
Deep Reinforcement Learning Control of Hand-Eye
Coordination with a Software Retina

Lewis Campbell Boyd
School of Computer Science

University of Glasgow
Glasgow, United Kingdom

l.boyd@strath.ac.uk

Vanja Popovic
School of Computer Science

University of Glasgow
Glasgow, United Kingdom
vanja.popovic@strath.ac.uk

Jan Paul Siebert
School of Computer Science

University of Glasgow
Glasgow, United Kingdom
Paul.Siebert@glasgow.ac.uk

Abstract—Deep Reinforcement Learning (DRL) has gained
much attention for solving robotic hand-eye coordination tasks
from raw pixel values. Despite promising results, training agents
using images is hardware intensive often requiring millions of
training steps to converge incurring long training times and
increased risk of wear and tear on the robot. To speed up
training, images are often cropped and downscaled resulting
in a smaller field of view and loss of valuable high-frequency
data. In this paper, we propose training the vision system using
supervised learning prior to training robotic actuation using
Deep Deterministic Policy Gradient (DDPG). The vision system
uses a software retina, based on the mammalian retino-cortical
transform, to preprocess full-size images to compress image
data while preserving the full field of view and high-frequency
visual information around the fixation point prior to processing
by a Deep Convolutional Neural Network (DCNN) to extract
visual state information. Using the vision system to preprocess
the environment improves the agent’s sample complexity and
network update speed leading to significantly faster training with
reduced image data loss. Our method is used to train a DRL
system to control a real Baxter robot’s arm, processing full-size
images captured by an in-wrist camera to locate an object on a
table and centre the camera over it by actuating the robot arm.

Index Terms—Software Retina Preprocessor, Reinforcement
Learning, Robotic Vision, CNN

I. INTRODUCTION

Hand-eye coordination is the fundamental skill of combin-
ing visual processing with motor control to manipulate objects.
The recent successes of deep learning have motivated an
increasing interest in developing autonomous robots capable
of more sophisticated behaviours [1], [2]. To facilitate this
ability, it is necessary to have an efficient and reliable hand-
eye coordination system that can carry out basic tasks such
as reaching and grasping. Using DRL to train such systems is
an attractive prospect for its ability to jointly learn the visual
processing and robotic actuation skills from a single reward
function.

In practice, training DRL agents to control robotic systems
using raw pixel data is a challenging problem. Image data is
a high dimensional state space for agents and the inclusion of
convolutional layers further increases the number of param-
eters to learn. Robotic problems tend to involve controlling
large numbers of joints giving a high dimensional continuous
action space [3]. Training DRL agents in complex state and
action spaces with bigger architectures often requires larger

amounts of data, careful reward engineering and multiple train-
ing attempts to achieve agents with reasonable performance
[3], [4].

One approach to easing the difficulty of vision based DRL
tasks is to reduce the state space through cropping and
downscaling the input images [5], [6]. While this can greatly
reduce the state space it comes at the cost of reducing the field
of view and lowering the image quality limiting the potential
information that can be extracted from image processing.
Reducing the size of the visual architecture can ease training
by reducing the number of trainable parameters but also
reduces the potential information that can be extracted from
the images. Even when using images smaller than 100x100
pixels and small network architectures, DRL algorithms can
still require millions of iterations to solve a task sufficiently
[4], [5].

This work proposes training a retina based vision system
to extract state information from the images using supervised
learning as an approach to reducing the difficulty of the
learning problem for DRL. The agent maintains the benefits
of having fewer network parameters in a reduced state space
to train without restricting the field of view, image quality
and vision architecture. A training environment is developed
in Gazebo with the Baxter robot where the goal is to centre
the arm over an object on a table. The software retina is
fixated on the centre of the in-wrist image feed to perform
the retino-cortical transform prior to processing by a DCNN to
predict the object location. Deep Deterministic Policy Gradient
(DDPG) is used to successfully train agents to predict end-
effector position movements which are then carried out using
Inverse Kinematics (IK). Agents are trained using different
vision systems to evaluate the effect on training using the
predicted object location compared to feature vectors of differ-
ent sizes obtained by removing the prediction layers from the
DCNNs. All agents learn quickly to solve the task and when
demonstrated on a real Baxter robot the system generalised to
centre over novel objects placed on the table.

II. BACKGROUND

A. Software Retina

Balasuriya [7] proposed a compressed representation for im-
ages inspired by the mammalian vision system. The retina is a

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

layer of different nerve cells at the back of the eye which turns
light into neural impulses before sending them to the brain.
Photoreceptor cells sample the retinal image most densely
in the fovea of the eye, located around the fixation point,
and are increasingly sparsely sample towards the periphery.
Ganglion cells are connected to the photoreceptor cells to
combine their responses to provide data compression. In the
fovea they have a very small receptive field, sometimes only
connecting to one photoreceptor, whilst they are increasingly
larger towards the periphery of the visual field. This creates a
blurring effect whereby visual information is preserved at the
fixation point and image information towards the periphery
becomes progressively more blurred. Balasuirya used self-
similar neural networks to develop artificial retina tessellations
overlayed with Gaussian receptive fields to replicate this effect
[7], [8]. Figure 1 shows a 256 node tessellation, this paper uses
a high-resolution 50k node tessellation.

Fig. 1. 256 node tessellation with Gaussian receptive fields. Source: Bala-
suriya (2006)

Ozimek [8] extended Balasuriya’s work by interpolating a
cortical image from retinal samples and this image can be
processed directly using conventional CNNs. The effect of
the retina-cortex transform is to magnify the fovea within
the cortical image whilst the periphery is progressively com-
pressed with visual eccentricity from the optical axis. This
sampling is manifest as a ”zoom effect’ enabling fine hand-
eye coordination skills such as threading a needle, whilst also
maintaining the full field of view [9]. Using cortical images
for training CNNs provides shorter training times due to the
increased image compression whilst also providing a degree
of scale and rotation invariance because the cortical space is
similar to the log-polar space [8], [9] where effect of input
image scale and rotation is quasi orthogonalised in the cortical
image axes. Figure 2 shows a starting image, a visualisation of
the retinal blurring and the cortical image. Balog [10] further
extended the software retina by implementing the retina-cortex
transform on the Graphics Processing Unit (GPU) achieving

a real-time performance of 15 frames per second when using
an Nvidia GTX 1080 Ti.

Fig. 2. The stages of the software retina from right to left. Image C shows
the retina fixated on the centre, B is the backprojected retinal image and A
is the cortical image. Source: Ozimek et al. (2019)

B. Deep Reinforcement Learning Hand-Eye Coordination

Using DRL to train general robotic grasping behaviours
using image input has had many successes [1], [11]. Levine
et al. [2], proposed training a DCNN on a large dataset
of images and motor commands, consisting of 800k grasp
attempts gathered over the course of 2 months, to predict their
chance of grasp success then used the Cross-Entropy Method
(CEM) to learn the optimal motor commands. Kalashnikov et
al. [1], proposed the Qt-Opt algorithm which leveraged off-
policy learning from real robot grasp attempts to train a large
Q-network using 472x472 pixel images and CEM optimisation
to find the action with the best Q-value. Their method achieves
a 96% grasp success rate on unseen objects and performed
sophisticated behaviours such as repositioning objects prior to
grasping and regrasping. However, to gather the data took 800k
robot hours and to train a sufficient Q-function took 5M-15M
steps with further finetuning afterwards using a mix of off-
policy and on-policy grasp attempts. The Q-network had 1.2M
parameters which is considerable for a DRL problem but very
small in comparison to architectures like ResNet trained solve
challenging image dataset like ImageNet using supervised
learning, which can have tens of millions of parameters [12].
Pore et al. [13] proposed improving the sample complexity
of DRL by adopting a behavioural approach to grasping
in the OpenAI FetchPickandPlace environment. Behaviour
cloning was used to train three basic behaviours using expert
demonstration: approach, grasp and retract, then DRL was
used to train an LSTM to choreograph the behaviours deciding
when they should run to successfully grasp a cube. To train
the low-level behaviours and choreographer took under 9K
episodes using kinematic and location data from the environ-
ment to reach 100% success rate compared to 95K for end-to-
end learning using DDPG with Hindsight Experience Replay
(HER). Our work is most closely related to the behaviour-
based approach adopted by Pore [13] but with a retina vision
system and a focus on training an approach like behaviour
using DRL instead of behaviour cloning.

III. METHODOLOGY

A. Simulator Details

The Baxter robot was modelled inside Gazebo, a powerful
3D robotic simulator, with a blue cube on a table used as the
target for the agent to centre on. Using a simulator made it
possible to automate spawning the cube in random locations to
create a more challenging learning environment and allowed
safety checks to be turned off and joints to be moved at
maximum speed without there being any risk of damage to the
robot or anyone in the proximity of the robot. Accordingly,
joint moves could be calculated and executed faster, both
leading to shorter training times.

Fig. 3. Image of the simulated environment in Gazebo.

The goal in the environment is to move the Baxter robot’s
arm so that the object sits within the centre of the field of view
of its in-wrist camera. Since the software retina will be used,
this is somewhat equivalent to the mammalian eye fixating
its fovea onto the object to extract its high-frequency visual
information. Neurobiology suggests that when performing
hand-eye coordination tasks, a human initially fixates on key
locations before carrying out motor control [14]. To this end,
the approach agent serves as a precursor to carrying out more
complex manipulation tasks.

Our reward function comprises a negative value representing
the distance of the object from the centre of the camera. The
further away an object is from the visual field centre, the larger
the negative reward. This encourages the agent to centre on the
object as quickly as possible so as to accrue the least amount
of negative reward. An episode reward of 0 would mean that
the agent centred on the object perfectly in a single movement.
The arm’s endpoint is kept at a fixed rotation and depth as it
would only become necessary to change these values were we
attempting to manipulate the cube, which is not within the
scope of this project. The inverse kinematics service supplied
with Baxter was used so that the agent did not need to learn

how to manipulate the joints directly. Instead, the agent had
2 actions which increased or decreased the x and y endpoint
coordinates.

The maximum distance that the x and y end effector could
move in a single action was limited 0.26 and 0.4 metres
respectively as this is just large enough value to centre on
any object in the field of view in a single action. The position
of the end effector was clamped to be no more than 0.26
or 0.4 metres in the x or y distance from the object and
thereby prevent the object being lost from sight during an
episode. Originally, a larger negative reward was returned to
discourage the agent from losing sight, but this was found to
be very difficult to tune because too large a value seemed to
destabilise the Q estimates, preventing learning. On the other
hand, an insufficiently low reward made losing sight of the
object too rewarding compared to exploring the environment
and amassing negative rewards.

The environment and system state observations consist of
the latest image taken by the in-wrist camera as well as
the current x and y coordinates of wrist’s endpoint. It was
necessary to include the x and y coordinates so that the agent
could learn the extent of its reachable area. Without this step,
the agent would not be able to know whether an action could
be executed or not and therefore could not predict reward
values, which would preventing the critic from learning. The
joint execution speed was set to the maximum possible values
to maximise the rate at which actions could be executed.
Unfortunately, this also introduced a noise component into
the observations as the arm moved so quickly the wrist would
exhibit under-damped residual oscillation after each movement
was completed.

B. Vision System Details

The software retina is used to compress the full-size images
from the in-wrist camera into smaller cortical images while
maintaining high-frequency data at the centre of the camera.
Two different DCNNs were implemented and investigated
based on the successful ResNet architecture dubbed ResNet64,
shown in table I, and ResNet128, shown in table II as they
output 64 and 128 dimensional feature vectors respectively.
Each architecture uses 5 convolutional layers with batch nor-
malisation between each layer and global average pooling after
the final layer. Batch normalisation is standard practice when
training DCNNs and has been proven to improve performance
and speed up training [15]. Two residual skip connections are
used, one from before conv2 1 to after conv2 2 and one from
before conv3 1 to after conv3 2 making conv2 and conv3
residual blocks. This provides many benefits including easier
propagation of gradients to earlier layers, feature reuse from
earlier layers and supports modelling of recurrent processes
[12], [16]–[18].

To train the ResNet64 and ResNet128 architecture, the
SGD optimisation algorithm with momentum was used. SGD
with momentum was chosen over Adam because it tends to
generalise better resulting in lower validation loss at the cost
of a higher training loss and was used to successfully train

TABLE I
RESNET ARCHITECTURE WITH A 64 DIMENSION FEATURE VECTOR AND

155K PARAMETERS. REFERRED TO AS RESNET64.

Layer Kernel Stride Filters Output
Conv1 3x3 1 64 328x127x64

Conv2 1 3x3 1 64 328x127x64
Conv2 2 3x3 1 64 328x127x64
Conv3 1 3x3 2 64 164x64x64
Conv3 2 3x3 1 64 164x64x64
Avg Pool - - - 64

Fc - - - 2

TABLE II
RESNET ARCHITECTURE WITH A 128 DIMENSION FEATURE VECTOR AND

174K PARAMETERS. REFERRED TO AS RESNET128.

Layer Kernel Stride Filters Output
Conv1 3x3 1 18 328x127x18

Conv2 1 3x3 1 18 328x127x18
Conv2 2 3x3 1 18 328x127x18
Conv3 1 3x3 2 128 164x64x128
Conv3 2 3x3 1 128 164x64x128
Avg Pool - - - 128

Fc - - - 2

ResNet to achieve state of the art results on the ImageNet
dataset [12], [16]–[18]. The learning rate starts at 0.01, then
decays by a factor of 10 when the validation loss has improved
for 10 epochs. A momentum of 0.9 was used and a weight
decay of 0.00001 was included to help regularise the network
following hyperparameters used for the ImageNet results [16].
Unfortunately, it was necessary to downscale the cortical
images by 30% to allow for a reasonable batch size of 32
to be loaded into GPU memory. This is still quite a small
batch size, compared to 512 used in the original ResNet paper
[16], when using batch normalisation so it is likely that it
introduced some noise into training.

Figure 4 shows the results of training the two different
architectures on a 100k dataset gathered through random noise
exploration. There were some unexplained fluctuations of the
validation loss but they settled down after 30 epochs and both
networks converged to very low loss values, with ResNet64
converging to a slightly lower loss.

C. Agent Details

The experimental details mostly follow those used by He et
al. [4] due to its reported ability for effective learning in com-
plex environments. Table III and table IV shows the network
architectures used for the actor and critic respectively. The
state was standardised before being processed by the network
by maintaining a rolling estimate of the mean and standard
deviation of each state dimension to assist learning [4]. The
Adam optimisation algorithm was used with a learning rate
of 0.0001 and 0.001 for the actor and critic respectively with
an L2 decay of 0.01. A value of 0.001 was used for the soft
network updates and the discount factor was set at 0.99 [4].
Additive action noise drawn from a normal distribution with
a mean of 0 and a standard deviation of 0.2 was used to

Fig. 4. Results of training the two different architectures from table I and
table II using a dataset of cortical images from the Gazebo environment. 20k
of the 100k labelled cortical images are reserved for testing.

encourage exploration. Over the first three-quarters of training,
the noise was multiplied by a parameter starting at 1.0 to
reducing to 0.02 to balance exploration with exploitation of
the policy. Prior to training, 2k steps of random exploration
using actions drawn from the noise function was carried to
out to preprepopulate the experience replay [6]. To evaluate
training progress, periodically 20 episodes were run without
noise then the total episode rewards were averaged.

TABLE III
ACTOR ARCHITECTURE.

Layer Input Activation Output
Fc1 State Relu 400

Layer Normalisation 400 - 400
Fc2 400 Relu 300

Layer Normalisation 300 - 300
Actor Output 300 Tanh Action

TABLE IV
CRITIC ARCHITECTURE.

Layer Input Activation Output
Fc1 State Relu 400

Layer Normalisation 400 - 400
Fc2 400 + Action Relu 300

Layer Normalisation 300 - 300
Actor Output 300 Linear 1

IV. EVALUATION

A. Training on Environment Dynamics

To validate the simulated environment design and to provide
a baseline performance measure, a DDPG agent was trained
using the cube’s centre location identified by colour threshold-
ing. Figure 5 shows that the agent initially learns very quickly

to roughly centre on the object. After the initial spike, the agent
slowly optimises its performance to centre on the object more
accurately in fewer moves. After training for 100k timesteps,
taking roughly 24 hours, the agent is able to centre accurately
in one or two actions. If the cube is initially distant from the
view-field centre, the agent takes a large action which roughly
centres on the cube. A smaller action is then estimated and
executed to refine the camera position with respect to the cube
centre. It was observed that the agent continued to issue very
small actions to try centre with increasing accuracy. However,
these residual positional refinements could not be executed
as the joints have an accuracy tolerance which prevents any
update to their angles below this tolerance limit.

Fig. 5. Training performance using low state descriptor. Each timestep
corresponds to carrying out one gripper move and subsequent network update.

B. Running Agent using Retina ResNet instead of Dynamics

In this project, the two ResNets that have been trained pre-
dict the dynamics of the environment with very high accuracy.
This is less likely to be true in more realistic environments
because they are much more complex containing many objects
which may have never been seen in training as well as various
sources of noise. Rather than train the DDPG agent on top of
an imperfect vision system this method instead proposes that
the agent is trained with perfect information, i.e., how the low
state agent was trained. This allows the agent to understand in
optimum circumstances how the information should be utilised
to perform the task without incorrect information corrupting
the agents understanding of the dynamics of the problem. This
provides a clear separation of the two principal learnt tasks:
how to use the visual information to perform the task and
how to extract accurate estimates of the visual information. If
a new vision system is developed which is more accurate then
it can be integrated with the agent providing a performance
improvement without the need to retrain the agent completely.
If the agent was trained using imperfect information then it
is not guaranteed that more accurate estimates would be of

benefit, because the agent may have internalised a degree of
noise into the policy.

To evaluate how effective the agent is when using the
ResNet to predict the centre location instead of colour thresh-
olding, the agent’s performance was evaluated over 100
episodes of 5 timesteps in length. Table V shows that using the
ResNet with the software retina incurs a slight performance
hit but from inspection, this is due to the agent sometimes
requiring an extra move instead of it being less accurate. It is
suspected this is due to some of the predictions by the ResNet
being slightly inaccurate in some specific circumstances. Fig-
ure 7 shows the predicted location using the cortical image in
figure 6 is slightly too close to the centre of the camera because
part of the cube is not visible in the cortical image, seen in
figure 7. To compensate for the inaccuracies of the initial
prediction, after the cube has moved closer to the retina’s
fovea generating a more accurate prediction the agent takes
additional actions to better centre on the cube. This results
in a slightly lower episode reward but that is inconsequential
because the agent still achieves the goal of accurately centre
on the object by utilising the software retina.

TABLE V
MEAN AND STANDARD DEVIATION OF THE EPISODE REWARDS OBTAINED

BY AGENT USING THE ENVIRONMENT DYNAMICS COMPARED TO USING
THE DYNAMICS AS PREDICTED BY THE VISION SYSTEM.

State Vector Performance (Avg. Reward)
Dynamics -0.163 ± 0.062
ResNet64 with Retina -0.200 ± 0.074

Fig. 6. Cortical image generated by software retina using image from the
in-wrist camera.

C. Training Agent using Retina Features

Having successfully trained the two ResNet architectures
using the software retina, this section explores how well the
DDPG agents can learn using the image features. Two different
agents were trained by using the 64 and 128 dimensional
features vectors produced by the ResNet’s when their final
fully connected layer was removed. The experimental details
are the same as the previous DDPG experiments except it
was decided that only the x and y endpoint location of
the arm should be standardised using a rolling mean and
standard deviation. This is due to the fact that the image

Fig. 7. Location predicted using cortical image in figure 6. Slightly underes-
timates vertical distance from the centre of the fovea.

features were batch normalised before being processed by the
global averaging layer so the activations have already been
normalised. To ensure that the training results are fair, all
seeds for the random generators were set to the same value
so that exploration noise, cube spawning locations and weight
initialisation were the same for each agent.

This is a much more challenging environment for the agent
to learn because its state dimension is much larger, increasing
from 4 to 66 and 130 respectively. Instead of being given the
exact central location of the object, the agent is given visual
features which it must use to develop its own understanding of
where the object is located and how that is affected by different
actions. Figure 8 shows the relative training performance of the
DDPG agents using the ResNet64 state, ResNet128 state and
low state. Although the low state agent begins consistently out-
performing the other agents after 50k timesteps, the difference
is very small and both the ResNet64 and ResNet128 agents
also learn successful policies. It was suspected that using a
much larger state dimension would take longer for the agent
to learn but, in practice, these results show little difference
between the ResNet64 and ResNet128 agents.

It would have been interesting to have run the training for
longer as it appears that all three agents are still learning by
100k timesteps but unfortunately there was not enough time
available. However, the goal of this experiment was not to
compare the final performance of the agents but to investigate
a different method of integrating DCNNs and the software
retina with DRL without greatly increasing sample complexity.
To that end, these results show that agents can learn using
the larger feature vectors extracted by a retina vision system
trained on a task related dataset without greatly impacting
training performance. To the best of the authors’ knowledge,
this is the first example of a DRL agent trained using image
features extracted from images in a cortical space. Another
important factor to note is that despite the use of a DCNN,
large images and the software retina the training time was
only increased by a couple hours compared to training the
agent using the environment dynamics. Environment images
are processed by the vision system whereupon only the state is
stored in the agent’s experience replay, greatly increasing the
speed of off-policy sampling compared to end-to-end learning
and compensating for the increased processing time of vision

Fig. 8. Average episode reward during training using ResNet architectures in
table I and table II without fully connected layer. Results training using low
state used as baseline. Each timestep corresponds to carrying out one joint
move and subsequent network update.

system.

D. Training using Dynamics or Image Features

Choosing whether to train the agent using the dynamics as
predicted by the retina vision system or the image features is
a question of trade-offs. When using the dynamics, the system
is more accountable when a mistake is made in comparison
to using image features. It can be clearly seen whether the
issue was due to the vision system making a mistake resulting
in incorrect information being used by the agent or whether
the information was correct but the agent misunderstood how
to use it. This could be very important in applications such
as self-driving cars where there is a need for accountability
because the costs of a mistake could be dire, i.e., a car crash.
In addition, it may be undesirable to retrain the entire driving
agent every time a better vision system is developed which
would be required when using image features since a new
vision system would be equipped with new features.

However, using dynamics is restrictive and may not always
be applicable to the problem at hand. Perhaps there is informa-
tion not included in the dynamics which is beneficial or vital to
the agent’s performance. By training using the image features
the agent may be able to extract this information itself or learn
an entirely different understanding of the environment which
is better than the dynamics. In certain tasks, the dynamics may
not be known, or it may be too difficult to gather a dataset for
training a DCNN to predict it. In this case, there may be no
other option than giving the agent access to the visual features
and allowing it to figure it out itself. If some information is
known to be helpful in solving part of the problem, a mix of
dynamics and image features could be used to give the agent
some prior higher-level knowledge to assist learning whilst the
image features can be used to learn new information.

V. DEMONSTRATION ON THE REAL ROBOT

To transfer the vision system from simulation to the real
world, attempts were made to freeze initial convolution layers
to fine-tune the final connected layers. Here we discovered that
because of the extreme difference in pictures, passing only
a small amount of real-world data in the previously trained
network, resulted in severe over-fitting. To address this, we
increased the number of real-world images collected from
3200 to 30000, and employed only a slice of the images used
to train in simulation. There is a visible similarity between
the real-world training and training via the simulator, with
fluctuations believed to be caused by the reality gap of the
two worlds. However, with the added real-world dataset, the
transfer succeeded in minimal time.

For the actuator part, it was perceived that due to the expo-
nential growth in environment complexity between simulation
and reality, the training time increased dramatically. Having
such a long training time was deemed to be infeasible due to
time limitations of the project. To combat this, the weights
learned in the simulation were used as a starting point for
the experimentation case. It was found out that these weights,
although they provided a boost during training - by focusing
in close proximity of the object - they were not optimal in
the real world scenario, because of the differences in the two
environments. Therefore, training was re-run to fine-tune the
weights using one object location and subsequently, trained
again using multiple cube locations. This has split the training
into three phases, with each phase taking 13-24 hours to
run. The resulting performance was slightly lower than the
results in the simulation. The average reward during the final
evaluation was -1.1 ± 1.34. In training, the rewards gained
during the first 20000 time steps are fluctuating, but that can
be justified as accustomization to the new environment. After
20000 time steps, the agent acting on the real-world shows
similar results to the simulation, albeit with a moderately
smaller reward gain.

Despite training the agent using a cube as an object,
while allowing the vision system to use the full RGB colour
space, the agent has shown interesting behaviours, such as
generalising to follow any object. The agent experiences some
confusion when presented with two objects, centring roughly
in the middle of the two objects. The agent also exhibits object
tracking capabilities, but is bottle-necked ed by the visual
component, as it takes around one second for the image to
be processed by the CNN.

VI. FUTURE WORK

A. Transfer Learning

The datasets used in this project were simple and geared
towards the specific environments making the image features
learned by the DCNNs more specialised. A more challenging
problem would be training using large and more diverse
datasets designed for different problems, e.g., motion and
depth perception, object localisation etc. This would result in
a more general and robust set of features giving the agent a

more informative observation of its environment. This may
allow the agent to learn how to solve many different problems
using the same vision system removing the need for gathering
a specialised dataset. This would be particularly beneficial for
problems when the dynamics needed to solve the problem are
unknown or too hard to train a DCNN to predict.

An issue of using transfer learning is that the powerful
DCNNs that obtain state of the art results on large datasets
often have very large feature vectors ranging from 512 to 2014
dimensions and higher [12], [16], [17]. This creates a much
larger state space which significantly increases the complexity
of the learning task. Although in this project using a feature
vector of size 128 instead of 64 did not appear to have a large
effect on training, this may be due to the feature vector being
specialised towards the environment and a larger state space
with more task-irrelevant information may degrade sample
complexity and training time. State representation learning
may be a promising approach for compressing the large state
space to a smaller and more task-relevant representation before
training the DRL agent [19].

B. Add Residual Block to Agent

In addition to removing the final fully connected layer, the
global averaging layer could also be removed giving the agent
access to the feature maps. Whilst the pooling layer is useful
for culling down the state dimension that the agent needs to
learn it may also lose important visual information that would
be beneficial to training and the agent’s final performance.
Adding a residual block to the start of the agent would allow
the agent to utilise the full visual information whilst also
allowing it to learn higher-level features specific to its current
environment. The use of a residual skip connection could allow
the agent to decide to what extent it employs the use of the
convolutional layers instead of reusing the features [18]. This
would greatly increase the state dimension but since DCNNs
typically extract more abstract information in later layers and
have smaller feature maps, the training task may be easier than
using raw pixel values.

VII. CONCLUSIONS

This paper investigated the difficulties of training the vision
system and robotic actuation using end-to-end DRL. It was
found that while agents have been successfully trained using
larger networks and images, the poor sample complexity
of DRL and hardware requirements of doing so limits its
applicability [1]. Instead of using image downscaling and
smaller DCNNs to ease training difficulty [4], [5], supervised
learning was used to train a retina vision system to extract state
information from the environment before training using DRL
and was found to greatly improve the sample complexity and
off-policy sampling speed of DDPG. A hand-eye coordination
system was developed on a real Baxter robot which could
track any object placed on the table and within the field of
view of the in-wrist camera despite only training using cubes
highlighting the potential for generalising robotic behaviours
by developing general computer vision systems. To the best

of this authors knowledge, this is the first example of training
a DRL agent on top of a retinal vision system.

REFERENCES

[1] D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang,
D. Quillen, E. Holly, M. Kalakrishnan, V. Vanhoucke, and S. Levine,
“Qt-opt: Scalable deep reinforcement learning for vision-based robotic
manipulation,” CoRR, vol. abs/1806.10293, 2018. [Online]. Available:
http://arxiv.org/abs/1806.10293

[2] S. Levine, P. Pastor, A. Krizhevsky, and D. Quillen, “Learning hand-eye
coordination for robotic grasping with deep learning and large-scale
data collection,” CoRR, vol. abs/1603.02199, 2016. [Online]. Available:
http://arxiv.org/abs/1603.02199

[3] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in
robotics: A survey,” The International Journal of Robotics Research,
vol. 32, no. 11, pp. 1238–1274, 2013.

[4] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” CoRR, vol. abs/1509.02971, 2016.

[5] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing atari with deep reinforcement learn-
ing.” CoRR, vol. abs/1312.5602, 2013.

[6] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through
deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533,
Feb. 2015. [Online]. Available: http://dx.doi.org/10.1038/nature14236

[7] S. L. Balasuriya, “A computational model of space-variant vision based
on a self-organised artificial retina tessellation,” Ph.D. dissertation,
University of Glasgow, 2006.

[8] P. Ozimek, “Integrating a biologically inspired software retina with
convolutional neural networks,” Master’s thesis, University of Glasgow,
2017.

[9] P. Ozimek, N. Hristozova, L. Balog, and J. P. Siebert, “A space-variant
visual pathway model for data efficient deep learning,” Frontiers
in Cellular Neuroscience, vol. 13, p. 36, 2019. [Online]. Available:
https://www.frontiersin.org/article/10.3389/fncel.2019.00036

[10] L. Balog, “A gpu accelerated software retina,” Master’s thesis, University
of Glasgow, 2017.

[11] I. Popov, N. Heess, T. P. Lillicrap, R. Hafner, G. Barth-
Maron, M. Vecerik, T. Lampe, Y. Tassa, T. Erez, and M. A.
Riedmiller, “Data-efficient deep reinforcement learning for dexterous
manipulation,” CoRR, vol. abs/1704.03073, 2017. [Online]. Available:
http://arxiv.org/abs/1704.03073

[12] S. Zagoruyko and N. Komodakis, “Wide residual net-
works,” CoRR, vol. abs/1605.07146, 2016. [Online]. Available:
http://arxiv.org/abs/1605.07146

[13] A. Pore and G. Aragon-Camarasa, “On simple reactive neural networks
for behaviour-based reinforcement learning,” in In: International Con-
ference on Robotics and Automation (ICRA 2020), 2020.

[14] R. S. Johansson, G. Westling, A. Bäckström, and J. R.
Flanagan, “Eye–hand coordination in object manipulation,” Journal
of Neuroscience, vol. 21, no. 17, pp. 6917–6932, 2001. [Online].
Available: http://www.jneurosci.org/content/21/17/6917

[15] S. Ioffe and C. Szegedy, “Batch normalization: Accelerat-
ing deep network training by reducing internal covariate
shift,” CoRR, vol. abs/1502.03167, 2015. [Online]. Available:
http://arxiv.org/abs/1502.03167

[16] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” CoRR, vol. abs/1512.03385, 2015.

[17] K. Zhang, M. Sun, T. X. Han, X. Yuan, L. Guo, and T. Liu,
“Residual networks of residual networks: Multilevel residual
networks,” CoRR, vol. abs/1608.02908, 2016. [Online]. Available:
http://arxiv.org/abs/1608.02908

[18] K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in
deep residual networks,” CoRR, vol. abs/1603.05027, 2016. [Online].
Available: http://arxiv.org/abs/1603.05027

[19] T. Lesort, N. D. Rodrı́guez, J. Goudou, and D. Filliat, “State represen-
tation learning for control: An overview,” CoRR, vol. abs/1802.04181,
2018. [Online]. Available: http://arxiv.org/abs/1802.04181

