
Budgeted Subset Selection for Fine-tuning Deep

Learning Architectures in Resource-Constrained

Applications

Subhankar Banerjee

Department of Computer Science

Florida State University

Shayok Chakraborty

Department of Computer Science

Florida State University

Abstract—The growing success and popularity of deep learning
in computer vision have resulted in the availability of several pre-
trained deep learning architectures (such as AlexNet, ResNet,
VGGNet among others). A common practice in deep learning
research is to use one of the pre-trained models and fine-tune it to
a given target task, using training data from the target. However,
training a deep learning model efficiently necessitates expensive,
high-quality GPUs and distributed computing infrastructures.
Some applications (such as those running on mobile platforms)
are severely limited in terms of memory and computational
resources; in these applications, it is a significant challenge to
fine-tune a pre-trained deep learning model to a target task,
using large amounts of target training data. Cloud services can
be leveraged for training, but involve issues with data privacy and
cost. In such applications, it is important to select an informative
subset of the training data and fine-tune the deep model using
only the selected subset. In this paper, we propose a novel
framework to address this problem. We pose subset selection as
a constrained NP-hard integer quadratic programming problem
and derive an efficient linear relaxation to select a subset of
exemplar instances. Our extensive empirical studies on three
challenging vision datasets (from different application domains)
using three commonly used pre-trained deep learning models
corroborate the potential of our framework for real-world,
resource-constrained applications.

Index Terms—deep learning, subset selection

I. INTRODUCTION

Deep neural networks have revolutionized the field of com-

puter vision and have achieved state-of-the-art performance

in a variety of applications, including image recognition [1],

object detection [2] and image segmentation [3] among others.

The unprecedented success of deep learning has inspired re-

searchers to make their trained deep models publicly available

to the community to promote further research using these

models. Examples include the AlexNet [4], VGGNet [5] and

ResNet [1], all of which are trained on the ImageNet dataset

[6] and are publicly available. A common practice in deep

learning research is to use one of these pre-trained models

as the starting configuration and fine-tune it to the target

application in question, using training data from the target,

rather than developing a deep network from scratch for the

target. This is mainly due to the following two reasons: (i)
designing a suitable network architecture from scratch for a

given target task requires extensive prior knowledge or domain

expertise about the target, which may not be readily available;

and (ii) tuning the hyper-parameters involves repeated trial

and error, which can affect the learning performance. A pre-

trained model, on the other hand, is already equipped with

useful knowledge from its original task and comes with a

set of optimized hyper-parameters, and thus addresses these

issues.

In today’s world, deep models with more and more hidden

layers and trainable parameters are being successfully applied

by researchers in a variety of applications. This exponential

growth in the number of trainable parameters has necessitated

the development of efficient hardware solutions, such as GPUs

and distributed computing infrastructures to accelerate the

training process [7]. However, for resource constrained ap-

plications (such as applications running on mobile platforms)

using high-end GPUs and other computing infrastructures

(multiple cores, clusters etc.) to train deep models may not

be feasible. These applications are severely limited by the

available memory, compute-power and other constraints of

the mobile device. Cloud services like the Amazon Web Ser-

vices, Microsoft Azure and Google Cloud Platform have been

explored as an alternative option for training deep learning

models. However, they often come with a hefty price tag, as

the user needs to pay for the computational as well as storage

resources. The data may also contain sensitive and confidential

information, which can lead to potential security concerns if

uploaded to the cloud. Some applications may require the

models to be retrained frequently as new training data becomes

available over time; it may thus be cheaper and more beneficial

to train the model in a local machine, rather than in a cloud

platform.

In situations like this, it is necessary to select an informative

subset of the target training data and fine-tune the model

using only the selected subset. In this paper, we propose a

novel framework to address this problem. Specifically, we

attempt to answer the following research question: We wish

to adapt a particular pre-trained deep model to a given target

task. We are given a small amount of initial training data,

which serves as our prior domain knowledge about the target.

We are also given a large number (N) of training samples

from the target for fine-tuning the model. However, due to

computational and resource constraints, training on all the N

samples is prohibitively expensive. We are given a parameter

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

k(k � N), which is the maximum allowable training set

size (in addition to the initial training data), considering the

resource constraints. Which k samples should we select from

the set of N for fine-tuning, so that we derive a model with

maximum generalization capability?

Our algorithm is easy to implement and computation-

ally lightweight, corroborating its usefulness in resource-

constrained applications. Although we study the performance

of our algorithm on computer vision tasks in this paper, the

proposed framework is generic and can be applied with any

pre-trained network on any target task. The rest of the paper is

organized as follows: we present a survey of related techniques

in Section II; the details of our framework are presented in

Section III; Section IV depicts the results of our empirical

studies; and we conclude with discussions in Section V.

II. RELATED WORK

Deep learning is responsible for many of the recent break-

throughs in AI, such as Google DeepMind’s AlphaGo, au-

tonomous cars, intelligent voice assistants among others.

While deep neural networks (DNNs) have depicted com-

mendable performance in several applications, training a deep

network efficiently, to meet the requirements of practical

applications, has proved to be a significant challenge. To

address this issue, a variety of techniques have been explored

with the goal of speeding up the training time of DNNs. We

present a brief survey of these techniques in this section.

Importance Sampling: There is a body of literature on

weighing or sampling training instances to speed up the

training of deep models and achieve higher accuracy. The

core idea is to perform importance sampling on training

data points based on the gradient norm [8], loss [9], [10],

bound on the gradient norm [11] or approximating the ideal

sampling distribution [12]. Most of these techniques involve

a large number of hyper-parameters, which are difficult to

optimize [9], [10]. Our framework is computationally light

and also fundamentally different from these techniques. For

instance, the importance sampling scheme proposed in [11]

first pre-samples a large batch of data points B uniformly

from the given training samples; a subset b of desired batch

size is then sampled according to an importance sampling

distribution; the network parameters are then updated using

stochastic gradient descent (SGD) and the whole process is

repeated until convergence to obtain the final trained network.

The algorithm requires access to the entire set of samples

throughout the training process, which may be a significant

challenge, especially in resource-constrained applications. In

contrast, in our method, we attempt to select an exemplar

subset of instances from the target data before even starting to

train the deep model. The instances that are deemed irrelevant

by the algorithm can be discarded straightaway and need not

be considered at all during training, resulting in efficient usage

of memory and computational resources.

Model Compression and Parameter Optimization: Mul-

tiple techniques have been proposed to compress large DNNs

in order to accelerate the training time; these include distil-

lation [13], weight precision reduction [14], [15], low-rank

decomposition [16] and pruning [17], [18]. Some researchers

have focused on improving prediction accuracy at a given pa-

rameter budget. Algorithms in this category include adoption

of skip connections [1], replacement of fully-connected layers

with global average pooling layers followed directly by the

classifier layer [19], and depth-wise separable convolutions

[20]. Cheng et al. [21] exploited the redundancy of parameters

in deep neural networks by replacing the conventional linear

projection in fully-connected layers with the circulant projec-

tion, which substantially reduces the memory footprint and

enables usage of FFTs to speed up computations. In a related

research, Mathieu et al. [22] used the FFT to accelerate the

computation of convolutional layers, through the convolution

theorem. In our method, we attempt to sample an informative

set of instances without altering the model architecture or the

training algorithm.

Other Related Techniques: Among other related tech-

niques, Zhang et al. [23] proposed a hashing based scheme to

address the vanishing gradient problem in back-propagation,

which directly impacts the computational efficiency. Ioffe and

Szegedy [24] introduced the batch normalization technique to

normalize each training mini-batch which allowed the usage

of much higher learning rates; when applied to state-of-the-

art image classification models, this technique achieved the

same accuracy with 14 times fewer training steps. Ko et al.

[25] introduced a novel dropout technique called controlled

dropout where a network is trained using compressed ma-

trices of smaller size, resulting in significant training speed

improvements.

Although these methods have depicted promising empirical

results, most researchers today heavily rely on high-end GPUs

and distributed computing infrastructures to train deep learning

models efficiently [7], [26], [27]. For instance, Sun et al. [28]

used 50 NVIDIA K80 GPUs and 17 parameter servers to

train a deep learning model for ImageNet. Xie et al. [29]

trained their deep network using SGD with mini-batch size

of 256 on 8 GPUs (32 per GPU). Goyal et al. [30] trained the

ResNet-50 model in 1 hour using a batch size of 8192, but

assumed access to 256 powerful GPUs. Such powerful com-

putational infrastructures are not available in limited memory

and resource-constrained applications. To facilitate efficient

adaptation of a given pre-trained deep model to a target task in

such applications, it is necessary to select a subset of exemplar

training samples from the target task and restrict the training

of the deep model only to the selected subset. The size of the

subset is governed by the memory, power and other available

resources of the device running the application and can be

assumed to be known apriori. Banerjee and Chakraborty [31]

proposed a submodular optimization based framework to fine-

tune deep learning architectures. To the best of our knowl-

edge, this is the only prior research addressing this problem.

Although the method depicted impressive performance, the

performance was validated only in terms of accuracy; the

computational overhead of the algorithm was not studied. In

this research, we analyze the performance of our framework

both in terms of accuracy and computational complexity and

use [31] as one of our comparison baselines. We now describe

our framework.

III. PROPOSED FRAMEWORK

In our problem setup, we are given a model M0, pre-

trained on a particular dataset (such as the AlexNet model

trained on ImageNet). Our objective is to adapt this model to

a particular target task. We are given a small amount of target

data L, which serves as our prior domain knowledge about

the target (it is typically sampled at random from the given

target data). We are further given a large set Z containing N

target instances {x1, x2, . . . , xN}. However, due to resource

constraints, we are not in a position to fine-tune M0 using all

the N instances. We are given a budget k(k � N), which

denotes the number of target samples that can be used to

train the model (in addition to the initial labeled set L). Our

objective is to select a subset of k instances from Z such that

when M0 is fine-tuned using L and the selected subset, it has

the maximum generalization capability on the target data. Let

C denote the number of classes in the target dataset.

To address this problem, we attempt to quantify the score

of a subset of k samples and select the subset furnishing the

maximal score. We compute the utility (usefulness from a

classification perspective) of every sample in Z and propose to

select the samples with the highest utilities in order to augment

maximal information to M0. However, if two samples xi and

xj individually have high utilities, but are redundant, then

we gain sub-optimal information by selecting both of them.

We therefore include a diversity metric in our formulation to

quantify the uniqueness of every pair of samples. A framework

based on these two conditions ensures that the high-utility

samples are selected for adapting the model and there is

minimal overlap of information during model training.

Computing Utility: The utility of a sample xi is computed

by the classification uncertainty of the model M0, trained on

the initial set L. The class probabilities obtained from the

last layer of the network can be used to define a variety of

uncertainty metrics based on prediction confidence, margin

and entropy [32]:

Uconfidence(xi) = 1− P (y1) (1)

Umargin(xi) = 1− (P (y1)− P (y2)) (2)

Uentropy(xi) = −
∑

y∈C

P (y|xi) logP (y|xi) (3)

where P (y1) and P (y2) denote the highest and the second

highest class probabilities for the data point xi respectively.

We select entropy as the utility metric in this research due

to its promising performance in a variety of machine learning

applications [32]–[34]. A high value of entropy means high

classification uncertainty. We compute a vector u ∈ <N×1

where u(i) denotes the entropy or utility of sample xi in Z.

Computing Diversity: We compute a matrix D ∈ <N×N

where dij denotes the diversity between sample xi and xj .

In this work, we used the gaussian kernel with parameter 1
to compute the diversity between a pair of samples (other

distance metrics can be used, depending on the application).

The (i, j)th entry in the matrix D is given by:

D(i, j) = φ(xi, xj) (4)

where φ = (., .) denotes a kernel in the Reproducing Kernel

Hilbert Space (RKHS). It is noted that computing D scales

quadratically with N . The concept of random projections can

be used to reduce the computational overhead. Random pro-

jections have been successfully used to speed up computations,

where an original data matrix A ∈ <m×P is multiplied by a

random projection matrix X ∈ <P×p to obtain a projected

matrix B ∈ <m×p in the lower dimensional space p:

B =
1√
p
AX (5)

where p � min(m,P). X is typically populated using the

entries from the standard normal distribution N(0, 1), leading

to many well-known theoretical results [35]. We leave the

study of random projections for reducing the computational

complexity for future research.

A. Subset Selection Framework

From our definitions in Equations (3) and (4), we note that

both the vector u and the matrix D can only have non-negative

entries. Given u and D, our objective is to select a subset of k

samples which furnish maximum utility (given by the entries

in u) and maximum diversity (given by the entries in D). We

define a binary selection vector x ∈ {0, 1}N×1 where each

entry corresponds to a particular sample in the set Z; if a

particular entry in x is 1 (or 0), it means that the corresponding

sample in Z will be selected (not selected) in the subset.

Our subset selection problem (with subset cardinality k) can

thus be posed as the following integer quadratic programming

(IQP) problem:

max
x

uTx+ λxTDx

s.t. xi ∈ {0, 1}, ∀i and

N
∑

i=1

xi = k (6)

where λ is a weight parameter governing the relative impor-

tance of the two terms. Due to the binary integer constraints on

x, we can combine u and D into a single matrix Q ∈ <N×N

and rewrite the optimization problem as follows:

max
x

xTQx

s.t. xi ∈ {0, 1}, ∀i and

N
∑

i=1

xi = k (7)

where the matrix Q with non-negative entries is constructed

as follows:

Q(i, j) =

{

λD(i, j), if i 6= j

u(i), if i = j
(8)

The binary integer constraints on x make this IQP NP-hard.

We now derive an efficient linear programming (LP) relaxation

to solve this NP-hard IQP.

B. An Efficient LP Relaxation

We define a binary matrix W ∈ <N×N as wij = xi.xj .

Clearly, each element in W is either 0 or 1, since x is a binary

vector. With this definition, we can write the optimization

problem in Equation (7) as:

max
x,W

∑

i,j

qijwij

s.t. wij = xi.xj , xi ∈ {0, 1}, ∀i and

N
∑

i=1

xi = k (9)

The quadratic equality wij = xi.xj implies that wij attains

a value of 1 when both xi and xj are 1 and 0 otherwise. These

conditions can be captured by the linear inequality −xi−xj+
2wij ≤ 0, ∀i, j. From the inequality, it is easy to see that wij is

0 if either xi, or xj or both are equal to 0. When both xi and xj

are 1, wij can be 0 or 1. However, the maximization condition

in Equation (9) forces wij to be 1, since qij ≥ 0. Thus, the

value of wij obtained from the equality wij = xi.xj and from

the inequality −xi−xj+2wij ≤ 0, ∀i, j is exactly the same for

every possible values of xi and xj . We can therefore replace

the quadratic equality with the linear inequality and simplify

the problem in Equation (9) as:

max
x,W

∑

i,j

qijwij

s.t. − xi − xj + 2wij ≤ 0, ∀i, j

xi, wij ∈ {0, 1}, ∀i, j and

N
∑

i=1

xi = k (10)

This is an integer linear programming (ILP) problem, as

both the objective function and the constraints are linear in

the variables. Thus, we have simplified an integer quadratic

programming problem into an equivalent integer linear pro-

gramming problem, which is much easier to solve. However,

the binary constraints on x and W still pose computational

challenges. To solve such a problem, a common strategy is to

use the LP relaxation:

max
x,W

∑

i,j

qijwij

s.t. − xi − xj + 2wij ≤ 0, ∀i, j

xi, wij ∈ [0, 1], ∀i, j and

N
∑

i=1

xi = k (11)

where the constraints have been relaxed, so that x and W

are permitted to have values between 0 and 1. We solve the

relaxed problem using an off-the-shelf LP solver and use the

rounding technique (where we set the k largest entries as 1 and

the remaining as 0) to derive the integer solution. However,

there is no guarantee that the rounding technique will produce

the optimal solution.

C. The Iterative Truncated Power Algorithm

To further improve the solution obtained using the LP

relaxation, we use the iterative truncated-power algorithm [36].

This was originally proposed in the context of the sparse

eigenvalue and the densest k-subgraph problems. Starting with

an initial solution x0, it generates a sequence of solutions

x1, x2, At each time step t, the solution xt−1 is multiplied

by the matrix Q and the entries are truncated to zeros except

for the k largest entries, which becomes the new solution xt.

The process is repeated until convergence. The algorithm has a

guaranteed monotonic convergence for a positive semi-definite

(psd) matrix Q. When the Q is not psd, the algorithm can be

run on the shifted quadratic function (with a positive scalar

added to the diagonal elements) to guarantee a monotonic

convergence [36]. The algorithm benefits from a good starting

point; we use the solution in Equation (11) as the initial solu-

tion x0. It is also computationally efficient and converges fast.

The pseudo-code for the proposed subset selection algorithm

is given in Algorithm 1.

Algorithm 1 The Proposed Subset Selection Algorithm

Require: Pre-trained model M0, Small initial training set L,

Large ground set Z, subset size k, weight parameter λ

1: Fine-tune M0 using the set L

2: Compute utility vector u (Equation 3) and the diversity

matrix D (Equation 4)

3: Compute the matrix Q, as described in Equation (8)

4: Derive the initial solution x0 by solving the relaxed LP

problem in Equation (11) and rounding the solution

5: t = 1

6: repeat

7: Compute x
′

t = Q.xt−1

8: Identify Ft as the index set of x
′

t with top k values

9: Set xt to be 1 on the index set Ft and 0 otherwise

10: t = t + 1

11: until Convergence

12: Select a subset of k samples from Z based on the final

solution xt

13: Fine-tune M0 using L and the selected subset

The LP problem can be efficiently solved using a variety

of LP solvers. Thus, our algorithm involves minimal compu-

tational overhead and is a promising candidate for resource-

constrained applications.

IV. EXPERIMENTS AND RESULTS

A. Datasets

We used three challenging datasets from different applica-

tion domains to validate the performance of our algorithm:

MNIST: We used the MNIST dataset [37] (containing

images of handwritten digits from 10 classes), which is

extensively used in computer vision research, to study the

performance of our framework.

SVHN: We also validated the performance of our frame-

work on the SVHN dataset [38], which also contains 10 classes

of digits obtained from house numbers in Google Street View

images.

CIFAR-10: We further used the CIFAR-10 dataset [39],

containing images of objects from 10 different categories un-

der challenging real-world conditions, in our empirical study.

Our objective was to test the performance of our subset

selection algorithm and not to outperform the best error rates

on these datasets; we therefore did not follow the precise train

/ test splits specified for these datasets.

B. Deep Learning Models

We used three commonly-used convolutional neural network

architectures (pre-trained models) to study the performance of

our algorithm:

AlexNet: The AlexNet [4] model won the ImageNet Large-

Scale Visual Recognition Challenge (ILSVRC) in 2012. It

contains 5 convolutional layers and 3 fully connected layers.

GoogleNet: This is a 22-layer deep CNN which won the

ILSVRC challenge in 2014 [40]. It is based on the idea of an

inception module and contains significantly lesser number of

trainable parameters than the AlexNet.

ResNet-18: This ResNet architecture contains 18 layers and

is a variant of the original model with 152 layers, which won

the ILSVRC in 2015 [1]. The core idea is the introduction

of residual blocks, which facilitates training of very deep

networks with much lower computational overhead.

The implementations were all performed in Matlab R2018a.

The pre-trained models were obtained from the Matlab Deep

Learning Toolbox 1. The number of nodes in the last layer

in each model was changed to equal the number of classes

for each dataset. The L2 regularizer was used for each of

the models with regularization parameter 0.0005 for AlexNet,

0.001 for GoogleNet and 0.001 for ResNet. We used 0.001
as the initial learning rate for each model. The stochastic

gradient descent with momentum (SGDM) was used as the

optimizer and the models were trained for 30 epochs. The

layer freezing technique [41] was employed to accelerate the

training process. The weight parameter λ was taken as 0.3
based on preliminary experiments.

C. Comparison Baselines

While various subset selection criteria have been studied

in the literature, optimizing almost all of them is, in general,

1https://www.mathworks.com/products/deep-learning.html

NP-hard and non-convex [42], [43]. This has motivated the de-

velopment and study of approximation methods for optimizing

these criteria. We used two such commonly used methods as

comparison baselines in our work:

DPP: Determinantal Point Process (DPP) is a sampling

technique, which assigns a probability measure on the set

of all subsets of a ground set, for approximately finding the

maximum volume subset [44], [45]. DPP is an appealing

tool for modeling diversity in applications such as document

summarization, image search and ranking. We used the opti-

mization strategy proposed in [44] for subset selection in this

research.

Submodular: Submodular optimization techniques have

been extensively used in data subset selection and use greedy

approximation algorithms to maximize the value of a submod-

ular function under a budget constraint [46]–[48]. Commonly

used submodular functions include graph-cuts, facility loca-

tion, diversity and coverage among others. We used the cover-

age and diversity criteria for subset selection and the standard

greedy algorithm for optimization (as proposed in [31]), which

is guarateed to produce a solution that is 1− 1

e
≈ 63% of the

optimal.

In addition, we also compared our method against Random

Sampling, where a batch of samples is selected at random.

Note that these are the commonly used dataset subset selection

techniques and were hence used as baselines in this research.

Other methods, such as Lasso, ILFS,UDFS have focused on

feature selection [49], rather than data subset selection and

were thus not included.

D. Subset Selection Performance

The goal of this experiment was to validate the performance

of the proposed subset selection framework. For a given initial

training set L and a given ground set Z, we used a parameter

k, which denotes the available budget, that is, the number of

samples from the ground set that can be selected for fine-

tuning the deep models. Once a subset of target samples was

selected, the deep models were trained on L and the selected

subset and their performance was evaluated on a held out test

set. The process was repeated afresh for each value of k. In our

empirical study, we used 500 samples as the initial training set

(|L| = 500), 3, 000 samples as the ground set (|Z| = 3, 000)

and 10, 000 samples as the test set. The samples were selected

at random from each dataset. We used ten values of k, from

600 to 1, 500 in steps of 100, to study the performance under

different budgets.

Accuracy: The results are depicted in Figure 1. In each

figure, the x-axis denotes the specified budget and the y-axis

denotes the classification accuracy on the test set. We first note

that the test accuracy depicts a general increasing trend with

an increase in budget, which is intuitive. Random Sampling

sometimes depicts good performance, but is not consistent in

its performance across datasets, models and subset sizes. Out

of the 90 experiments (3 datasets x 3 models x 10 subset

sizes), Random Sampling achieves the highest accuracy only

6 times. Our framework outperforms Random Sampling in

MNIST with AlexNet

Subset Size 600 700 800 900 1000 1100 1200 1300 1400 1500

DPP 00:07:17 00:07:38 00:15:51 00:21:10 00:30:17 00:40:25 00:55:35 01:15:06 01:29:27 01:41:28

Submodular 05:10:13 06:01:54 06:53:34 07:45:15 08:36:55 - - - - -

Proposed 00:05:27 00:05:27 00:05:27 00:05:27 00:05:27 00:05:27 00:05:27 00:05:27 00:05:27 00:05:27

MNIST with GoogleNet

DPP 00:04:18 00:08:10 00:11:23 00:22:08 00:28:14 00:40:24 00:51:22 01:05:48 01:20:47 01:39:46

Submodular 05:10:13 06:01:54 06:53:34 07:45:15 08:36:55 - - - - -

Proposed 00:09:53 00:09:53 00:09:53 00:09:53 00:09:53 00:09:53 00:09:53 00:09:53 00:09:53 00:09:53

MNIST with ResNet

DPP 00:07:25 00:11:08 00:16:02 00:22:22 00:30:18 00:40:19 00:52:01 01:06:18 01:21:14 01:41:23

Submodular 05:10:13 06:01:54 06:53:34 07:45:15 08:36:55 - - - - -

Proposed 00:07:46 00:07:46 00:07:46 00:07:46 00:07:46 00:07:46 00:07:46 00:07:46 00:07:46 00:07:46

SVHN with AlexNet

DPP 00:04:01 00:06:27 00:09:25 00:12:46 00:18:01 00:36:34 00:30:39 00:38:24 00:48:32 01:00:22

Submodular 05:14:27 06:06:48 06:59:09 07:51:29 08:43:50 - - - - -

Proposed 00:05:28 00:05:28 00:05:28 00:05:28 00:05:28 00:05:28 00:05:28 00:05:28 00:05:28 00:05:28

SVHN with GoogleNet

DPP 00:04:07 00:06:22 00:09:13 00:13:05 00:18:09 00:23:42 00:30:43 00:38:24 00:48:01 01:01:59

Submodular 05:14:27 06:06:48 06:59:09 07:51:29 08:43:50 - - - - -

Proposed 00:08:51 00:08:51 00:08:51 00:08:51 00:08:51 00:08:51 00:08:51 00:08:51 00:08:51 00:08:51

SVHN with ResNet

DPP 00:04:00 00:06:22 00:09:46 00:13:24 00:17:48 00:23:06 00:33:18 00:40:49 00:47:57 00:58:58

Submodular 05:14:27 06:06:48 06:59:09 07:51:29 08:43:50 - - - - -

Proposed 00:07:19 00:07:19 00:07:19 00:07:19 00:07:19 00:07:19 00:07:19 00:07:19 00:07:19 00:07:19

CIFAR with AlexNet

DPP 00:05:01 00:06:13 00:11:10 00:15:36 00:20:18 00:23:44 00:50:47 01:04:09 01:20:43 01:38:01

Submodular 05:18:47 06:11:51 07:04:55 07:57:59 08:51:02 - - - - -

Proposed 00:09:33 00:09:33 00:09:33 00:09:33 00:09:33 00:09:33 00:09:33 00:09:33 00:09:33 00:09:33

CIFAR with GoogleNet

DPP 00:05:06 00:08:19 00:13:26 00:18:50 00:26:12 00:39:06 00:50:30 01:04:05 01:20:08 01:38:16

Submodular 05:18:47 06:11:51 07:04:55 07:57:59 08:51:02 - - - - -

Proposed 00:08:45 00:08:45 00:08:45 00:08:45 00:08:45 00:08:45 00:08:45 00:08:45 00:08:45 00:08:45

CIFAR with ResNet

DPP 00:04:07 00:06:26 00:09:06 00:13:05 00:17:55 00:39:02 00:52:34 01:03:52 01:19:47 01:38:06

Submodular 05:18:47 06:11:51 07:04:55 07:57:59 08:51:02 - - - - -

Proposed 00:07:32 00:07:32 00:07:32 00:07:32 00:07:32 00:07:32 00:07:32 00:07:32 00:07:32 00:07:32
TABLE I

COMPUTATION TIME ANALYSIS (TIME TAKEN TO SELECT A SUBSET OF k SAMPLES FROM THE GROUND SET). TIME FORMAT HH:MM:SS. WE

EXCLUDE Random Sampling FROM THE ANALYSIS AS IT DOES NOT INVOLVE ANY COMPUTATION. FOR SUBSET SIZES GREATER THAN 1, 000 THE

Submodular BASELINE DID NOT COMPLETE IN 9 HOURS AND SO, THE RESULTS WERE NOT INCLUDED IN THE TABLE.

experiments is less than 10 minutes. Our algorithm is based

on solving an LP problem, followed by the truncated power

method, both of which are computationally lightweight, which

accounts for its efficient runtime. Further, for the proposed

method, the computation time remains more or less constant

with increasing subset sizes; this is immensely useful from a

practical standpoint, since the subset size can vary depending

on the available resources and maybe different for different

applications. The DPP and Submodular methods, on the other

hand, show an increasing trend in computation time with

increasing subset sizes. In fact, for subset sizes greater than

1, 000, the Submodular baseline did not complete in 9 hours

and so, the results were not included in the plots in Figure

1 and in Table I. The proposed technique thus outperforms

Random Sampling comprehensively in terms of accuracy,

depicts performance comparable to DPP and Submodular,

but is computationally much more efficient than these two

methods. This corroborates the usefulness of our method to

select a subset of exemplar samples to fine-tune a deep learn-

ing architecture in resource-constrained applications, where

computational complexity is an important consideration.

Experiment Full Training Set 50% Subset 40% Subset 25% Subset

TT (hours) Acc (%) TT (hours) Acc (%) TT (hours) Acc (%) TT (hours) Acc (%)

GoogleNet on MNIST 17.23 98.3 16.1 99.2 11.17 99.37 8.85 99.17

AlexNet on CIFAR 13.52 81.67 9.93 80.05 8.33 78.78 6.56 77.45

TABLE II
COMPARATIVE ANALYSIS OF APPROXIMATE TRAINING TIME (TIME TAKEN TO SELECT A SUBSET AND TRAIN THE MODEL) AND ACCURACY WHEN USING

THE FULL TRAINING SET AND A SUBSETS OF SIZE 50%, 40% AND 25% OF THE FULL TRAINING SET USING OUR SUBSET SELECTION FRAMEWORK. TT:
TRAINING TIME, ACC: ACCURACY

E. Analysis on the Full Target Dataset

In this experiment, we performed a comparative analysis

of the accuracy and training time (time taken to select a

subset and train the model) when fine-tuning a deep model

using the full target dataset against that obtained when fine-

tuning on a subset of the target dataset. Having established

the usefulness of our sampling technique over the baselines in

terms of accuracy and computation time, we focused only on

our method in this experiment. Further, the selection times of

Submodular and DPP will be prohibitively expensive for larger

subsets (as evident from Table I) and so, were not included. We

randomly selected two datasets (MNIST and CIFAR) and two

models (GoogleNet and AlexNet) for this study. The results are

shown in Table II. For the MNIST dataset using GoogleNet,

the model was first fine-tuned on the full training set of

60, 000 samples and tested on the test set of 10, 000 samples;

the accuracy obtained was 98.3% and the training time was

approximately 17 hours. Our subset selection framework was

then applied to select subsets of size 50%, 40% and 25%
of the full training set. With a decrease in subset size, the

training time reduced, but the test accuracy was better than that

obtained when trained on the full dataset. With 25% training

data, the training time was 8.85 hours and the accuracy was

99.17%. We thus achieved a 1.94x speed-up on the training

time. Hence, our framework can also be extremely useful in

time-critical applications, where training a deep model with

large amounts of data over extended periods of time is not

feasible. More importantly, with only 25% labeled training

data, our subset selection framework outperformed the accu-

racy obtained using the full training set; our framework thus

obtained a higher accuracy with much reduced training time,

which shows its efficacy. For the CIFAR dataset on AlexNet,

the full training set contained 50, 000 samples and the test

set contained 10, 000 samples. Our framework achieved a

1.36x speed-up on the training time with a marginal loss in

accuracy of about 1.6% with 50% training data, as compared

to the values obtained when trained on the full training set;

with 25% training data, the corresponding figures are 2.06x

and 4%. These results show the usefulness of our sampling

framework to identify the salient and exemplar instances from

large amounts of data, discard redundant or duplicate data and

obtain a reliable deep model with limited computational and

memory resources. Depending on the nature of the dataset, it

may often produce better accuracies (or a marginal degradation

in accuracy) at a much reduced training time, compared to

that obtained when trained on the full training set. This

further validates the efficacy of our technique for real-world

applications, where the allowable training set size is dictated

by the available computational resources and varies from one

application to another. Our analysis revealed that computation

of the N ×N diversity matrix (Equation (4)) for a ground set

of size N was the main bottleneck of our method. As part of

future research, we plan to study the performance of random

projection algorithms (as mentioned in Section III) to further

reduce the training time in our framework. (Note that in all

these experiments, we used pre-trained models where some

of the layers were frozen to accelerate the training process; it

may thus not be fair to compare the accuracy values obtained

using the full training set to the best reported accuracies in

the literature on these datasets).

F. Performance on a Regression Application

To further study the performance of our framework, we con-

ducted experiments on a regression application. We used the

IMDB dataset in this experiment, which contains face images

with age labels of celebrities from the IMDB database [50].

We updated the network architecture to include a regression

layer at the end of the network, instead of a classification layer.

As before, the initial training set L contained 7, 000 samples,

the ground set Z had 3, 000 samples and 3, 000 samples

constituted the test set, all randomly selected from the dataset.

Since entropy does not have an exact analog in the regression

setting, the utility vector u in our method (Equation (3)) was

computed using a variance-based strategy: each sample in the

ground set was passed as an input to the three pre-trained deep

models (AlexNet, GoogleNet and ResNet), and the variance of

the outputs produced was selected as the utility score of that

sample. This is intuitive as a high variance denotes a high

degree of disagreement among the models and thus, a sample

of high usefulness. The diversity term was computed using

Equation (4), as before. We present the results with the ResNet

model with a subset size of 2, 000; other models depicted

similar performance. Table III depicts the mean squared error

and the computation time (time taken to select a subset of

size 2, 000 from the ground set). We note that all the methods

depict very similar RMSE values for this dataset. The proposed

method is much more efficient in terms of computation as

compared to DPP and Submodular. This corroborates the

generalizibility of our framework across different applications.

This also shows that Random Sampling can sometimes be an

efficient solution, both in terms of computation and error rate.

Method Random DPP Submodular Proposed

RMSE 12.76 12.74 12.73 12.74

Computation Time - 04:07:28 143:49:50 01:46:59
TABLE III

RMSE AND COMPUTATION TIME ON THE IMDB DATASET WITH RESNET

FOR SUBSET SIZE 2, 000. TIME FORMAT HH:MM:SS.

V. CONCLUSION AND FUTURE WORK

In this paper, we addressed the challenging problem of

selecting a subset of informative samples to fine-tune a pre-

trained deep learning model (trained on a particular dataset)

to a different task, under significant resource constraints. This

problem is of immense practical importance, as several real-

world applications (such as those running on mobile platforms)

are severely limited in terms of memory and computational

resources. We posed the subset selection as a constrained NP-

hard integer quadratic programming problem and derived an

efficient linear relaxation to select a subset of informative

samples. Our extensive empirical studies on three challeng-

ing computer vision datasets using three commonly used

pre-trained deep learning models (AlexNet, GoogleNet and

ResNet) demonstrated the merit of our method over competing

baselines (in terms of accuracy as well as computational

overhead). We also studied the performance of our framework

on a regression application.

As part of future work, we plan to study the performance

of our framework on other popular architectures, such as the

ResNeXt [29] and the VGGNet [5]. We also plan to explore

other vision applications, such as image segmentation using

the SegNet model [3] and object detection using R-CNN

[2]. We will study other strategies to solve the optimization

problem in Equation (7). For instance, techniques based on

semi-definite programming (SDP) relaxation have been ex-

plored to solve quadratic optimization problems; while SDP

is computationally intensive, efficient and scalable algorithms

have been proposed to overcome this challenge [51], [52]. We

will also attempt to prove theoretical guarantees on the quality

of the solutions.

Further, even though validated in the context of fine-tuning

deep architectures, the subset selection algorithm proposed in

this work is generic, and can be adapted to other applications

with an appropriate modification of the terms in the objective

function in Equation (7). For instance, video summarization

is essentially a subset selection problem under a given budget

(the summary length). Feature selection is another example

where the goal is to extract a subset of informative features. As

part of future research, we plan to study the performance of our

framework on these problems and explore its generalizibility

across different application domains.

REFERENCES

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2016.

[2] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-
time object detection with region proposal networks,” IEEE Transactions

on Pattern Analysis and Machine Intelligence (TPAMI), vol. 39, no. 6,
2017.

[3] V. Badrinarayanan, A. Kendall, and R. Cipolla, “SegNet: A deep
convolutional encoder-decoder architecture for image segmentation,” in
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2015.

[4] A. Krizhevsky, I. Sutskever, and G. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Neural Information Pro-

cessing Systems (NIPS), 2012.

[5] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in https://arxiv.org/abs/1409.1556, 2014.

[6] J. Deng, W. Dong, R. Socher, L. Li, K. Li, and L. Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2009.

[7] J. Dean, G. Corrado, and R. M. et al., “Large scale distributed deep
networks,” in Advances of Neural Information Processing Systems

(NIPS), 2012.

[8] G. Alain, A. Lamb, C. Sankar, A. Courville, and Y. Bengio, “Variance
reduction in SGD by distributed importance sampling,” in International

Conference on Learning Representations (ICLR) Workshops, 2015.

[9] I. Loshchilov and F. Hutter, “Online batch selection for faster training
of neural networks,” in International Conference on Learning Represen-

tations (ICLR) Workshops, 2016.

[10] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experi-
ence replay,” in International Conference on Learning Representations

(ICLR), 2016.

[11] A. Katharopoulos and F. Fleuret, “Not all samples are created equal:
Deep learning with importance sampling,” in International Conference

on Machine Learning (ICML), 2018.

[12] T. Johnson and C. Guestrin, “Training deep models faster with robust,
approximate importance sampling,” in Neural Information Processing

Systems (NIPS), 2018.

[13] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” in Deep Learning Workshop at Neural Information Processing

Systems (NIPS-W), 2014.

[14] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Quantized neural networks: Training neural networks with low preci-
sion weights and activations,” Journal of Machine Learning Research,
vol. 18, no. 1, 2017.

[15] M. McDonnell, “Training wide residual networks for deployment using
a single bit for each weight,” in International Conference on Learning

Representations (ICLR), 2018.

[16] M. Jaderberg, A. Vedaldi, and A. Zisserman, “Speeding up convolutional
neural networks with low rank expansions,” in British Machine Vision

Conference (BMVC), 2014.

[17] S. Han, H. Mao, and W. Dally, “Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding,”
in International Conference on Learning Representations (ICLR), 2016.

[18] T. Zhang, S. Ye, K. Zhang, J. Tang, W. Wen, M. Fardad, and Y. Wang, “A
systematic DNN weight pruning framework using alternating direction
method of multipliers,” in European Conference on Computer Vision

(ECCV), 2018.

[19] M. Lin, Q. Chen, and S. Yan, “Network in network,” in
https://arxiv.org/abs/1312.4400, 2013.

[20] A. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient
convolutional neural networks for mobile vision applications,” in
https://arxiv.org/abs/1704.04861, 2017.

[21] Y. Cheng, F. Yu, R. Feris, S. Kumar, A. Choudhary, and S. Chang, “An
exploration of parameter redundancy in deep networks with circulant
projections,” in IEEE International Conference on Computer Vision

(ICCV), 2015.

[22] M. Mathieu, M. Henaff, and Y. LeCun, “Fast training of convolutional
networks through ffts,” in arXiv:1312.5851, 2013.

[23] Z. Zhang, Y. Chen, and V. Saligrama, “Efficient training of very
deep neural networks for supervised hashing,” in IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2015.

[24] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift,” in arXiv:1502.03167,
2015.

[25] B. Ko, H. Kim, and H. Choi, “Controlled dropout: A different dropout
for improving training speed on deep neural network,” in IEEE Inter-

national Conference on Systems, Man, and Cybernetics (SMC), 2017.

[26] A. Sergeev and M. Balso, “Horovod: Fast and easy distributed deep
learning in TensorFlow,” in arXiv:1802.05799, 2018.

[27] D. Amodei and D. Hernandez, “Ai and compute,” in
https://openai.com/blog/ai-and-compute/, 2018.

[28] C. Sun, A. Shrivastava, S. Singh, and A. Gupta, “Revisiting unreasonable
effectiveness of data in deep learning era,” in IEEE International

Conference on Computer Vision (ICCV), 2017.

[29] S. Xie, R. Girshick, P. Dollar, Z. Tu, and K. He, “Aggregated residual
transformations for deep neural networks,” in IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2017.

[30] P. Goyal, P. Dollar, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola,
A. Tulloch, Y. Jia, and K. He, “Accurate, large minibatch sgd: Training
imagenet in 1 hour,” in arXiv:1706.02677, 2017.

[31] S. Banerjee and S. Chakraborty, “Deepsub: A novel subset selection
framework for training deep learning architectures,” in IEEE Interna-

tional Conference on Image Processing (ICIP), 2019.

[32] B. Settles, Active Learning. Morgan and Claypool Publishers, 2012.

[33] S. Chakraborty, V. Balasubramanian, Q. Sun, S. Panchanathan, and
J. Ye, “Active batch selection via convex relaxations with guaranteed
solution bounds,” IEEE Transactions on Pattern Analysis and Machine

Intelligence (TPAMI), vol. 37, no. 10, 2015.

[34] H. Venkateswara, P. Lade, B. Lin, J. Ye, and S. Panchanathan, “Effi-
cient approximate solutions to mutual information based global feature
selection,” in IEEE International Conference on Data Mining (ICDM),
2015.

[35] S. Vempala, The Random Projection Method. American Mathematical
Society, 2004.

[36] X. Yuan and T. Zhang, “Truncated power method for sparse eigenvalue
problems,” Journal of Machine Learning Research (JMLR), vol. 14,
no. 1, 2013.

[37] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, 1998.

[38] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Ng, “Reading
digits in natural images with unsupervised feature learning,” in Workshop

on Deep Learning and Unsupervised Feature Learning at NIPS, 2011.

[39] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
in Technical Report, 2009.

[40] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2015.

[41] A. Brock, T. Lim, J. Ritchie, and N. Weston, “Freezeout:
Accelerate training by progressively freezing layers,” in
https://arxiv.org/abs/1706.04983, 2017.

[42] R. Motwani and P. Raghavan, Randomized Algorithms. Cambridge
University Press, 1995.

[43] A. Civril and M. Ismail, “On selecting a maximum volume sub-matrix
of a matrix and related problems,” Theoretical Computer Science, vol.
410, no. 47-49, 2009.

[44] A. Kulesza and B. Taskar, “Determinantal point processes for machine
learning,” Foundations and Trends in Machine Learning, vol. 5, no. 2-3,
2013.

[45] B. Gong, W. Chao, K. Grauman, and F. Sha, “Diverse sequential subset
selection for supervised video summarization,” in Neural Information

Processing Systems (NIPS), 2014.

[46] G. Nemhauser, L. Wolsey, and M. Fisher, “An analysis of approximations
for maximizing submodular set functions,” Mathematical Programming,
vol. 14, no. 1, pp. 265–294, 1978.

[47] K. Wei, R. Iyer, and J. Bilmes, “Submodularity in data subset selection
and active learning,” in International Conference on Machine Learning

(ICML), 2015.

[48] M. Gygli, H. Grabner, and L. V. Gool, “Video summarization by learning
submodular mixtures of objectives,” in IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2015.

[49] G. Roffo, S. Melzi, U. Castellani, and A. Vinciarelli, “Infinite latent
feature selection: A probabilistic latent graph-based ranking approach,”
in IEEE International Conference on Computer Vision (ICCV), 2017.

[50] A. Rozantsev, M. Salzmann, and P. Fua, “Residual parameter transfer
for deep domain adaptation,” in IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2018.

[51] Z. Luo, W. Ma, A. So, Y. Ye, and S. Zhang, “Semidefinite relaxation
of quadratic optimization problems,” IEEE Signal Processing Magazine,
vol. 27, no. 3, 2010.

[52] P. Wang, C. Shen, A. Hengel, and P. Torr, “Large-scale binary quadratic
optimization using semidefinite relaxation and applications,” IEEE

Transactions on Pattern Analysis and Machine Intelligence (PAMI),
vol. 39, no. 3, 2017.

