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Abstract—Currently, the divergence in distributions of design
and operational data, and large computational complexity are
limiting factors in the adoption of CNNs in real-world appli-
cations. For instance, person re-identification systems typically
rely on a distributed set of cameras, where each camera has
different capture conditions. This can translate to a considerable
shift between source (e.g. lab setting) and target (e.g. operational
camera) domains. Given the cost of annotating image data
captured for fine-tuning in each target domain, unsupervised
domain adaptation (UDA) has become a popular approach to
adapt CNNs. Moreover, state-of-the-art deep learning models
that provide a high level of accuracy often rely on architectures
that are too complex for real-time applications. Although several
compression and UDA approaches have recently been proposed
to overcome these limitations, they do not allow optimizing a
CNN to simultaneously address both. In this paper, we propose an
unexplored direction – the joint optimization of CNNs to provide
a compressed model that is adapted to perform well for a given
target domain. In particular, the proposed approach performs
unsupervised knowledge distillation (KD) from a complex teacher
model to a compact student model, by leveraging both source
and target data. It also improves upon existing UDA techniques
by progressively teaching the student about domain-invariant
features, instead of directly adapting a compact model on
target domain data. Our method is compared against state-of-
the-art compression and UDA techniques, using two popular
classification datasets for UDA – Office31 and ImageClef-DA.
In both datasets, results indicate that our method can achieve
the highest level of accuracy while requiring a comparable or
lower time complexity.

Index Terms—Deep Learning, Convolutional Neural Networks,
Domain Adaptation, Knowledge Distillation, Visual Recognition.

I. INTRODUCTION

Deep learning (DL) models, and in particular convolutional
neural networks (CNNs) can achieve state-of-the-art perfor-
mance in a wide range of visual recognition applications, such
as classification, object detection, and semantic segmentation
[1]–[3]. In practice, a main drawback associated with these
models is their scalability and computationally complexity,
which poses a challenge for many real-time applications, as
found in video analytics and surveillance [4].

Currently, the compact DL models that can provide fast
inference generally lack the high accuracy of deeper, more
complex models. One alternative to overcome this issue is

to compress complex high accuracy models into smaller or
simpler models while preserving the same level of accuracy.
Several approaches have recently been proposed to accelerate
and compress CNNs, include quantization, low-rank approx-
imation, knowledge distillation, compact network design and
network pruning. For instance, network compression methods
for channel pruning [5]–[10] and knowledge distillation (KD)
[11]–[14]) have become very popular due to the exponential
increase in the complexity of architectures, which may have
millions of parameters.

Another limitation is the poor generalization of CNNs
across domains, particularly when there is a considerable
domain shift between source and target data distributions. This
is the case for instance of applications like video-surveillance
over a distributed network of camera, where variations in
camera viewpoint and capture conditions (e.g., illumination,
occlusion and background) introduce a shift between data from
source and target domains. The accuracy of CNNs degrades
when there is a considerable divergence between the data
capture conditions in the model development and operational
environments. To alleviate this problem, domain adaptation
techniques are commonly proposed, either in a supervised
or unsupervised setting [15], [16]. For applications in video-
surveillance, it is, however, costly to collect and annotate
videos from each camera viewpoint and capture condition to
fine-tune a CNN.

In this paper, we focus on DL models for unsupervised
domain adaptation (UDA) to allow adapting CNN embed-
dings based on unlabeled data. The main body of literature
on UDA techniques focuses on learning domain invariant
features by using adversarial loss [17], [18] to encourage
domain confusion, or by minimizing a distance or discrepancy
between two the data distributions [19], or both [20]. Another
popular paradigm is to learn a mapping between source and
target images such that images captured in different domains
have a similar appearance. This reconstruction-based approach
mimics standard supervised learning [21], [22].

While compression and UDA techniques can respectively
provide CNNs with a high level of performance and efficiency,
research that explores the benefits of joint model compression
and UDA remains scarce. For example, recent research has

978-1-7281-6926-2/20/$31.00 ©2020 IEEE



combined KD and UDA to improve the performance in a
UDA context [23], [24]. Despite the improvement shown in
terms of the DA task, they neglect the reduction of model
complexity. Another important problem when employing KD
is the potentially large gap between the capacity of teacher and
student models to learn complex mappings, which can degrade
student performance. Distilling knowledge directly into the
student model from a trained teacher model may present some
challenges. For example, in the early stages of training, the
decision boundaries of the student and teacher modes may
differ considerably. To bridge this gap some researchers have
proposed to either add a teaching assistant [14] or distilling
knowledge at several intermediate layers of a CNN [13].

In a standard training scenario, the CNN model would be
adapted to a new target after having been compressed, although
this can reduce its capacity to generalize on target data since
over-parametrization is often important for generalization [25].
This can be overcome by learning from a teacher instead of
learning directly through the UDA loss. In contrast, another
scenario involves adapting a complex CNN model to the target
domain, and then compressing it, although unsupervised KD
remains a challenge since ground truth data is needed to assure
that the student model to remain consistent with the dataset.
To address the aforementioned limitations, we argue that by
adapting the teacher to the target domain while the student
is being trained, the student can adapt progressively to the
domain instead of learning directly from a previously targeted
domain. The student would thereby learn the steps needed to
adapt itself to the target domain, instead of learning directly
from a model adapted to the target, i.e. adapted teacher. By
jointly exploiting unsupervised KD and DA, it is possible to
overcome the lack of ground truth data for KD, as needed to
train the student model that is consistent with source features.

Unlike recent work in literature, this paper provides the
first attempt to simultaneously address two key problems with
CNNs – domain shift and model complexity – through joint
progressive KD and UDA. Particularly, the proposed approach
learns a compact model with a feature embedding that can
provide a high level of accuracy in the target domain. It
leverages progressive KD to adapt the student model in a step-
by-step manner, using knowledge from the teacher to learn
domain invariant features of the source and target domains. In
order to ensure the validity of student model w.r.t the UDA
loss and the target domain, we introduce a consistency loss that
ensures consistency on the student model by learning source
domain features from the teacher. We validate our approach
with different training scenarios of KD and UDA: (1) UDA
then KD, (2) KD then UDA and (3) UDA directly on compact
model. Empirical evaluations show that our joint progressive
KD and UDA approach facilitates domain adaptation and
compression of deep CNNs, and can outperform representative
state-of-the-art approaches on the widely used Office31 and
ImageClef-DA benchmark datasets. In particular, our approach
is general and model-agnostic, and can be combined with
different UDA and KD techniques to improve performance.

II. RELATED WORK

A. Compression techniques:

Approaches for compressing CNNs can be mainly catego-
rized in: (1) pruning techniques [5], [7], [9], [10], [26], (2)
quantization [27]–[29], (3) decomposition [30], [31], and (4)
KD [11]–[14]. Pruning techniques focus on removing non-
useful weights or filters in order to reduce the computational
complexity. Quantization techniques focus on reducing the
representation of weights into lower precision since, for exam-
ple, 8-bit integer precision provides much faster computation
than the floating point computation. Decomposition techniques
provide faster computation by decomposing tensor in lower
rank approximation as vectors products. Lastly, KD techniques
transfer knowledge from a teacher (usually a large model)
to a student (a smaller model). Since we will employ this
technique to reduce the complexity of the model, we will focus
on KD onward. For a comprehensive survey on compression
techniques for CNNs, we refer the reader to [32].

There exist several ways of distilling knowledge from a
teacher to a student. A well-known technique is to employ
the teacher output as the soft label for the student [11]. In this
work [11], the temperature value was employed to generate
softer versions of the teacher outputs. Another popular solution
is to minimize the features differences at intermediate layers
between the teacher and student network in order to maximize
the information transfer between the teacher and the model
[13]. Feature similarity can be enforced by minimizing a
partial L2 distance, which is equivalent to L2 norm except
that if the value of the student is smaller than the teacher and
both are negative then the result is zero, between student and
teacher after using a Margin ReLU (use of a margin m instead
of 0) which can take in negative values of a feature map. To
solve the gap issue between a converged teacher model and a
student some other researchers have proposed the integration
of a teaching assistant [14]. In this work, an intermediate
model with a lesser gap is chosen, this model is then used
as a teacher to a smaller model, by progressively reducing
the gap with an intermediate teaching assistant, thus, limit the
performance degradation of the student model.

B. Unsupervised domain adaptation:

Unsupervised Domain Adaptation (UDA) techniques try
to adapt models when a domain shift between source and
target dataset exists, where only the source data is labeled.
Current main UDA techniques [15] include: finding domain-
invariant features [19], domain mapping [33], [34], ensemble
learning [35], statistic normalization [36] and target discrimi-
nate methods [37]. The first category learns domain invariant
features either by domain confusion [17], [18] or minimizing
a distance between distribution [19]. Domain confusion can be
achieved by employing a domain classifier (or discriminator)
[17], [18]. While [17] employs a gradient reversal layer in
order to maximize the domain classification loss, the work
in [18] uses an adversarial loss on the discriminator. Domain
mapping focuses on finding a mapping either from the source



domain to the target domain or vice-versa [33], [34]. Cur-
rently, most of the domain mapping based techniques rely on
generative adversarial networks (GAN). Hoffman et al. [33]
propose to use a pair of discriminator and generator in order
to map a source image into the target domain distribution.
This mapping is learned at the same time as a task-specific
loss (i.e. classification loss) on both transformed image and
non transformed-images and the overall optimization is done
alternatively between generator and discriminator-task. The
paper in [38] goes further by integrating adaptation at feature-
level. Ensemble methods use either multiple models or the
same model at different times (typically referred to as self-
ensembling) in order to produce more reliable pseudo-labels
on unlabelled data [35]. Others methods like statistic normal-
ization assume that the task knowledge is learned and the only
adaptation needs to be done is on the batch norm statistics [36].
Last, target discriminate methods work with the assumption
that data points are distributed in separate clusters and the
decision boundary lies in lower density regions. Thus, these
methods work by trying to push the decision boundary to lower
density regions by adding adversarial losses [37].

C. Joint unsupervised domain adaptation and knowledge dis-
tillation:

Even though jointly exploiting UDA and KD for compres-
sion and domain shift problems remains unexplored, there
have been few attempts to combine these two techniques
in the context of domain adaptation [39], [40]. In [39],
the authors propose to use multiple teachers for teaching a
single student in order to increase the performance of their
model in the context of sentiment analysis. The work in
[40] proposes to combine KD and DA for the task of white
matter hyperintensities segmentation in magnetic resonance
imaging by training the teacher model on the source and trying
to minimize the cross-entropy loss between the probability
maps of the teacher and the student on the target dataset.
Nevertheless, these approaches do not address the problem
of reducing model complexity. To the best of our knowledge,
there exist only one approach that combines compression and
UDA techniques, referred to as TCP [41]. Interaction between
the two techniques is done in several steps. First, the model
is trained to be adapted to the target domain by minimizing
the domain divergence using the maximum mean discrepancy
(MMD) [19]. Then, the least important filters are pruned by
using a gradient based criterion and the model is continuously
refined on the domain adaptation loss. An important limitation
of this technique is the need to have an already domain adapted
model in order to start the pruning, whereas our technique can
directly start from a non-adapted model.

III. PROPOSED METHOD

The main pipeline of the proposed method is depicted
in Figure 1. Our method performs domain adaptation of a
teacher model by learning domain invariant features between
the source and target domains. Meanwhile, it progressively
distills its knowledge to a student model on both source and

target features. As shown in Figure 1, DA is performed on the
features of the teacher network, while the KD from teacher
to student is performed on the result of a temperature-based
soft-max on the logits (output of a fully connected layer).
Additional details of the proposed UDA and KD techniques
are described in the following subsections.

A. Unsupervised domain adaptation:

We start by defining the UDA loss for teacher model, which
is based on MMD [19], [41]1:

LMMD = || 1
Ns

∑
xi∈DL

s

φT (xi)−
1

Nt

∑
xj∈DU

t

φT (xj)||2H (1)

With DL
s the labeled source domain dataset which contains

Ns samples and labels, DU
t the unlabeled target domain

dataset of Nt data samples, φT the teacher feature extractor
function that maps an input to a feature map, H the Reproduc-
ing Kernel Hilbert Space(RKHS) with gaussian kernel. As in
[19], [41], we incorporate this a supervised loss on the source
domain in order to have the final UDA loss for the teacher:

LTDA = LMMD + γLCE(T (D
L
s , 1), ys) (2)

LCE the supervised cross-entropy loss of the teacher model
on the source domain, γ a trade-off hyper-parameter that
follows the same variations as [41] and T the function that
maps an input to the output of the teacher network with a
soft-max of temperature 1 (i.e. the regular soft-max).

B. Knowledge distillation for domain knowledge transfer:

The next step is to transfer the target domain knowledge
from the teacher to the student, we use a modified version of
the KD loss from the work of Hinton:

LTKD = Ldistill(S(D
U
t , τ), T (D

U
t , τ)) (3)

In this equation, S and T represent respectively the output
of student network and teacher network with a soft-max based
on a temperature τ in order to soften the output and Ldistill

is a KL divergence loss in our case but can be replaced with
a mean squared loss or cross-entropy. This loss differs from
the original paper [11] because, we had to remove the cross-
entropy loss between the student model output and the ground
truth since we are working on UDA. Trivially, this should be
enough for joint KD and UDA since we only want to have
target domain knowledge, in order to ensure the consistency
of the model w.r.t to a common representation, we proposed
to add a consistency loss to ensure that the student model can
learn a better common representation from source and target
domains by distilling on the source data.

LSKD = Ldistill(S(D
L
s , τ), T (D

L
s , τ)) + αLCE(S(D

L
s , 1), ys)

(4)

1Note that it can be generalized to most other UDA techniques.



Fig. 1. Illustration of the proposed learning technique for progressive KD with UDA.

Eq. 4 is the student KD loss, with hyper-parameter α to
balance between the KD and the cross entropy loss of the
output of the student model and the ground truth on the source
domain. The Figure 1 illustrates all these losses and also the
proposed techniques. The final loss of our models, is then:

L = (1− β)LTDA + β(LTKD + LSKD) (5)

We added the β hyper-parameter in order to balance out the
importance between UDA and KD. Since we are performing
jointly KD and DA, in the beginning, the teacher would
still be learning from the DA. This means that there is not
much to be learned for the student model, besides the source
representation which can be learned from the KD loss. In light
of this, we propose to start by giving more importance to UDA
in the beginning and gradually transfer the importance to KD
basing β on an exponential growth function between [b, f ],
with b the starting value of β and f the end value. In order to
define as exponential growth, we need to calculate a growth
rate based on b and f :

g =
log( fb )

epochs
(6)

With epochs the number of epochs and g the growth rate.
Once we have the growth rate, β at epoch t can be found as:

βt = b ∗ egt (7)
The overall algorithm is described in Algorithm 1 using an

alternate optimization scheme of our algorithm. The details of
this implementation can be found in Section IV(C).

IV. EXPERIMENTAL METHODOLOGY

In this section, we detail the experimental methodology
employed to validate the proposed method. First, we describe

Algorithm 1: KD-UDA
input : A teacher model MT , a student model

MS , a source dataset DSup
s , a target

dataset DU
t

output : A target adapted student model
1 for epoch← 1 to epochs do
2 for datas in DL

s and datat DU
t do

3 Obtain the feature map Fs of Mt on datas and
FT on datat using φT

4 Optimize the teacher model MT with
(1− β)LTDA using Fs and Ft

5 Obtain the logits oTs of MT on datas and oTt
of MT on datat

6 Obtain the logits oSs of MS on datas and oSt of
MS on datat

7 Applying soft-max of temperature τ on the
logits and optimize β(LTKD + LSKD)

8 Update β following Eq.7
9 end

10 Evaluate the model
11 end

the datasets and baselines methods. Then, we provide im-
plementation details to facilitate the reproducibility of the
reported results.

A. Datasets:

a) Office31: : This dataset contains three subsets of
dataset which are Webcam (W), DSLR (D) and Amazon (A)
with 31 classes. These subsets contains images from ama-
zon.com (A) or office environment with changes in lighting,



poses using a DSLR camera (D) or a webcam (W). We
evaluate our results based on six scenarios: A −→W , W −→ A,
D −→W , W −→ D, D −→ A, A −→ D.

Fig. 2. Examples of images selected from the Office31 (top) and ImageClef-
DA (bottom) datasets.

b) ImageClef-DA: : This dataset for UDA contains four
subsets which are taken from Imagenet (I), Pascal-Voc (P),
Caltech (C) and Bing (B). Each of these subsets contains a
total of 600 images for 12 classes. For this dataset, we compare
to others techniques using six scenarios: I −→ P , P −→ I ,
I −→ C, C −→ I , C −→ P , P −→ C. For the evaluation of our
algorithm, we chose to use a popular backbone architecture,
ResNet50, with our algorithm.

B. Baselines methods:

In order to validate our joint progressive method, we pro-
pose to evaluate and compare our method with 3 baseline
scenarios:

1) UDA, and then KD,
2) KD, and then UDA, and
3) UDA directly on compact model.

With the first baseline, UDA −→ KD, we start with a model
of ResNet50 for UDA, then we start KD on this model with
a modified version (Eq.3) of [11] since most KD algorithms
does not handle unsupervised KD. The student model used
for this first baseline is similar to the one we chose for our
methods, i.e. ResNet18 and ResNet34. For the second baseline
KD −→ UDA, we start by training a teacher model, ResNet50,
on the source dataset then we apply KD with this teacher
using labeled data of the source dataset and a student of one
of target model, ResNet18 or ResNet34, and we finish with
UDA on this student model. As for the last baseline, we take
a student model, ResNet18 and ResNet34, and directly apply
UDA algorithm on it [19], [41].

Another aspect of our method is knowledge distillation
which is meant for model reduction and acceleration. In order
to validate our findings, we also measure the difference in
terms of FLOPs and parameters between our method and TCP.
Since our models are predetermined architecture, we measure
FLOPS and the number of parameters on ResNet50, ResNet34
and ResNet18, as for TCP, we report the number of FLOPS
that was reported in the original paper.

C. Implementation details:

In this paper, we consider two ways of implementing the
optimization process. The first is an end-to-end training by
optimizing the loss of Eq.5 with a unique single optimizer.
While this approach works and provide reasonable perfor-
mance, we found that having two optimizers allows more
flexibility in terms of scheduling the learning rate since there
is can be a difference between optimizing domain adaptation
and KD, i.e. different learning rates for each loss or we do not
want to update the teacher during KD. Thus, we implement
a second alternative approach where we use one optimizer
for (1− β)LT DA with a different learning rate schedule than
another optimizer used for β(LT KD+LSKD). We would like
to point out that it’s also possible to implement the second
approach with one single optimizer by handling the learning
rate scheduling ourselves. For our experiments on Office31
and ImageClef-DA, we use two student models architecture,
which are: ResNet34 (12% FLOPS reduction from ResNet50)
and ResNet18 (56% FLOPS reduction from ResNet50) which
are closely similar to the FLOPS reduction of TCP [41].

In these experiments, the images are cropped to a fixed
resolution of 224x224. Regarding the hyper-parameters, we
use a starting β value of 0.1 and an end value of 0.9. For
the KD hyper-parameters, we use a temperature τ = 20 and
α = 0.8. Overall, we use a learning rate starting at 0.001 for
UDA optimizer in Office31 and 0.0001 for ImageClef-DA,



TABLE I
ACCURACY OF PROPOSED AND BASELINE METHODS ON OFFICE31 DATASET WHEN RESNET34 IS THE DESIRED MODEL.

Training methods A −→ W W −→ A D −→ W W −→ D D −→ A A −→ D Average
Baseline 1: UDA −→ KD from ResNet50 25.4 7.1 28.5 50.0 9.7 30.7 25.2
Baseline 2: KD −→ UDA from ResNet50 75.7 61.2 97.8 99.7 59.6 81.1 79.1
Baseline 3: UDA only on ResNet34 67.2 52.3 93.6 96.6 52.2 71.6 72.2
TCP: 12% pruned from ResNet50 81.8 55.5 98.2 99.8 50 77.9 77.2
Ours: ResNet34 from ResNet50 85.7 62.3 97.1 100 61.8 82.1 81.5
Ours: ResNet34 from ResNet101 87.5 62.9 98.1 100 60.8 85.7 82.5

TABLE II
ACCURACY OF PROPOSED AND BASELINE METHODS ON OFFICE31 DATASET WHEN RESNET18 IS THE DESIRED MODEL

Training methods A −→ W W −→ A D −→ W W −→ D D −→ A A −→ D Average
Baseline 1: UDA −→ KD from ResNet50 28.8 5.8 33.7 51.1 7.8 25.1 25.3
Baseline 2: KD −→ UDA from ResNet50 69.0 57.3 96.2 100 56.3 73.6 75.4
Baseline 3: UDA only on ResNet18 60.2 49.2 93.7 97.7 47.6 66.4 69.1
TCP: 45% pruned from ResNet50 77.4 46.3 96.3 100 36.1 72.0 71.3
Ours: ResNet18 from ResNet50 78.9 56.8 93.8 100 56.0 81.7 77.8
Ours: ResNet18 from ResNet101 79.2 58.1 94.2 100 57.2 79.9 78.1

0.001 for KD optimizer for both datasets, a momentum of 0.9
and 400 epochs.

Our implementation can be found on-line at: https://github.
com/LIVIAETS/KD UDA

V. RESULTS AND DISCUSSION

A. Results on Office31:

For the Office31 dataset, our results outperform most of the
baseline and the current existing techniques. From Tables I
and II, we see that, the third baseline ”UDA only” performs
better than UDA −→ KD. This can be explained by the fact
that there is no label for target dataset and the distillation loss
alone is not sufficient, as there exist a need for supervising
the cross-entropy loss. The result of the second baseline is
better than the rest of the baselines and TCP, which can be
explained because the student model resulting from KD is
already trained on a labeled source data distribution. Finally,
our techniques using both teacher ResNet50 and ResNet101
perform better than TCP. In both ResNet34 and ResNet18
settings, the difference between the average of our results and
TCP is considerable. This shows that combining UDA and KD
in a progressive setting brings additional benefits. Between
ResNet34 with teacher ResNet50 and ResNet101, there exists
a slight difference. We notice that the student model with a
larger teacher model performs slightly better. This is expected,
since ResNet101 has a better generalization capability than
ResNet50. Lastly, our technique also seems to improve UDA
since our methods perform better than the second baseline,
which only performs UDA on a compact model.

B. Results on ImageClef-DA:

For this dataset, the results obtained by our methods are
shown in Table III and Table IV, which demonstrate that
the proposed technique outperforms both the baselines and

current existing techniques. In contrast, the results obtained
with ResNet34 are closer to TCP and the baseline than in the
previous dataset, whereas our result with ResNet18 shows a
bigger gap between the baselines and the proposed techniques.
This can be first explained by the fact that ImageClef-DA
is a better balanced dataset where each subset has the same
number of samples. Secondly, the third baseline of ”UDA
only on a ResNet18” already performs better than TCP, which
may explain why our methods have a better performance. In
this table, the difference between teacher models is closer,
this shows that a bigger teacher may not help in improving
performance since the learning bottleneck is now on the
student model.

C. Computational Complexity:

Comparison in terms of complexity is depicted in Table V.
While pruned TCP [41] models have fewer parameters than
our student models, we achieve the same number of FLOPS
on ResNet34, and fewer FLOPs on ResNet18. This means
that while TCP prunes more parameters, it may not have a lot
of impact on the number of FLOPS since the pruned filters
are ranked and pruned globally across the network instead
of being pruned at each layer. This also means that TCP
prunes away filters that do not impact the FLOPS, but that can
impact performance, which may hamper the global objective.
Another important point of having more parameters is that,
over-parametrization can help generalization, increasing the
chances of our student model to have a better generalization
than a pruned model with less parameters.

D. Comparison over larger teacher and student:

In this section, we select the scenario of I −→ C and
increase the teacher model to ResNet152. Then, we apply our
algorithm on this model with several student models going



TABLE III
ACCURACY OF PROPOSED AND BASELINE METHODS ON IMAGECLEF-DA DATASET WHEN RESNET34 IS THE DESIRED MODEL

Training methods I −→ P P −→ I I −→ C C −→ I C −→ P P −→ C Average
Baseline 1: UDA −→ KD from ResNet50 48.0 41.0 46.0 39.6 38.8 39.0 42.0
Baseline 2: KD −→ UDA from ResNet50 76.6 87.3 92.0 80.0 65.6 90.3 81.9
Baseline 3: UDA only on ResNet34 73.3 86.3 92.6 79.3 65.8 87.5 80.8
TCP: 12% pruned from ResNet50 75.0 82.6 92.5 80.8 66.2 86.5 80.6
Ours: ResNet34 from ResNet50 75.6 89.0 92.6 83.8 66.5 92.8 83.3
Ours: ResNet34 from ResNet101 75.0 87.6 93.3 83.5 66.6 91.8 83.2

TABLE IV
ACCURACY OF PROPOSED AND BASELINE METHODS ON IMAGECLEF-DA DATASET WHEN RESNET18 IS THE DESIRED MODEL

Training methods I −→ P P −→ I I −→ C C −→ I C −→ P P −→ C Average
Baseline 1: UDA −→ KD from ResNet50 45.1 41.8 42.5 43.1 43.3 34.5 41.7
Baseline 2: KD −→ UDA from ResNet50 72.1 86.3 91.8 74.6 61.8 90.6 79.5
Baseline 3: UDA only on ResNet18 70.6 83.8 86.1 75.3 62.0 89.1 77.8
TCP: 45% pruned from ResNet50 67.8 77.5 88.6 71.6 57.7 79.5 73.7
Ours: ResNet18 from ResNet50 73.1 88.0 92.1 77.3 65.6 91.0 81.1
Ours: ResNet18 from ResNet101 73.5 88.6 92.3 76.8 64.1 91.1 81.0

TABLE V
COMPUTATIONAL COMPLEXITY OF PROPOSED AND TCP NETWORKS.

Models no. operations no. parameters (M)
(GFLOPS) Office31 ImageClef

Teacher/Original: ResNet50 4.1 25.5 25.5
TCP:
- 12% pruned from ResNet50 3.6 15.8 15.9
- 45% pruned from ResNet50 2.2 10.6 10.9
Student: from ResNet50
- ResNet34 3.6 21.7 21.7
- ResNet18 1.8 11.1 11.1

from ResNet18 to Resnet101. We compare the results from
these experiments with our previous ones, along with the result
of performing UDA using only Eq.1.
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Fig. 3. Comparison of different teacher and student models.

From the Fig.3, we see that, having a larger teacher only has

a slight performance increase compared to the smaller teacher.
Furthermore, we also noticed that there is no degradation in
terms of performance when the teacher is ResNet152 and
the student is ResNet18. Finally, having a ResNet50 as a
student model definitely helps increasing the performance,
which makes sense since we are using a much larger model.
Overall, while having a larger teacher does not seem to have
a big impact on accuracy, it can negatively impact the training
time and increases the risk of overfitting.

VI. CONCLUSION

In this paper, we proposed a combination of KD and UDA
that remains unexplored in literature and tackles both the
problem of domain shift and model complexity. Our results
suggest that the proposed method is capable of obtaining a
compressed model adapted to an unsupervised target domain
that performs better than state-of-the-art method and current
baselines. Additionally, our progressive technique is capable
of having a big gap between the student and the teacher
without suffering having a performance degradation on the
student. The proposed technique is generic and should be able
to work with most of current UDA and KD techniques, in
future works, we will evaluate our method on other KD and
UDA techniques.
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