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Abstract—This paper presents Noisy Importance Sampling
Actor-Critic (NISAC), a set of empirically validated modifications
to the advantage actor-critic algorithm (A2C), allowing off-policy
reinforcement learning and increased performance. NISAC uses
additive action space noise, aggressive truncation of importance
sample weights, and large batchsizes. We see that additive noise
drastically changes how off-sample experience is weighted for
policy updates. The modified algorithm achieves an increase
in convergence speed and sample efficiency compared to both
the on-policy actor-critic A2C and the importance weighted off-
policy actor-critic algorithm. In comparison to state-of-the-art
(SOTA) methods, such as actor-critic with experience replay
(ACER), NISAC nears the performance on several of the tested
environments while training 40% faster and being significantly
easier to implement. The effectiveness of NISAC is demonstrated
against existing on-policy and off-policy actor-critic algorithms
on a subset of the Atari domain.

Index Terms—deep learning, reinforcement learning, off-policy
learning

I. INTRODUCTION

Recent advances in reinforcement learning (RL) have en-
abled the extension of long-standing methods to complex and
large-scale tasks such as Atari [1], Go [2], and DOTA [3].
The key driver has been the use of deep neural networks,
a non-linear function approximator, with the combination
usually referred to as Deep Reinforcement Learning (DRL)
[1], [4]. However, deep learning-based methods are usually
data-hungry, requiring millions of samples before the network
converges to a stable solution. As such, DRL methods are
usually trained in a simulated environment where an arbitrary
amount of data can be generated.

RL algorithms can be classified as either learning in an off-
policy or on-policy setting. In the on-policy setting, an agent
learns directly from experience generated by its current policy.
In contrast, the off-policy setting enables the agent to learn
from experience generated by its current policy or/and other
separate policies. An algorithm that learns in the off-policy
setting has much greater sample efficiency as old experience
from the current policy can be reused; it also enables off-
policy algorithms to learn an optimal policy while executing
an exploration-focused policy [5].

A famous off-policy method is Q-Learning [6] which learns
an action-value function, Q(s, a), that maps the value to a state
s and action a pair. Deep Q-Learning (DQN), the marriage
of Q-Learning with deep neural networks, was popularised

by Mnih et al. [1] and used various modifications, such
as experience replay, for stable convergence. Within DQN,
experience replay [7] is often motivated as a technique for
reducing sample correlation. Unfortunately, action-value meth-
ods, including Q-Learning, have two significant disadvantages.
First, they learn deterministic policies, which cannot handle
problems that require stochastic policies. Second, finding the
greedy action with respect to the Q function can be costly for
large action spaces. To overcome these limitations, one could
use policy gradient algorithms [8], such as A2C an on-policy
actor-critic method [9], which learn in an on-policy setting at
the cost of sample efficiency.

The ideal solution would be to combine the sample effi-
ciency of off-policy algorithms with the desirable attributes
of on-policy algorithms. Work along this line has been done
by using importance sampling [10] which adjusts off-policy
samples according to a weight ρ, the ratio between the
current policy π(a|s) and experience policy B(a|s). Where
the weight is defined as ρ = π(a|s)

B(a|s) . NISAC modifies A2C
by using additive action space noise, aggressive truncation of
importance sample weights, and large batchsizes enabling off-
policy learning from stored trajectories. The contributions of
this work are as follows:

• We introduce Noisy Importance Sampling Actor-Critic
(NISAC), a fully off-policy actor-critic algorithm, that
learns from stored off-policy trajectories.

• Experimentally prove in the Atari domain, that NISAC
outperforms, in performance and sample efficiency, both
A2C [9] and the off-policy truncated importance sampling
method [11].

• Show the addition of additive action space noise, to
the numerator of ρ, changes the distribution of weights,
improves learning, and that Gumbel noise, rather than
Normal or Uniform, is most performant.

• NISAC training time is 40% faster than ACER, a SOTA
off-policy actor-critic methods, nears its performance on
several environments, and is easier to implement.

The paper is organized as follows: Sec. II covers background
information, Sec. III describes the NISAC algorithm, Sec. IV
details the experimental results, analysis, and ablations of our
methodology. Sec. VI discusses future work, and finally Sec.
V provides concluding remarks.
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II. BACKGROUND AND NOTATION

Problem Setup: Consider an agent interacting with
a Markov Decision Process (MDP) consisting of a set
of states S, a set of actions A, a transition function
P : S × A → (S → [0, 1]), and a reward function
r : S × A → R. Within this work, discrete actions and
time steps are assumed. A policy is a probability distribution
over actions conditioned on states, π : S × A → [0, 1].
At each time step t, the agent observes the environment
state st ∈ S, chooses an action at ∈ A from its policy
π(at|st), and receives a reward rt from the environment.
The goal of the agent is to maximize the discounted future
return Gt =

∑∞
k=0 γ

krt+k+1. The discount factor γ ∈ [0, 1)
trades off the importance of immediate and future rewards.
Following from this, the value function of a policy π, in
a discounted problem, is defined as the expected return
V π(st) = Ea∼π[Gt|St = s] and its action-value counterpart
as Qπ(st, at) = Ea∼π[Gt|St = s,At = a].

Policy Gradient Methods: In reinforcement learning (RL)
the direct optimization of a stochastic policy, with parameters
θ, requires the use of the policy gradient theorem [8]. The
policy gradient theorem provides an expression for the gradient
of the discounted reward objectives with respect to the param-
eter theta. Therefore, the parameters θ of the differentiable
stochastic policy πθ(at|st) are updated using the following
gradient:

∇θJ(θ) = Eπ[Ψπ(st, at)∇θ log πθ(at|st)] (1)

where Ψπ(st, at), as shown by Schulman et al. [12], can
be replaced with quantities such as: the total reward of the
trajectory, the temporal difference residual, or the state-action
value function Qπ(st, at). The choice of Ψπ affects the
variance of the estimated gradient. This work uses the
advantage function Aπ(st, at) = Qπ(st, at)− V π(st), which
provides a relative measure of value for each action. The
advantage function helps to reduce the variance of the
gradient estimator while keeping the bias unchanged. The
A3C algorithm, Asynchronous Advantage Actor-Critic [9],
uses policy-gradients with an advantage function with many
parallel critics. A3C uses multiple actors, trained in parallel,
each interacting with its own environment. The parameters of
each actor are synced periodically with the global parameters.
A2C, the synchronous and deterministic version syncs all
actors with the same set of parameters after a fixed number
of steps have been completed.

Gumbel Distribution: The Gumbel distribution is a proba-
bility distribution that is used to model the maximum of value
from a set of independent samples [13]. The density of this
distribution is defined as:

p(x) =
1

β
exp(−z − exp(−z)) (2)

where z = x−µ
β and parameterized by scale β and location

µ. We evaluate noise sampled from the Gumbel distribution

as a potential candidate for additive noise in NISAC. The
Gumbel distribution has several applications within machine
learning, such as the Gumbel-Max [14] and Gumbel-Softmax
tricks [15]. However, our usage of the Gumbel distribution
differs from the Gumbel-Max and Gumbel-Softmax in that
we see Gumbel noise as perturbing the current policy – as
noise would from any other distribution.

Importance Sampling: In practice, the policy gradient is
estimated from a trajectory of samples generated by the on-
policy stationary distribution π(a|s). This limits the efficiency
of typical policy gradient methods, such as actor-critic, com-
pared to methods like Deep Q-Learning which can learn off-
policy. A common approach to using off-policy samples is a
technique known as importance sampling [10], [16]–[18].

Given a trajectory of samples generated by some behaviour
policy B(a|s), the policy gradient from Equation 1 is modified
to be:

∇θJ(θ) = EB
[
ρtΨ

π(st, at)∇θ log πθ(at|st)
]

(3)

where ρ is the known as the importance weight and is defined
as a ratio between the current policy π(a|s) and the behaviour
policy B(a|s) as ρt = π(at|st)

B(at|st) . Unfortunately, the importance
weighted gradient in Equation 3 suffers from high variance.
To reduce variance, Wawrzyński [11] proposed truncating
each importance weight to the interval [0, c] where c is some
constant. NISAC builds upon truncated importance sampling,
but uses aggressive truncation of the importance weight.

Actor-Critic With Experience Replay: Actor-critic with
experience replay (ACER) [19], is an off-policy actor-critic
algorithm that uses experience replay. ACER builds upon
the on-policy A3C algorithm [9]. Wang et al. [19] proposes
three changes to A3C to convert it to an off-policy method:
truncated importance sampling with bias correction, retrace
Q-value estimation, and updates performed with TRPO [20].
As the gradients from importance sampling based updates can
suffer from high variance, the quantity is usually truncated
by a constant c as done by Wawrzyński [11]. However, this
truncation introduces a bias so Wang et al. [19] propose a
correction term. Therefore, the gradient for ACER is defined
as:
∇θJ(θ) = min(c, ρt)

{
Qret(st, at)− Vw(st)

}
∇θ lnπθ(at|st)

+ Ea∼π[max(0,
ρt − c
ρt

)(Qw(st, a)− Vw(st)∇θ lnπθ(a|st)]
(4)

where Qw and Vw are value functions predicted by the
networks critic with parameters w and Qret is the estimated Q-
value given by Retrace [21]. Retrace is a return-based Q-value
estimation algorithm that can be used with off-policy data. The
first term of Equation 4 is the truncated importance weight
which reduces variance. The second term corrects the bias
introduced by the first term such that ACER’s policy gradient
is an unbiased estimation. The implementation of ACER is
quite involved, requiring several moving pieces to implement
correctly. In contrast, NISAC requires fewer changes and is
much simpler to implement.



(a) Truncated ρ with current policy (b) Truncated ρ with noisy policy

Figure 1: Histograms of importance sampling weights ρ during training. The x-axis is the magnitude of ρ̄ and the y-axis is the
number of updates since start of training. Both ratios ρ are truncated between [0, c], where is c the truncation value and here,
c = 4. a) Using truncated ρ with the current policy in the numerator and b) the ratios seen during training from NISAC, which
corresponds to use of the noisy policy in the numerator. In this case noise was sampled from a standard Gumbel distribution.

III. NISAC

NISAC builds off the on-policy actor-critic algorithm A2C.
To enable off-policy learning NISAC uses aggressive clipping
on importance sampling, additive noise, and large batches
sampled from a replay memory. Psuedo-code for NISAC is
provided in Algorithm 1. We begin by defining a few quantities
used in the importance sampling weight ρ. In importance
weighting, two policy classes exist: the current policy π(a|s; θ)
and the behaviour policy B(a|s). Because replay memory is
being used, the behaviour policy is simply the distribution over
actions with an old parameter setting θ∗:

B(at|st) = π(at|st; θ∗) (5)

NISAC introduces a third policy, the noisy policy F(a|s)1,
which results from adding noise ε drawn from some distri-
bution D to the normalized logits of the current policy and
passing them through a softmax:

F(at|st) = softmax(log π(at|st; θ) + ε) (6)

We can see, from Figure 1(b), where we truncate values
to some constant c, that the addition of noise forces the
ratio ρ into one of three modes instead of clumping around
1. In this work we examine the difference between noise
drawn from Uniform, Gumbel, and Normal distributions. One
major qualitative difference between these types of noise, with
respect to the distributions shape, is that additive Gumbel noise
results in less mass between modes.

Similarly to previous work, this study uses importance sam-
pling ρt to weight the updates of the loss function [10], [11],

1As N is typically used for Normal distributions, we used F to avoid
confusion.

[19]. However, instead of using the current policy, π(·|st), in
the numerator, it is replaced with the noisy policy F(at|st):

ρ
(i)
t =

F(a
(i)
t |st)

B(a
(i)
t |st)

(7)

The range of ρt is clipped to [0, c] and this clipped importance
weight is referred to as ρ̄t. Clipping the upper bound prevents
the product of many importance weights from exploding
and reduces the variance [11]. Wang et al. [19] notes that
truncating the importance weights in this way introduces bias
to the estimator. However, the value of having an unbiased
algorithm is unclear, as shown by Thomas [22], and does not
always correspond to improved performance. The effect of
aggressively clipping ρt and using the noisy policy F(·|s) in
ρt has an interesting effect on the way the policy updates are
weighted. To understand the effect of these two modifications
we again refer to Figure 1, which shows the history during
training of the ratios ρ̄, truncated between [0, c] to a constant
c, where Figure 1(a) is plain truncated importance sampling
and Figure 1(b) is truncated importance sampling with added
action space noise.

From Figure 1(a), we notice that the majority of the impor-
tance weights ρ̄ are centered around 1 resulting in off-policy
samples that are weighted approximately the same. However,
by using additive action space noise, in this case from the
Gumbel distribution, we can see from Figure 1(b) a multi-
modal distribution appears. The weights ρ̄ form three distinct
modes around {0, 1, c}, with small amounts of additional
density “smeared” between modes. We hypothesize that the
addition of noise, via the noisy policy F(a|s), has the effect
of stabilising the updates to the network as the weighting as-
signed to each off-policy sample is near {0, 1, c}. Interestingly,
each of the modes can be grouped into cases of “agreement” or
“disagreement” between the noisy policy F(·|s) and behaviour



Algorithm 1 Pseudo-code for k-step NISAC
Initialize parameters θ and θv .
Initialize replay memory M with capacity N .
repeat

for i ∈ {0, · · · , k} do
Perform ai according to π(·|si; θ).
Receive reward ri and new state si+1.
Store (si, ai, ri, π(·|st)) in M.

end for
Sample b trajectories {s0, a0, r0,B(·|s0), · · · , sk, ak, rk,B(·|sk)}
from the replay memory M.
for i ∈ {0, · · · , k} do

Sample ε from noise distribution D.
Compute π(·|si; θ) and F(·|si).
ρ̄i = clamp

(
F(ai|si)
B(ai|si)

, 0, c
)

end for

R←
{

0 for terminal sk
V (sk; θv) otherwise

Reset gradients: dθ ← 0 and dθv ← 0.
for i ∈ {k − 1, · · · , 0} do

R←
{

0 for terminal si
ri + γR otherwise

Accumulate gradients dθ ← dθ + ρ̄i∇θ logF(ai|si)
{
R −

V (si; θv)
}

Accumulate gradients dθv ← dθv +∇θv (R− V (si; θv))2

end for
Perform update of θ using dθ and θv using dθv .

until Max iteration or time reached.

policy B(·|s). Where the case of agreement corresponds to
ratios and the mode near 1 while disagreements correspond
to ratios and modes at 0 and c. More exactly, when the noisy
policy disagrees with the behaviour policy, say F(·|s) ≈ 1 and
B(·|s) ≈ 0, the update the policy receives is at most clipped by
the upper bound of our interval: c. On the other hand, when the
situation is reversed, but still in disagreement, with F(·|s) ≈ 0
and B(·|s) ≈ 1, the policy has an importance weight of ~0.

Putting this all together the update equation for NISAC is
as follows:

∇θJ(θ) = EB[ρ̄tA(st, at)∇θ log πθ(at|st)] (8)

However, empirically we found that using the noisy policy
in place of the current policy, in ∇ log π(at|st), produces bet-
ter performance. This is empirically validated by an ablation
in Section IV-B. We hypothesize that the usage of the noisy
policy in place of π(a|s) affects three changes during learning.
First, by adding action space noise the resulting policy will
tend towards a categorical distribution earlier in training which
will affect how strongly the networks weights are updated.
Second, as the noisy policy used in both the numerator of ρt
and in place of the policy score use the same set of noise
samples {εi, . . . , εk} the updates synchronize such that the
policy is updated maximally in agreement. And finally, we
believe the additive noise acts as strong exploration force to the
policy as it can “shake-out” policies that are near deterministic,
even later in training.

IV. EXPERIMENTS

Our experiments focus on the Atari domain [23] as there
exists a large amount of variety between environments and

the states are represented as raw high-dimensional pixels. The
gym software package by Brockman et al. [24] was used
to conduct all the experiments. The network architecture and
hyper-parameters, for each respective algorithm, were constant
throughout all experiments.

This study used the same input pre-processing and network
architecture as Mnih et al. [9]. The network architecture
consists of three convolutional layers as follows: 32 8×8 filters
with stride 4, 64 4×4 filters with stride 2, and 32 3×3 filters
with stride 1. The final convolutional layer feeds into a fully-
connected layer with 512 units. All layers are followed by
rectified non-linearity. Finally, the network outputs a softmax
policy over actions and a state-value.

The experimental set-up used 16 threads running on a GPU
equipped machine. As is standard in the Atari domain [1], [9],
[19], all experiments are trained for 40 million frames. The
optimization procedure used RMSProp [25] with a learning
rate of 0.0005, policy entropy regularization weight of 0.01,
and a discount factor of γ = 0.99. We estimate the gradient
given in Equation 8 by uniformly sampling b trajectories of
length k from a replay memory with size N . The advantage
function A(st, at) = R

(k)
t − V (st) is used, where R(k)

t is the
bootstrapped k-step return for time t. A replay memory of size
N = 250000 was kept, an update was performed every k = 5
steps in the environment, and a clamping coefficient of c = 4
was used. We sample b = 64 trajectories of length k = 5 for
each update. Learning begins after we have collected 10, 000
samples in the replay memory. All experiments used the same
hyperparameter settings and network architecture.

We tuned the hyperparameters and developed NISAC on the
FishingDerby environment only; the other environments can
be considered “out of sample”. We use the best 3 seeds and as
standard we report the mean value of rewards achieved during
training with 1 std. deviation as shaded areas on all graphs.

Due to limited computational resources, we were only able
to evaluate NISAC on a subset of the environments and with
a smaller replay memory size. Therefore, in this study, an
effort was made to select environments that best showcase
the performance of off-policy (truncated importance sampling)
and on-policy (A2C) actor-critic methods. We note that the
performance can be expected to improve with a larger replay
memory, as seen with DQN and other off-policy methods using
replay memory. Additionally, we focused the examination of
our ablations on the Alien environment to reduce computa-
tional requirements.

The present work was compared with a SOTA off-policy
actor-critic algorithm, ACER [19], an on-policy actor-critic
algorithm, A2C, the synchronous version of A3C [9], and an
off-policy actor-critic with truncated importance sampling (t-
IS) [10], [11]. A2C and ACER used the baselines package
provided by OpenAI [26]. The hyperparameters of ACER and
A2C are identical to those used on the Atari environment by
previous works [19] [9]. For t-IS we used a clipping constant
c = 10 and replay memory of 250000 samples.



(a) (b)

Figure 2: Above we compare the behaviour between Gumbel, Normal, and Uniform distribution. a) Performance on the Atari
game Alien under different noise distributions. b) We look at the entropy ratio between the current policy and the noisy policy
H[π]
H[F ] .

A. Additive Noise Distribution
Within this section, we vary the noise generating distribution

used in NISAC and examine the effect on performance and
learning. In particular, we compare noise sampled from the
standard Gumbel distribution, the standard Normal distribu-
tion, and the Uniform distribution [0, 1]. Our analysis looked
at the performance each variant achieved on the Alien Atari
game over 40 million frames. The experiments only adjust the
noise generating distribution with no other parameter changes.

From the results in Figure 2(a), we see that the Gumbel and
Normal distributions have the same initial rate of improvement
but diverge roughly midway through training. The Normal dis-
tribution appears to degrade in performance before becoming
stable at ~1500. The Uniform distribution, sampled between
[0, 1], has the same convergence characteristic as the other
two distributions but instead of diverging away, similar to the
Normal distribution, it continues upward before converging at
~2000. We can see that the Gumbel distribution is the most
performant.

Next, in Figure 2(b), we compared the entropy H[.] of
the current policy π(a|s) over the noisy policy F(a|s). This
experiment helps us understand how much each policy is
exploring relative to the other as well as how the ratios
ρ change over time. For Uniform noise, we see it is flat
throughout training implying that the current policy and noisy
policy have equivalent entropy and therefore will “explore” at
the same rate and produce importance sampling weights which
are roughly 1. However, when examining the Gumbel and
Normal noise variants we see that the noisy policy has greater
entropy. When using Normal noise we see that initially the
noisy policy has +15% more entropy but this quickly decays
towards the end of training, falling below a 10% difference. We
would like to note the small dip of the entropy ratio roughly
coincides with the peak and draw down of the Normal variant
in Figure 2(a). Looking towards the Gumbel variant, we can
see the noisy policy has over +40% more entropy than the
current policy and declines to about +20% towards the end of
training. This implies that Gumbel noise will tend to “explore”

more throughout training with the effect magnified earlier on.
As the behaviour policy B(a|s) will roughly trail behind the
current policy π(a|s) during training we can expect the ratios
ρ to be at the outer modes 0 and c. Later in training, as the
entropy ratio drops the likelihood that the policies disagree
decreases which corresponds to ratios ρ at roughly 1. Referring
back to Figure 1(b), we can indeed see the two aforementioned
trends occur: ρ is mostly around 0 and c and then most of
the ratios go to 1. The earlier stages coincide with greater
exploration as the two policies are in disagreement more often.

Figure 3: Variations in the choice of policy x in numerator
of ρt and the policy y used to update the network. We see
that the combination corresponding to NISAC has the highest
performance and faster convergence speed. In the legend, c
corresponds to current policy π and f corresponds to the noisy
policy F .

B. Noisy Policy Placement

Here, we examine the effect of using the noisy policy
F(at|st) in the importance ratio ρ̄t and as a replacement for
the current policy π(·|s) in the policy gradient update. Going
forward we use the Gumbel distribution, as by Section IV-A,
it is the most performant. We examine different combinations
of the current or noisy policy which modify Equation 8 as
follows:

∇θJ(θ) = EB[min(c,
x

B(at|st)
)A(st, at)∇θ log y] (9)



Figure 4: Training performance across 8 Atari games. We see the performance of NISAC (shown in blue) against ACER
(shown in green), an off-policy actor-critic algorithm, the on-policy algorithm A2C (shown in red), and the off-policy actor-
critic algorithm t-IS (shown in orange). The graphs show the average performance over 3 seeds with 1 standard deviation
shown as the shaded region. NISAC matches or exceeds the performance of A2C and t-IS on all environments shown; while
in all cases achieving improved convergence speed.

with each combination specified as a tuple of the form
(x, y). Specifically, we look at the following combinations
(π, π), (π,F), (F , π), and (F ,F). The combinations specified
by (π, π) results in t-IS, no noise, and (F ,F) in NISAC.
From Figure 3 where c corresponds to current policy π and f
corresponds to the noisy policy F , we see that variant (F ,F),
corresponding to NISAC, has the highest performance and
fastest rate of convergence. This variant outperforms (F , π)
showing that there is indeed some added benefit of additional
noise. Finally, we note that the lowest performing variant,
(π,F), uses additive noise to the policy in the importance
weight ratio. As mentioned previously and shown in Section
IV-A, we see that the noisy policy strongly affects how the
networks weights are updated during all points of training.

C. Atari Results

To test the proposed methodology, the performance of
NISAC on a subset of Atari environments was examined.
In particular, the following environments were investigated:
Alien, BeamRider, Boxing, FishingDerby, MsPacman, Qbert,
Seaquest, and SpaceInvaders. We report the average reward
every 1000 episodes over 40 million frames. As mentioned
previously, environments were chosen where either the on-
policy algorithms perform well or where there is a clear
difference in performance between an off-policy and on-policy
method. For NISAC, we used noise sampled from the Gumbel
distribution, validated in Section IV-A, and the noisy policy in
the numerator of the importance weight and the policy gradient
update, as validated in Section IV-B.

From Figure 4, we see the performance of NISAC, shown in
blue, in comparison to the off-policy ACER algorithm, shown

in green, the on-policy A2C algorithm, shown in red, and the
t-IS algorithm, shown in orange. We see that the use of replay
memory and learning with off-policy samples significantly
improves the sample efficiency of both NISAC over A2C.
Qualitatively, we see that NISAC converges significantly faster
than A2C while also exceeding A2C’s performance on this
subset of Atari environments.

The performance gap between t-IS and NISAC is also large,
with NISAC showing both increased performance and sample
efficiency. The difference from NISAC to t-IS is an aggressive
truncation of the importance weights and the noisy policy
F(·|s) used in both the importance weight and policy. As seen
from Figure 4 this gives a significant increase in performance.

Algorithm Wallclock Time
ACER 8h47m
NISAC 6h14m

A2C 4h53m
t-IS 4h39m

Table I: Average Wallclock Time over Atari games: We can
see that NISAC is 40% faster than ACER. The other baseline
methods, A2C & t-IS, are faster still but are less performant
across all Atari environments.

We achieve similar sample efficiency between the off-policy
actor-critics, NISAC and ACER, across each environment. We
see that NISAC sees a fast initial increase in performance
across almost all environments. ACER, a SOTA algorithm, out
performs NISAC on the MsPacman, Qbert, and SpaceInvader
environments. However, we note that NISAC trains 40% faster
than ACER, shown in Table I, and is significantly easier to
implement with fewer modifications to the A2C algorithm,



Figure 5: Ablations of NISAC. The full NISAC algorithm is shown as the blue curve while the stripped versions are shown
in red. From left to right we gradually add the components onto the base version until we arrive at the full NISAC algorithm,
shown in the last pane. The lines in the last pane are identical but with one graph stylized.

while providing better performance than both A2C and t-IS.

D. Stability
It is natural to inquire on the stability of this method, as

we rely on additive noise which could cause instability after
an optimal policy has been reached. To this end, we evaluate
the stability of NISAC by increasing the number of training
iterations such that 150 million frames are seen. The Boxing
and FishingDerby environments are used for this evaluation.
The environments were chosen as the policy had achieved
the highest score during training, a known ceiling, and any
instability would cause a divergence to a sub-optimal policy.

Figure 6: Stability of NISAC with extended training time.
NISAC is trained for 150 million frames, ~4x longer, on the
Boxing and FishingDerby environments. We see that NISAC
experiences little to no oscillations in performance even with
continued weight updates.

From the rather uninteresting graphs, shown in Figure 6, we
see that NISAC can converge to and maintain a stable policy

even with continued parameter updates. To overcome the noise
added by the Gumbel distribution requires the network to
output a near one-hot-encoded categorical distribution.

E. Ablations Of Components

In this experiment, we performed ablations of NISAC to
understand the importance of each component and impact
on NISAC’s performance. The results of the ablation are
shown in Figure 5 with the complete NISAC algorithm, that
is all the components that comprised NISAC, in blue and a
stripped version as a red curve. We start with a base version,
essentially the truncated importance sampling algorithm (t-IS)
[11], shown in the left-most panel in Figure 5.

From Table II we see that the base version has a perfor-
mance −39.39% lower than NISAC. The addition of a larger
batchsize, from 16 sampled trajectories, to 64 as shown in
the second panel in Figure 5 causes an increase of +21.30%
over the base version and narrows the difference to NISAC
to −26.49%. Using an aggressive clamp of 4 instead of 10
on the importance sampling ratio ρ̄ improves performance by
an additional +12.33%. Finally, the addition of noise sampled
closes the gap with a final increase of +21.09%. It is clearly
shown that large batchsize and additive noise contribute the
most to the performance increase between stripped versions.

%∆ to NISAC %∆ from last
Base -39.39% N/A

+Large Batchsize -26.49% +21.30%
+Aggressive Clamp -17.43% +12.33%

+Noise 0% +21.09%

Table II: The table provides the percent deltas between either
the stripped version to NISAC or the current model to the last.
We measure the change between the last 100 episodes.

Additionally, while difficult to quantify, we can see from
the plots that the aggressive clamp and additive noise improve
sample efficiency the most. It is clear that all the components,
large batchsize, aggressive clamping, and additive policy space
noise are crucial to NISAC’s aggregate performance.



V. CONCLUSION

In this paper we have introduced Noisy Importance Sam-
pling Actor-Critic (NISAC), a fully off-policy actor-critic al-
gorithm that learns from stored off-policy trajectories. We
have proven, experimentally that NISAC improves upon the
performance and sample efficiency of A2C [9], an on-policy
actor-critic, and truncated importance sampling [11], an off-
policy algorithm. NISAC nears the performance of ACER [19],
a SOTA off-policy actor-critic method, on several environments
while completing a training session in 40% less time and
being significantly easier to implement. We have provided an
analysis on the effect of additive action space noise, identified
the Gumbel distribution as the most performant variant, and
examined where the noisy policy can be used within the
importance sampling weight ρ and policy gradient update.
From our analysis we have shown that additive action space
noise fundamental changes the distribution of importance
sample weights ρ during training. And finally, we have shown
that each component in NISAC contributes to its improved
performance over the baseline methods and even with additive
action space noise the learned policies are stable.

VI. FUTURE WORK

One interesting future work could include finding suitable
distributions to sample noise from that works with continu-
ous actions. We also feel further investigation into possible
annealing schedules for the clamping constant c could yield
interesting results. Finally, if the compute is available, the
evaluation of the full Atari suite across all permutations
discussed would provide additional insight.
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