational ap-

proach of REINFORCE with multiparameter distributions [12]

(not to be confused with the more commonly seen REINFORCE

with uniparameter distributions, which is appropriate for dis-

crete action spaces [12]) and the recent approach of Stochastic
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Synapse Reinforcement Learning (SSRL) [13]. Both approaches

control policy and degree of exploration through separate

parameters: µ and σ of Gaussian distributions, respectively.

Although REINFORCE with multiparameter distributions com-

pares favorably to recent popular RL approaches in continuous

action spaces [14], we observed that SSRL greatly outperforms

REINFORCE in dynamic environments [15], in large part

because SSRL places stochasticity in synapses (the connections

between neural units) whereas REINFORCE places it in

units (the computational elements of ANNs) [16]. However,

in addition to the placement of stochasticity, REINFORCE

and SSRL use different equations to calculate their µ and σ

parameters. Here we investigate the role those equations, and

variations on them, play in determining system performance

in dynamic continuous-action environments, with and without

perceptual aliasing.

To put these concepts in a familiar ANN structure, we’ll

consider all µ values to be uniformly 0, so that the value at

each synapse is determined by its weight w plus stochastic

noise ǫ times the input value x on that connection. Then we’ll

update w directly, which is equivalent to leaving w unchanged

and updating µ.

Because of the advantage of placing stochasticity in the

synapses, we here consider the variant of REINFORCE called

REINFORCE S because it uses the classic REINFORCE

equations for updating µ and σ, but places its sampling in

synapses [16].

Because of the importance of appropriate levels of explo-

ration in dynamic environments, we hypothesize that the σ-

update equations of SSRL will play a key role in determining

algorithm performance.

II. APPROACH

Here we consider only standard feed-forward, fully con-

nected networks with summation units, logistic activation

functions, and a single hidden layer [17]. Only the output

layer of the network is trained using one of the RL alternatives

described herein; any previous layers of the network are trained

by backpropagating weight adjustments from the output layer

through the hidden units.

While we here only consider a single hidden layer and

backpropagating weight updates, these methods are compatible

with networks of arbitrary depths and any form of gradient

descent to update those layers. The use of this minimal ANN

architecture is intentional as we wish to isolate effects of the

learning rules themselves, which could be masked or amplified

by introducing extraneous mechanisms to the experimental

environment.

While both REINFORCE and SSRL have been described

previously [12], [13], we re-describe them here for complete-

ness and with slightly different notation to allow for uniform

notation to be used for REINFORCE S, SSRL, and the variants

of both. Note that all text and equations are common to all

algorithms in question, unless specified otherwise.

To calculate the network’s output at time τ , a pass through

the network is made, starting from the input layer and working

forward toward the output layer [17]. In the final layer, noise

is sampled from a distribution associated with each synapse

between the (last) hidden layer and the output layer, using

ǫkj(τ) ∼ Ψ(µkj(τ), σkj(τ)) (1)

where k and j represent units in hidden and output layers,

respectively, ǫkj(τ) is the noise sampled from the normal

distribution at synapse kj, µkj(τ) is the mean of the noise

distribution and σkj(τ) is the standard deviation at synapse

kj, all at time τ .

The interior value netj(τ) of each unit j in the output layer

is computed using

netj(τ) =

∑K

k=1 yk(wkj(τ) + ǫkj(τ))

K
, (2)

where K is the number of inputs from the hidden layer, wkj

is the synaptic weight between units k and j, and yk is the

output of unit k. The output oj(τ) of each unit in the output

layer, then, is computed using the logistic activation function

oj(τ) =
1

1 + e−λnetj(τ)
. (3)

Network outputs determine the (multidimensional) action for

which reward r(τ) is assigned. Network parameters (weights

w and exploration parameters σ) are adjusted, as follows.

For REINFORCE S, each weight difference δwkj
(τ) for

synaptic weight wkj(τ) is computed using

δwkj
(τ) = (r(τ)− r̂(τ))ǫkj(τ), (4)

where r̂(τ) is the expected reward.

For both REINFORCE S and SSRL, the expected reward

used in this study is r̂(τ + 1) = d r(τ) + (1− d) r̂(τ), where

d is a discount factor. This calculation for expected reward

comes from the original description of REINFORCE [12].

However, both REINFORCE S and SSRL are compatible with

any calculation of expected reward.

For SSRL, the corresponding weight difference equation is

δwkj
(τ) = (r(τ)− r̂(τ))yk(τ)ǫkj(τ), (5)

where the additional term yk for the output from unit k is

included to account for the influence of that term on the output

for which reward was received. That is, this term is intended to

address the structural credit assignment problem [18]. Because

the term yk is multiplied by wkj to form one of the inputs to

unit j, we hereafter refer to it as the input factor, since our

calculations are from the perspective of unit j.

Weight updates are then computed from these weight

difference values using

wkj(τ + 1) = wkj(τ) + ηwδwkj
(τ), (6)

where ηw is the learning rate for weights between the hidden

and output layers.

For REINFORCE S, δσkj
(τ), which is the amount of change

in the exploration parameter σ at synapse kj, is computed using

δσkj
(τ) =

ǫkj(τ)
2 − σkj(τ)

2

σkj(τ)
. (7)



TABLE I
EQUATION COMBINATIONS. PREFIX SS OR RS DENOTES SSRL OR REINFORCE S, RESPECTIVELY. LOWERCASE i AND n DENOTE INPUT FACTOR OR NO

INPUT FACTOR WHERE THE FIRST LETTER IN EACH COMBINATION RELATES TO SIGMA (σ) AND THE SECOND RELATES TO WEIGHT (w), RESPECTIVELY.
NUMBERS IN ANGLE BRACKETS REFLECT RANKINGS BASED ON RESULTS.

Sigma Update
Basis: SSRL (SS) Basis: REINFORCE S (RS)

i (Eq. 8)
(Input Factor)

n (Eq. 10)
(No Input Factor)

i (Eq. 9)
(Input Factor)

n (Eq. 7)
(No Input Factor)

Weight
Update

n (Eq. 4)
(No Input Factor)

SSin 〈1〉 SSnn 〈2〉 RSin 〈5〉
RSnn 〈7〉

(REINFORCE S)
i (Eq. 5)

(Input Factor)
SSii 〈3〉
(SSRL)

SSni 〈4〉 RSii 〈6〉 RSni 〈8〉

For SSRL, the corresponding σ difference equation is

δσkj
(τ) = yk(τ)(|ǫkj(τ)| − cσσkj(τ)), (8)

where constant cσ inclines the algorithm toward exploration or

exploitation. Again the SSRL equation includes the input factor

yk(τ) to help account for the influence of that term on the

output at the final layer, whereas the REINFORCE S equation

does not. In addition, calculations concerning the difference

between the sampled noise ǫ and the standard deviation σ

are quite different between the algorithms. The origin and

importance of these differences are examined in the discussion.

To test our hypothesis as well as to analyze the importance

of the input factor in the σ difference equation, we introduce

variation of Equations 7 and 8 as follows.

In the REINFORCE S σ difference equation (Equation 7),

we introduce the input factor, giving

δσkj
(τ) = yk(τ)

ǫkj(τ)
2 − σkj(τ)

2

σkj(τ)
. (9)

Conversely from the SSRL σ difference equation (Equation 8)

we exclude the input factor, giving

δσkj
(τ) = |ǫkj(τ)| − cσσkj(τ). (10)

Finally, the σ values themselves are updated using

σkj(τ + 1) = σkj(τ) + ησ(r(τ)− r̂(τ))δσkj
(τ), (11)

where ησ is the learning rate for σ values and subject to σ ≥ 0.

That is, if Equation 11 would result in a negative value for σ,

σ is set equal to 0.

To formalize and test our hypotheses, we propose comparing

all combinations of Equations 4 and 5 with 7, 8, 9, and 10 to

empirically test the contribution of each component of each

equation (e.g., the input factor) on system performance. These

combinations are presented in Table I.

III. EXPERIMENTS

To facilitate comparisons with prior work, experiments use an

existing environment [16]. This setup uses multiple non-linear

data sets based on the inverse kinematics of a simplified model

of a PUMA robotic arm with all values for all data sets scaled

to be in [0, 1]. In each data set, each input-output vector pair

is generated by randomly sampling joint values from a uniform

distribution, calculating target outputs, i.e., generating location

values, using underlying continuous functions from the forward

kinematics model. Because these are inverse kinematics, input

and output are then swapped, thus desired locations are inputs

and corresponding joint values are targets. For discrete input,

the resulting input values are discretized to provide perceptually

aliased inputs and corresponding continuous valued output

vectors. These data sets ensure that each input-output vector

pair is almost certainly unique, and each pair is presented only

once to the learning agent so it must be able to generalize in

order to improve its performance over time.

To use this for RL, we tell a robot to place its end effector

at a desired location and (in some cases) orientation, let the

robot move its arm based on the output of its ANN, then

calculate how close it’s joint values are to those necessary to

achieve the target position. That is, the network is presented

with one input vector for each trial (learning experience) τ ,

then a scalar reward value r(τ) is based on the difference

between the network-generated output vector and the target

output vector from the training data on that trial, calculated as

r(τ) = 1−

∑J

j=1|tj − oj |

J
, (12)

where J is the number of output units, tj is the target at unit

j, and oj is the output, giving reward values in [0, 1]. (Similar

RL problems have been standard for decades [19], [20].)

To make this environment dynamic, we sample the inputs

from highly separated regions of the range of each joint during

each half of training. This means that the learning agent must

first learn the correct joint angles for reaching within one

portion of its workspace, then quickly unlearn those angles and

learn new joint angles for a disparate portion of its workspace

based only on reward values (without ever receiving an explicit

indication that the environment has changed).

The 6×6 inverse kinematics problem is to predict the values

of the waist, shoulder, elbow, and three joints of a spherical

wrist, given the position in Cartesian three-space (x, y, z) and

orientation (given as roll, pitch, and yaw) of the end effector.

The 3×3 data sets use only the waist, shoulder, and elbow joints

with the position in three-space. The 6×3 data sets use the

waist, shoulder, and elbow joints with position and orientation.

To also investigate perceptual aliasing [11], additional data

sets are created by discretizing input to two or three digits of

precision, using seven or ten bits, for a total of 21 or 30 binary

inputs, respectively. For location plus orientation, values are



discretized to one digit of precision using four bits each for

a total of 24 binary inputs. Thus, independent 21×3, 30×3,

and 24×6 data sets are generated with perceptually aliased

input-output mappings.

For each data set, 20000 input-output vector pairs are

generated. The first and second halves of each data set are

generated using contrasting ranges of joints, causing it to

reach to very different positions during the first and second

halves of each run, resulting in the desired sharply changing

environment. 50 such data sets are used for each experimental

condition to collect statistically meaningful results. Note that

these non-linear data sets are moderately high dimensional and

are on-par with other continuous action data sets used for RL

experiments, such as the robotics and control environments

from OpenAiGym (https://gym.openai.com/). However, ours

have been made more difficult by making them dynamic.

Each input unit has a bias input, the hidden layer has units

equal to the number of input units plus one, the initial weights

are in [−2,+2], λ = 2 for the logistic functions, all learning

rates and discount factors are 0.5 (a moderate value), and σ is

initialized uniformly randomly in [0, 1] and kept non-negative

as suggested for REINFORCE [12].

IV. RESULTS

Figure 1 shows the average reward collected per trial by all

variants across all runs. Figures 1a, 1c, and 1e show three input,

three output (3×3), six input, three output (6×3), and six input,

six output (6×6) continuous state-action cases respectively.

Figures 1b, 1d, and 1f, show twenty one input, three output

(21×3), thirty input, three output (30×3), and twenty four input,

six output (24×6) discrete state and continuous action cases

respectively. The apparent differences between these curves

within each data set are statistically significant (randomized

ANOVA, p < 0.001 for both algorithm and interaction for all

experiments and all pairwise comparisons [21]).

Figure 2 shows a set of box and whisker plots illustrating

distributions of cumulative rewards collected for each of 50

independent runs for all algorithm variations. The results are

summarized in Table II. The order of the sub-figures is the

same as for Figure 1. Here, within each individual sub-figure,

the eight boxes on the left side represent the cumulative rewards

collected during the entire run, the eight in the middle represent

the cumulative reward in the last 10% of the trials before change

when the algorithms have had time to converge, while the eight

on the right side represent the cumulative reward in the last

10% of the second half of the trials (after the sharp change is

introduced mid-way at trial 10000).

The results are statistically significant (Quade test, p < 0.05
for both pre- and post-hoc statistics for all experiments and all

comparisons after the sharp change, d.f.N = 7, d.f.D = 343,

[22]) except a small percentage of post-hoc comparisons,

as follows. For SSni compared to RSin, cumulative reward

distributions are not significantly different for 3×3 (p = 0.367)

and 6×6 (p = 0.402). For RSnn compared to RSni, the

distributions are not significantly different for 6×3 (p = 0.421)

and 6×6 (p = 0.062). For SSnn compared to SSin, the

distributions are not significantly different for 3×3 (p = 0.118),

21×3 (p = 0.066), and 30×3 (p = 0.139). For SSni compared

to SSii, the distributions are not significantly different for 21×3

(p = 0.181) and 24×6 (p = 0.589). For SSnn compared to

SSii, the distributions are not significantly different for 6×3

(p = 0.202). Finally, SSii compared to RSin, the distributions

are not significantly different for 30×3 (p = 0.750).

Table II shows the average of the average reward collected

for all variants on all data sets as well as the average of the

standard deviation of the reward collected on all data sets for

the entire run, the last 10% of trials before the change, and

the last 10% of trials after the change.

V. DISCUSSION

Overall, these results clearly indicate that novel equation sets

SSin and SSnn, introduced here by using the basic σ update

equation from SSRL (with or without the input factor) along

with the weight update equation from REINFORCE S (that

is, without the input factor), consistently outperform all other

equations both in terms of fast learning and higher cumulative

rewards after the dynamic change. Between the two, SSin

outperforms its counterpart SSnn in more data sets indicating

that input multiplication in the σ update equation generally

improves learning speed and reward accumulation when the

algorithm must adapt after a change. Furthermore, SSin also

consistently exhibits the lowest standard deviation, in the end,

for the cumulative reward collected across 50 runs. Combined,

these results show that the novel SSin equation set introduced

here manifests the best relative exploratory and exploitatory

policy learning capabilities.

In addition, it is interesting to note that including the input

factor in the σ update equation from REINFORCE S (yielding

novel equation set RSin) substantially improves the original

algorithm’s (REINFORCE S’s) performance after the change.

Ranking performance, SSin and SSnn achieve similar near-

optimal performance in the final 10% of trials both before

and after the change. Interestingly, novel equation set SSin

achieves equal or higher cumulative reward after the change

compared to before in all but one case. Conversely, SSnn,

also a novel equation set, performs relatively better before the

change. This suggests SSin is better suited for sharply changing

environments. SSii (the original SSRL) has the next highest

cumulative rewards and almost matches the performance of

the top two by the end, albeit exhibiting relatively slower

initial learning post change. Both SSni and RSin perform head-

on, thus clear superiority is not obvious. SSni’s total sum of

cumulative reward for all data sets, after change, during the

last 10% of the trials is 552.4 with an average of 92.06 and

sum of the standard deviation is 15.9 with an average of 2.65.

Corresponding numbers for RSin are a sum of 552.2 with an

average of 92.03 and sum of standard deviation of 18.1 with

an average of 3.01. This perhaps makes SSni marginally better

than RSin. Finally, RSii shows superior performance to RSnn

(REINFORCE S) which performs better than RSni.

The variants using the core σ update equation from SSRL

clearly outperform the variants using the core σ update equation
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Fig. 1. Average performance curves. Average reward collected per trial across 50 runs by all variants. The drop in the performance at trial 10000 is where the
sharp change occurs.

from REINFORCE S, with the only exception being RSin

competing closely with SSni where RSin shows substantial

improvement over REINFORCE S. Finally, within each of the

two groups (i.e., SSRL-based σ update and REINFORCE S-

based σ update), the input factor in σ update and no input

factor in the weight update equations (see SSin and RSin)
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Fig. 2. Average cumulative reward performance. Box and whisker plots with outliers of average cumulative reward per run across 50 runs by all variants. First
one-third in each plot shows average cumulative reward received over entire run while the second one-third shows the same for the last 10% of trials before
change and the last one-third shows the last 10% of trials before the end of the run.



TABLE II
AVERAGES OF AVERAGE REWARDS (r) AND AVERAGES OF STANDARD DEVIATIONS OF REWARDS (σr ) ACROSS ALL RUNS. TABLE DEPICTS AVERAGES FOR

THE ENTIRE RUN (TOP), LAST 10% OF THE TRIALS BEFORE CHANGE (MIDDLE), AND LAST 10% OF THE SECOND HALF’S TRIALS OF EACH RUN (BOTTOM).
NUMBERS UNDERLINED ARE THE HIGHEST REWARDS AND LOWEST STANDARD DEVIATIONS.

SSii SSin SSni SSnn RSii RSin RSni RSnn

Data set r σr r σr r σr r σr r σr r σr r σr r σr

E
n

ti
re

R
u

n

3×3 86.6 % 1.7 % 89.6 % 0.9 % 87.4 % 2.2 % 89.6 % 1.5 % 84.4 % 3.5 % 88.0 % 2.4 % 80.1 % 5.2 % 80.7 % 4.5 %

6×3 89.7 % 1.5 % 91.5 % 0.6 % 87.8 % 2.7 % 90.0 % 2.0 % 86.4 % 2.2 % 89.4 % 2.1 % 83.5 % 2.5 % 84.5 % 3.1 %

6×6 90.0 % 0.7 % 91.4 % 0.5 % 89.3 % 1.0 % 90.7 % 0.7 % 88.3 % 1.4 % 89.9 % 0.8 % 86.0 % 1.5 % 86.9 % 1.7 %

21×3 86.7 % 1.3 % 89.4 % 1.1 % 87.2 % 1.7 % 89.2 % 1.5 % 84.1 % 3.3 % 87.1 % 2.4 % 79.8 % 5.0 % 82.4 % 4.5 %

30×3 86.0 % 1.6 % 89.1 % 1.0 % 87.2 % 2.0 % 89.6 % 1.1 % 85.8 % 2.4 % 88.0 % 2.4 % 79.5 % 4.0 % 82.4 % 3.9 %

24×6 89.3 % 0.5 % 91.0 % 0.4 % 89.7 % 0.8 % 91.1 % 0.5 % 88.9 % 1.1 % 90.5 % 0.9 % 88.3 % 1.3 % 89.9 % 1.1 %

M
id

-l
as

t
1

0
%

tr
ia

ls 3×3 93.5 % 0.1 % 93.5 % 0.1 % 93.5 % 0.1 % 93.6 % 0.1 % 93.5 % 0.5 % 93.6 % 0.1 % 93.6 % 0.2 % 93.6 % 0.1 %

6×3 93.6 % 0.1 % 93.6 % 0.1 % 93.7 % 0.1 % 93.7 % 0.1 % 93.6 % 0.6 % 93.7 % 0.1 % 93.4 % 1.0 % 93.7 % 0.1 %

6×6 93.4 % 0.1 % 93.4 % 0.1 % 93.5 % 0.1 % 93.5 % 0.1 % 93.5 % 0.3 % 93.6 % 0.1 % 93.4 % 0.9 % 93.7 % 0.1 %

21×3 93.6 % 0.1 % 93.8 % 0.1 % 93.8 % 0.1 % 93.9 % 0.2 % 93.7 % 0.1 % 93.9 % 0.2 % 93.7 % 0.3 % 93.9 % 0.1 %

30×3 93.5 % 0.1 % 93.6 % 0.1 % 93.6 % 0.1 % 93.6 % 0.1 % 93.6 % 0.1 % 93.7 % 0.1 % 93.6 % 0.3 % 93.7 % 0.1 %

24×6 93.6 % 0.1 % 93.8 % 0.1 % 93.7 % 0.1 % 93.9 % 0.1 % 93.7 % 0.1 % 93.9 % 0.1 % 93.8 % 0.2 % 94.0 % 0.2 %

L
as

t
1

0
%

tr
ia

ls

3×3 93.3 % 1.1 % 93.7 % 0.1 % 92.7 % 2.6 % 93.2 % 1.9 % 87.5 % 6.8 % 92.2 % 2.8 % 73.7 % 12.5 % 75.1 % 10.9 %

6×3 92.6 % 2.2 % 93.6 % 0.2 % 88.8 % 5.9 % 91.9 % 3.6 % 86.8 % 5.6 % 91.2 % 4.0 % 77.1 % 6.4 % 79.0 % 8.0 %

6×6 93.0 % 0.6 % 93.4 % 0.6 % 91.8 % 1.9 % 93.1 % 0.7 % 90.1 % 2.8 % 92.0 % 1.8 % 83.0 % 3.4 % 84.8 % 4.6 %

21×3 93.5 % 1.3 % 94.1 % 0.3 % 93.3 % 2.1 % 93.9 % 1.1 % 88.4 % 6.7 % 91.7 % 4.4 % 74.5 % 12.4 % 79.0 % 9.9 %

30×3 93.5 % 0.4 % 93.6 % 0.6 % 92.9 % 2.3 % 93.7 % 0.1 % 90.9 % 4.2 % 92.0 % 3.9 % 73.7 % 11.3 % 79.3 % 9.4 %

24×6 93.0 % 0.6 % 93.5 % 0.1 % 92.9 % 1.1 % 93.5 % 0.4 % 92.1 % 2.0 % 93.1 % 1.2 % 89.1 % 3.1 % 91.7 % 2.3 %

produced the best performers within their respective groups.

Conversely, no input factor in the σ update equation along

with including the input factor in weight update equations

produced the worst performers within each group (see SSni

and RSni). This clearly suggests an important result that inputs

from the previous layer contribute substantially to the benefit

of exploration/exploitation trade-off while ignoring the inputs

helps adjust weights appropriately. In a nutshell, this affirms

the need to address the structural credit assignment problem

while formulating the σ update equations.

Interestingly, the core σ update equation from REIN-

FORCE S is inherited from REINFORCE with multiparameter

distributions [12], where the characteristic eligibility for the

change in σ is calculated as the partial derivative with respect to

σ of a Gaussian density function (the function from which the

noise values are sampled). This makes sense, as the objective

is to follow the gradient not only in weight space to update the

policy, but also in σ space to update the degree of exploration.

This is in contrast to the equation from SSRL, which was

formulated intuitively based on direction of change rather than

slope [13]. So, has intuition outperformed theory in this case?

If so, how should equations be derived?

Then again, multiparameter REINFORCE does not use

this calculation for σ directly. Instead, Williams says that

a “reasonable algorithm is obtained by” multiplying the result

of his partial derivative by σ2. So, what does it tell us when

this theoretical approach to deriving the equations does not

produce “reasonable” algorithms on its own and their own

author suggests substantial modifications to them?

Perhaps some of these questions could be addressed by

evolving the equations [23], as suggested for future work.

VI. CONCLUSIONS

This empirical study systematically compares equations

from REINFORCE S [16], an improved variant of classic

REINFORCE algorithm with multiparameter distributions [12],

and Stochastic Synapse Reinforcement Learning (SSRL) [13].

The study focuses on comparing and analyzing the role of the

core equations for updating the exploration parameter σ as

well as the input factor yk in weight and σ update equations

of both algorithms. Alternate equations are hypothesized,

formulated, and then empirically compared against each other

using PUMA robotic arm inverse kinematics with moderately

high dimensional data sets using both continuous and discrete

aliased states and continuous actions spaces. Understanding

and improving update equations for σ is shown to be key to

high performance in sharply changing dynamic environments—

a largely overlooked area of research. Moreover, it appears

that concentrating on the direction of the updates to σ is more

effective than using information on slope.

The results strongly suggest including the input factor

in the σ update equations while omitting the input factor

from the weight update equations, thus indicating that tak-

ing into account the structural credit assignment is not as

simple as including the same factors in all equations. Both

algorithms find better sets of alternate weight and σ update

equations that follow the aforementioned rules. The statistical

hypothesis tests, randomized ANOVA and Quade, reflect the

best algorithms to be SSin in SSRL’s variants group and

RSin in the REINFORCE S group. The results and tests

further reveal that SSin outperforms all other algorithms with

statistical significance. Furthermore, SSin performs well in



both continuous and discrete aliased state spaces with the later

being known for the additional perceptual aliasing problem.

The high cumulative reward and low reward variability by SSin

reflect its superior exploratory and exploitatory policy learning

capabilities following stochastic policy gradients.

Ranking the algorithms from best to worst performance

follows as: SSin > SSnn > SSii (SSRL) > SSni ≥ RSin

> RSii > RSnn (REINFORCE S) > RSni, as reflected in

Table I. The algorithms using SSRL’s core σ update equation

clearly outperform those using the core σ update equation from

REINFORCE S (inherited from the classic REINFORCE). The

results also suggest that the input factor aides with superior

exploration/exploitation trade-off as long as the weight update

equation is free from such multiplication.

VII. FUTURE WORK

A key takeaway of this study is that investigating alternatives

for update equations can help find better algorithms. Using

evolution of reinforcement learning to explore further variations

of the algorithms and analyzing sensitivity of various parame-

ters and hyper-parameters within the equations can help find

even better algorithms that are faster learners and near optimal

performers in dynamic environments [23], [24]. At the macro

level, this could address some of the questions raised in the

discussion with regard to how such equations should be derived.

At the micro level, in this study, the sigmoidal activation

function uses a λ value of 2 which extends the range of a

unit’s output values; however, evolving better λ values should

be considered in the future. Interestingly, many traditional (non-

evolved) RL methods are unsuited to dealing with change [6]–

[9] whereas RL mechanisms evolved in dynamic environments

are very unlikely to have this problem [23].

Using the most successful equations from this study on grad-

ually changing, deep-learning, and/or delayed-RL tasks with

temporal and/or structural credit assignment problems, and/or

in modular or hierarchical RL, should improve understanding

and highlight any performance and/or scalability issues.

However, while these empirical approaches can determine

better performing algorithms, theoretical work is still needed

to understand the reasons for these differences.

Finally, multiparameter REINFORCE [12] is mostly regarded

as a goto algorithm for continuous actions spaces in the

class of stochastic policy gradient algorithms [14]; however,

REINFORCE with uniparameter distributions is not known to

outperform the traditional Q-learning and SARSA in discrete

action spaces. Future studies investigating the update equations

underlying these algorithms can perhaps improve on the state

of the art in discrete action spaces as well.
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