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Abstract—Traditional one class support tensor machine (OC-
STM) is a popular classifier that is widely adopted for one
class classification, however, outliers in the data negatively affects
its performance. To improve the robustness of OCSTM against
outliers, in this paper, we present OCSTM with bounded loss
function rather than finding optimized support vectors with
unbounded loss function. To solve the corresponding optimization
problem, we have presented half quadratic optimization to drive
the problem to traditional OCSTM, followed by solving a typical
OCSTM optimization problem iteratively. We further demon-
strate our algorithms through experiments on eight real-world
benchmark datasets. Experimental results show that the proposed
approach separates well most of the samples of interested class
from origin even in the presence of outliers.

Index Terms—Support Tensor Machine, Bounded hinge loss,
Outliers, STM, OCSTM, One-Class

I. INTRODUCTION

Rare and inconsistent patterns in data that do not conform
to expected behavior are known as anomalies. Anomaly
detection is an interesting area of data mining and machine
learning where the main task is to identify these instances
and reduce their deleterious effect on data interpretation
tasks. It has been shown that classification of data consisting
of outliers most likely results in incorrect categorization [14].
Anomalies or outliers are rarely occurring events, however,
their affect can be significant, i.e. anomalous credit card
transactions can indicate stolen credit card or unusual traffic
pattern in network may show unauthorized access to network
respectively. Anomaly detection has been widely applied in
several application domains such as healthcare [29], fault
diagnosis [9], [38] intrusion detection [16], [21], industrial
damage [20], fraud detection [18], robot behavior [26], sensor
networks [32] and astronomical data [31]. Synonymously,
it has been termed as anomaly detection, novelty detection,
deviation detection, and exception mining.

Traditional one class support vector machine (OCSVM) is
widely adopted in one class classification, however, results
show that one-class support tensor machine (OCSTM)
is negatively influenced by the outliers. To improve the
robustness of (OCSVM), many variants have been proposed.
These variants can be categorized into two groups, weighting
samples and improving the loss function. In the first approach,
each sample is assigned a weight that indicates the importance

of that sample within the training dataset. Thus, outliers
are assigned smaller weights in comparison to reduce their
influence [3]. Distance to the center of the samples [37],
adaptive weight strategy based on the range of distance
[36], weight based on KNN [40] have been used to assign a
weight to each sample. In the second category, the focus is
on improving the hinge loss function limit the loss due to the
outliers. Xiao et al. utilized a non-convex ramp loss function
into OCSVM optimization to reduce the effect of outliers [33].
Similar to [33], Yingjie et.al. presented a robust and sparse
anomaly detection approach by replacing the hinge loss with
non-convex ramp loss function to make a robust and sparse
semi-supervised algorithm and used the concave-convex
procedure to solve the model that is a non-differentiable
non-convex optimization problem [30]. Recently, to improve
the robustness of traditional OCSVM against outliers, Xing
et.al. replaced the hinge loss with rescaled hinge loss function
[34]. Experimental results showed that these methods can
effectively decrease the impact of outliers to some extent,
however, they are computationally complex.

OCSVM has proven to be an effective classifier for
unsupervised anomaly detection. However, the classical
anomaly detection methods such as OCSVM or Kernel
Density Estimation often fail for high-dimensional data. For
example, the data has to be reshaped into vectors which could
in-turn destroy the structural information embedded within. A
tensor can preserve the high order correlation among modes
of the data. The utilization of structural information of the
original features are very important for anomaly detection of
high dimensional data where strong correlation exits between
data points [25]. Furthermore, tensor to vector representation
also results in the curse of dimensionality. An alternative is
the OCSTM. Since the parameters to be solved in tensor
based methods are far less than those in vector-based methods,
thus, OCSTM is especially suitable for small sample size
problems. Experiment results have shown that the accuracy
of OCSTM is superior to that of the traditional OCSVM.
However, OCSTM is still sensitive to outliers and impractical
for large datasets.

To improve the robustness of OCSTM against outliers
and computational efficiency, recently, many researchers
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TABLE I
NOTATIONS AND THEIR DESCRIPTION

Symbols Description
x Lowercase letter represents a scalar
x Boldface lowercase letter represents a vector
X Boldface uppercase letter represents a matrix
X Calligraphic letter represents a tensor
R Rank of tensor
yi yi ∈ {1,−1} are the corresponding class labels
[1 :M ] Set of integers in the range of 1 to M inclusively
vec(·) Denotes the column stacking operation
〈·, ·〉 Denotes the inner product of tensors
⊗ Denotes product of tensors
δ Denotes delta function
K(·, ·) Denotes kernel function

have focused on the improvement of the loss function and
kernel methods respectively. He et al. presented a structure-
preserving kernel for nonlinear tensor learning by deriving the
kernel based on structure-preserving feature mapping [15].
Erfani et al presented a randomized kernel support tensor
machine based on nonlinear randomized projection, however,
it is sensitive to outliers [11]. Anaissi et al. presented sparse
and smooth representations by replacing with `1 regularized
tensor decomposition to overcome the sensitivity of OCSTM
against outliers [1]. Yanyan et al. developed Linear Support
Tensor Domain Description (LSTDD) based on a linear
tensor-based algorithm to find a closed hypersphere with the
minimal volume in the tensor space [8]. Traditional support
tensor machine is not robust to outliers as unboundedness of
the loss function results in larger loss due to outliers and the
decision boundary may deviate from the optimal hyperplane
[22], [24]. Several non-convex and bounded loss functions
have been presented to substitute the hinge loss function
in order to suppress the effect of outliers and improve the
robustness for support vector machines. It is well known
that methods based on tensors are better in term of both
computational complexity as well as accuracy [7], [11], [23].
However, according to our knowledge, no work has been
done so for on the improvement of one-class tensor machines
[23]. Extensive experimental analysis shows that proposed
bounded one-class support tensor machines considerably
improves the robustness against outliers and significantly
reduces the computational complexity as compared to state
of the art anomaly detection methods.

The key contributions of this work are:

• We present novel support tensor machines with bounded
hinge loss which is monotonic, bounded and non-convex,
thus robust to outliers by limiting the loss due to outliers.

• To solve the non-convex objective function, we devised an
iterative approach using the half quadratic optimization.

• Extensive experimental analysis on ten real-time datasets
evident of substantial improvement in anomaly detection.

• We provide theoretical analysis and analyze the robust-
ness of OCSTM-BH against outliers.

II. ONE-CLASS STM WITH BOUNDED HINGE LOSS

While a one-class support tensor machine has been proven
an effective approach for anomaly detection, their ability to
model large corrupted datasets is limited as the traditional
loss function is unbounded which results in larger loss caused
by outliers. Thus is not able to efficiently identify anomalies.
Bounding the hinge function could in turn help to reduce
the effect of outliers. Thus, the aim of this work is to
improve the anti-outliers ability and design a robust one class
support tensor machine for anomaly detection for corrupted
datasets. To overcome the aforementioned challenge for the
corrupted dataset, in this section, we present a novel anomaly
detection approach by replacing the traditional hinge loss
with a bounded loss function. This results in improving the
performance against outliers significantly. In the following
discussion, we first present support tensor machines with
bounded loss function for tensor data followed by algorithm
optimization using half quadratic, convergence analysis, com-
putational complexity, and theoretical analysis.

A. Bounding Loss Function

One-class support tensor machines for anomaly detection
tries to find an optimal hyperplane in high dimensional data
that best separates the data from anomalies with maximum
margin. However, the hinge loss of traditional one-class
support vector machines is unbounded, which results in
larger loss caused by outliers affecting its performance for
anomaly detection. Bounding hinge loss function results in
significantly overcoming the influence of outliers by reducing
the impact of samples that are far from their labels.

min
W,p,ζ

1

2
||W||2F +
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Nv

N∑
i=1

ζi − p (1)

To this end, we can modify the optimization problem of
OCSTM (given in Eq. 1) as

max
W,p

J(W, p) =
1

2
||W||2F −

1

vN

N∑
i=1

ℵi − p (2)

subject to 〈W.φ(Xi)〉 ≥ p− ℵi

ℵi ≥ 0 ∀i = 1, . . . , N

where ℵi = max{0, p−Zi} is the hinge loss function with
Zi =Wφ(Xi).

Notice that the hinge loss in Eq. 2 is unbounded which
results in larger loss due to the outliers which in turn af-
fects the performance of anomaly detection. To overcome the
aforementioned challenge, we present the following objective
function (Eq.3) with bounded loss function (Eq.4).

max
W,p

J(W, p) =
1

2
||W||2F − p+

1

vN

N∑
i=1

℘i (3)



subject to 〈W.φ(Xi)〉 ≥ p− ℘i

℘i ≥ 0 ∀i = 1, . . . , N

℘i = β[1− e−ηℵi ] (4)

where β = 1
1−e−η is the normalization constant and η ≥ 0

is the scale constant.

The normalization constant β ensures that ℘i = 1. Here,
the scale constant η controls the upper bound. For η = 0 the
bounded loss function (℘) degenerates to traditional hinge
loss (ℵ), thus the traditional hinge loss function (Eq.2) is a
special case of bounded loss function (3).

Eq.2 shows that similar to the traditional one-class support
tensor machines, the bounded loss function is also monotonic,
bounded however non-convex. By simplifying the Eq. 2 and
Eq. 3, We can rewrite the objective function as

max
W,p

J(W, p) =
β

vN

N∑
i=1

e−ηℵi + p− 1

2
||W||22 (5)

B. Optimization

As discussed earlier, the objective function in Eq. 5 is
non-convex due to non-convexity of hinge loss function, thus
traditional optimization can not be applied directly. Eq. 5 can
be solved using the half quadratic optimization by defining a
convex function as

g(u) = −ulog(−u) + u, s.t. u < 0 (6)

where u = [u1, . . . uN ]T ∈ RN with its element ui < 0.
By applying the conjugate function theory, we get

e−ηℵ = sup
u<0

ηℵu− g(u) (7)

We can obtain the supermum of e−ηℵ at u = −e−ηℵ < 0.
Now, we can rewrite the Eq. 5 as

max
W,p

J(W, p) =
β

vN

N∑
i=1

sup
ui<0
{ηℵiui − g(ui)}+ p− 1

2
||W||2F

(8)

max
W,p

J(W, p) =
β

vN
sup
u<0
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}
+p− 1

2
||W ||2F

(9)

max
W,p

J(W, p) = sup
u<0

{ β

vN

N∑
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ηℵiui− g(ui)+ p−
1

2
||W ||2F

}
(10)

The above Eq. 9 can be simplified as

max
W,u,p

J(W, u, p) =
β

vN

N∑
i=1

ηℵiui − g(ui)
}
+ p− 1

2
||W||2F

(11)
By using the alternating method to solve the above equation

iteratively and compute W , u and p respectively, we get

max
W,p

J(W, p) =
β

vN

N∑
i=1

ηℵiui + p− 1

2
||W||2F (12)

We can rewrite the above Eq. 12 as

min
W,p

Jo(W, p) =
1

2
||W||2F +

β

vN

N∑
i=1

ηℵiui − p (13)

The above optimization problem in Eq. 13 can be solved
by applying Lagrange multiplier as

min
α

1

2

N∑
i=1

N∑
j=1

αiαjK(Xi,Xj) (14)

s.t.
∑N
i=1 αi = 1 and 0 ≥ αi ≤ 1

vN si for i = 1, . . . , N
where α = [α1, . . . , αN ]T is the vector of Lagrange

multipliers, k is the kernel matrix.
After solving the dual optimization problem 14, the weight

tensor W can be calculated as

W =

N∑
i=1

αiφ(Xi) (15)

Finally, the decision function is defined as

f(x) = sgn
(
wφ(x)− p

)
(16)

f(x) = sgn
( N∑
i=1

αi(xi, x)− p
)

(17)

The solution to the above quadratic problem in Eq. 17 is
characterized by parameter v that sets an upper and lower
bound on the fraction of anomalies and the number of training
samples used as support vectors respectively.

C. Convergence
Theorem 1: The sequence

max
W,u,p

J(Wt, ut, pt) =
β

vN

N∑
i=1

ηℵiuti−g(uti)
}
+pt−1

2
||Wt||2F

converges.

Proof: Comparing Eq.10 and Eq.11, we can conclude that
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TABLE II
ALGORITHMIC PROCEDURE OF OCSTM-BH

Input: : Training dataset: XiNi=1 where Xj ∈ Rm×n for j =
1, ..., N , kernel function K(Xi,Xj trade-off parameter τ , scale con-
stant η, Tmax

Output: Lagrange multiplier α and margin parameter p,

Step-I: Parameter Initialization: Auxiliary variable u ∈ RM such
that ui < 0, Number of iteration T=0,

While T ≤ Tmax do
Step-II: Compute αT+1 and margin parameter p by solving Eq. 14,
Step-III: Compute uT+1 = −e−ηℵ.
Step-IV: Increment T by 1 and repeat the step II-III until converges.

end while

Step-VI: Return α and p

Thus, we can say Eq.11 is upper bounded.
Furthermore, we can deduce that,

J0(Wt, ut, pt) ≤ J0(Wt+1, ut+1, pt)

≤ J0(Wt+1, ut+1, pt+1) (19)

Therefore, J(Wt, ut, pt) is non decreasing for t = 1, 2, 3, .....
We can conclude that the objective function in Eq. 11
maxW,u,p J(Wt, ut, pt) converges.

D. Theoretical Analysis

In this section, we provide the analysis and reason for
robustness of proposed OCSTM-BH. Similar to [12], we have
investigated the robustness from weight viewpoint. Consider
max{0, p − WTφ(Xi} = [p − WTφ(Xi)]+ = [p − Zi]+
can be written as uti = −eη[pt−Zti for i = 1, . . . , N . The
weight Sti for tth iteration can be computed as St=βη(−uti).
The decision function for OCSTM-BH can be written as
f(x) = WTφ(X − p =

∑N
i−1K(Xi, y) − p. For incorrect

classification, the value of decision function is f(x) < 0
and for correct classification with its true label the value of
decision function is +1. For non target samples with its true
label, the value -1, the decision function value is f(x) > 0.
Thus, we can say, larger the values of f(x), the value could
be outliers. As we know that the value of Sti (Sti = βη(−uti))
decreases with an increase in f(x) for incorrect classification.
Thus, we can conclude that the bounded hinge loss reduces
the impact of samples that are far from their labels.

III. EXPERIMENTS AND ANALYSIS

In this section, we investigate the performance of proposed
support tensor machines in multiple experiments on eight
real-world datasets downloaded from UCI machine learning
repository. We have compared the performance of OCSTM-
BH with state of the art tensor methods (such as OCSTM [7],
R1STM [11], LOCSTM [7]), vector methods (OCSVM [5],
LOCSVM [6], R1SVM [10]) and deep one class classification
methods (One-Class Deep SVDD [27], Soft Bounded Deep

SVDD (SB Deep SVDD) [27]). Since, RBF kernel showed
better performance in comparison to other kernels [19], thus
in this work we have used RBF kernel function. The accuracy
and AUC (area under curve) are the evaluation measure
commonly used for one class classifier [7], thus in this work
we have considered both test accuracy and AUC as evaluation
metrics.

To validate the robustness of OCSTM-BH against outliers,
we have contaminated the datasets with anomalies by
introducing label noise. In order to estimate the effectiveness
of bounded loss function over traditional loss function in
the construction of the projection matrices, we repeated our
cross-validation experiments ten times for all datasets. We
have randomly selected 30% of the training data to form
a validation dataset that we have used to tune parameters.
The size of the training dataset is very important for
efficient anomaly detection, thus, we have performed several
experiments with the variable size of the training data.

A. Dataset
In order to validate the performance of the proposed

approach, in this paper, we have conducted several
experiments on eight different types of dataset (healthcare,
handwritten text and face). We have download publicly
available datasets from UCI machine learning repository that
are Breast Cancer [28], SONAR [13], USPS [35], Daily and
Sport Activity (DSA) [2], University of Southern California
Human Activity Dataset (USC-HAD) [39], ORL and MNIST
[17] . Table III describes the detail of datasets. As some of
the above datasets are originally vector based thus, we have
transformed these datasets to tensor form. For the vector
dataset, we have generated tensor data by transforming the
vector data [4] and select the tensor size based on [7].

Fig. 1. Performance of OCSTM-BH on MNIST Subject (4,5,6) with different
value of bounding factor η

B. Parameter Setting
We performed several experiments with different values of

parameters. There are four parameters (scale constant η , width



TABLE III
DESCRIPTION OF DATASETS

Tensor Representation
Dataset Feature Dimension Objects Target Classes

2nd Order Tensor Breast-Cancer 13×4 683 2
USPS 16×16 1005 1
SONAR 8×8 203 1
MNIST 28×28 70,000 10
ORL 112 × 92 400 40

3rd Order Tensor DSA 125×45×60 152 19
USC-HAD 6×600×5 168 10

TABLE IV
AVERAGED ACCURACY(%) AND AUC (%) WITH STANDARD DEVIATIONS OF DIFFERENT METHODS (OCSVM, LOCSVM, SOFT-BOUNDED DEEP SVD,

ONE-CASS DEEP SVD, OCSTM, LOCSTM AND PROPOSED OCSTM-BH) ON BREAST-CANCER DATASET FOR VARIOUS TRAINING DATA SIZE

Num Class Metrics OCSVM LOCSVM SB-Deep SVDD OC Deep SVDD OCSTM LOCSTM OCSTM-BH
2 Class 1 Accuracy 43.92 ± 9.82 68.43 ± 13.42 70.21±10.21 71.24±12.2 63.64 ± 15.08 73.74 ± 14.21 74.43±10.13

AUC 99.48 ± 0.13 99.48 ± 0.05 99.02±0.04 99.11±0.03 99.32 ± 0.16 99.51 ± 0.03 99.63±0.03
Class 2 Accuracy 65.20 ± 0.00 65.83 ± 8.75 67.11±10.11 68.41±9.23 69.40 ± 5.17 65.85 ± 16.75 70.22±8.77

AUC 80.93 ± 28.50 76.64 ± 31.88 80.23±12.12 80.21±21.10 84.62 ± 23.68 77.55 ± 30.05 85.11±19.21

4 Class 1 Accuracy 59.80 ± 13.51 79.58 ± 10.81 83.22±12.19 84.23±13.70 75.67 ± 13.02 84.16 ± 10.49 85.87±8.74
AUC 99.43 ± 0.29 99.46 ± 0.06 98.950±0.0 99.21±0.01 98.52 ± 1.92 99.48 ± 0.11 98.51±0.0

Class 2 Accuracy 70.59 ± 4.89 63.92 ± 18.67 76.43±6.7 78.21±9.43 78.57 ± 7.83 64.80 ± 24.57 79.69±11.43
AUC 89.59 ± 15.31 71.35 ± 31.82 86.32±8.7 90.43±10.93 92.13 ± 10.49 70.19 ± 30.92 93.21±14.21

6 Class 1 Accuracy 71.68 ± 13.16 84.47 ± 9.38 88.32±12.43 89.21±10.08 82.47 ± 10.39 87.03 ± 10.61 88.45±12.98
AUC 99.16 ± 1.10 99.27 ± 0.98 99.10±0.01 99.43±0.06 98.31 ± 1.84 99.02 ± 3.41 99.45±0.11

Class 2 Accuracy 78.16 ± 5.51 68.13 ± 18.7 82.47±4.40 83.86±5.32 83.88 ± 5.95 65.88 ± 26.02 84.01±2.4
AUC 93.82 ± 6.84 75.58 ± 26.79 94.71±3.2 94.45±7.2 92.96 ± 9.81 71.55 ± 29.03 94.21±2.7

8 Class 1 Accuracy 76.45 ± 11.65 86.00 ± 8.64 90.21±10.34 90.65±12.65 83.26 ± 10.26 89.02 ± 8.17 90.18±14.51
AUC 99.33 ± 0.73 99.30 ± 0.62 99.51±0.09 99.50±0.11 98.50 ± 1.82 99.47 ± 0.12 99.54±0.08

Class 2 Accuracy 80.90 ± 5.73 70.34 ± 21.13 85.91±16.67 86.21±19.21 84.96 ± 6.65 70.89 ± 23.37 86.43±15.12
AUC 93.81 ± 7.86 75.91 ± 26.61 94.45±3.66 94.51±4.32 92.21 ± 10.69 75.93 ± 25.09 93.43±14.55

Fig. 2. Performance of OCSTM-BH on MNIST Subject (4,5,6) with different
value of σ

parameter σ and trade-off parameter v. Inappropriate selection
of these parameters may result in poor anomaly detection, thus
the value of these parameters should be selected carefully.
Figure 3 shows the results of proposed OCSTM-BH on three
subjects (4,5,6) of the MNIST dataset with a different value
of scale constant, width parameter and trade-off parameter.
We noticed that the best performance we have achieved at
value in interval 5 ≥ σ ≤ 25, 0.75 ≥ η ≤ 1.50 and

Fig. 3. Performance of OCSTM-BH on MNIST Subject (4,5,6) with different
value of v

0.30 ≥ v ≤ 0.60 for all datasets. The performance of OCSTM-
BH starts to degrade significantly outsider this interval. We
performed a grid search strategy for each approach with 3 fold
validation to confirm the optimal range of parameters for each
dataset. Once, we have an optimal range of parameters, we
have performed 10 fold validation on each training datasets.



C. Experimental Results

To evaluate and compare the performance of the proposed
approach with state of the art anomaly detection methods,
we have divided the experiment into two phases. In our
first phase, we have performed several experiments on real
datasets and in the second experiment, we have corrupted
the each dataset with outliers by randomly adding 5% of the
opposite class samples into the target training dataset. The
average AUC values on the training and test dataset together
with their corresponding standard deviation on the optimal
value of parameters (scaling constant η , width parameter σ
and trade-off parameter v) are shown in table IV, table V,
table VII and figure 4 on real datasets. Similarly, table VI and
figure 5 describes the results on outliers contaminated datasets.

It is well known that it is hard to solve the classification
problem with the small number of sample size especially
in case of high dimensional data. To further verify the
effectiveness of OCSTM-BH for small sample size, we
performed experiments with different sample sizes. Results on
real dataset showed that proposed OCSTM-BH considerable
performed better in comparison to OCSVM, OCSVM-SVDD
OCSTM and R1OCSTM for all datasets. We can observe that
one-class deep SVDD [27], soft bounded Deep SVDD [27])
performed marginally better for datasets with large number
of samples as shown in table V and figure 4. Notice that
OCSTM-BH performed better for small sample size (2,4)
whereas soft bounded Deep SVDD showed partially better
or similar performance for sample size (6,8), however, it is
computationally complex. Figure 4 and figure 5 show that
OCSTM-BH is scalable and can be used for high dimensional
data consisting of small number of samples.

The main goal of this work is to improve the robustness
of anomaly detection. Thus, to elucidate the performance
against corrupted datasets, we haven contaminated the
datasets with 5% anomalies. Table V and figure 5 show
that OCSTM-BH showed significantly better performance
in comparison to OCSVM, LOCSVM, R1TVM, OCSTM,
LOCSTM, Deep SVDD, Soft bounded Deep SVDD on all
contaminated datasets. This validate that OCSTM-BH has
better anti-outliers ability especially compared to Deep SVDD
and Soft bounded Deep SVDD.

Comprehensive evaluation indicates that proposed OCSTM-
BH showed better performance in comparison to state of the
art method. From figure 5 and table VI, we can observe
that the gain in performance on corrupted dataset is signif-
icantly better in comparison to other methods. This shows
the robustness of OCSTM-BH against outliers. We observe
that the proposed OCSTM-BH degenerates to traditional one-
class support tensor machines for scale constant η = 0. Thus,
we can say that OSTM-BH is a special case of OCSTM. We
further observe that bounding hinge loss function results in
significantly overcoming the influence of outliers by reducing

the impact of samples that are far from their labels.

Fig. 4. Averaged performance (AUC) of the 40 target classes on ORL dataset
(real) with respect to the training sample sizes (2,4,6,8)

Fig. 5. Averaged performance (AUC) of the 40 target classes on ORL dataset
(contaminated) with respect to the training sample sizes (2,4,6,8)

IV. CONCLUSION

In this work, we presented a novel one class support tensor
machines based on correntropy-induced loss function. We
replaced the traditional hinge loss function with bounded loss
function which is monotonic and non-convex, thus, robust
against outliers by decreasing the loss caused by outliers.
To solve the non-convex optimization, We have presented
half quadratic optimization based on alternating optimization
method and drive the problem to traditional OCSTM which
then can be solved using dual optimization. Extensive evalu-
ation on eight publicly available real world datasets showed
that OCSTM-BH provided better performance especially in the
presence of outliers which shows that OCSTM-BH is effective
in dealing with outliers.

.



TABLE V
AVERAGE AUC(%) WITH STANDARD DEVIATIONS ON MNIST DATASET

Class OCSVM-SVDD SB Deep SVDD OC-Deep-SVDD OCSTM R1OCSTM OCSTM-BH
0 96.75± 0.5 97.8± 0.7 98.5± 0.7 97.87± 0.9 97.90+1.1 98.1± 0.5
1 99.15± 0.4 99.6± 0.1 99.7± 0.08 99.65± 0.6 99.60± 0.7 99.6± 0.07
2 79.4± 0.9 89.5± 0.2 91.7± 0.8 90.20± 0.4 90.43± 0.9 92.1± 0.5
3 86.1± 0.6 90.3± 0.1 91.9± 0.5 91.1± 0.3 91.00± 0.7 92.1± 0.4
4 94.21± 0.3 93.8± 0.5 95.32± 0.8 93.21± 0.1 92.8± 0.54 95.2± 0.9
5 73.1± 0.8 85.8± 0.5 89.23± 0.9 86.22± 0.4 97.1± 0.3 89.12± 0.9
6 95.5± 0.2 98.0± 0.4 98.3± 0.5 98.0± 0.7 98.10± 0.1 98.60± 0.2
7 92.16± 0.1 92.7± 0.4 94.6± 0.9 92.7± 0.3 93.85± 0.7 95.00± 0.5
8 89.09± 0.4 94.2± 0.4 93.9± 0.6 93.6± 0.2 92.96± 0.4 94.1± 0.4
9 92.71± 0.2 94.9± 0.6 96.35± 0.3 95.7± 0.3 95.71± 0.2 96.5± 0.5

TABLE VI
AVERAGE AUC(%) WITH STANDARD DEVIATIONS ON ANOMALIZED MNIST DATASET

Class OCSVM-SVDD SB Deep SVDD OC-Deep-SVDD OCSTM R1OCSTM OCSTM-BH
0 91.75± 0.22 92.11± 0.16 93.32± 1.1 93.05± 1.22 93.55+1.32 95.22± 1.28
1 92.45± 0.9 93.46± 1.4 93.32± 0.34 93.05± 1.4 92.02± 0.5 93.87± 0.22
2 72.43± 1.45 78.32± 1.2 82.54± 1.45 83.08± 1.21 82.01± 1.43 84.20± 1.32
3 78.2± 1.54 84.34± 1.56 84.19± 0.4 82.43± 1.06 84.41.± 1.6 85.11± 1.1
4 84.43± 2.1 86.47± 0.9 85.32± 1.44 84.61± 1.05 84.78± 1.00 85.13± 1.22
5 65.43.1± 3.1 77.98± 1.3 80.11± 0.9 79.11± 3.6 83.79± 1.22 85.00± 1.54
6 80.89± 1.70 86.76± 2.2 88.54± 2.5 86.54± 1.21 87.76± 2.10 88.67± 1.43
7 80.22± 0.1 83.57± 0.84 85.55± 2.44 86.27± 1.23 85.43± 1.27 86.81± 0.76
8 78.65± 2.4 86.4± 1.54 84.43± 2.60 82.46± 2.23 84.76± 2.43 87.43± 0.80
9 81.89± 1.6 85.55± 1.96 84.45±1.75 80.54± 4.5 84.79± 1.29 86.76± 1.1

TABLE VII
COMPARISON OF AVERAGE AUC(%) ON VARIOUS DATASETS

AUC
Dataset OCSVM LOCSVM SB-Deep SVDD OC Deep SVDD OCSTM LOCSTM R1STM OCSTM-BH

Breast 90.17 87.65 92.2 99.22 98.29 89.74 99.02 99.25
SONAR 58.43 66.21 72.13 72.23 61.88 67.87 69.43 72.11
USPS 99.43 99.61 99.91 99.85 99.75 97.81 99.87 99.91
USCHAD 83.42 89.41 98.67 99.13 95.12 97.11 98.47 99.06
ORL 96.12 73.87 97.21 97.50 96.43 69.43 96.89 97.58
DSA 79.43 83.47 98.57 99.12 98.24 98.12 99.17 99.20
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