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Abstract—Although secular, handwritten signature is one of
the most reliable biometric method used by most countries. In
the last ten years, the application of technology for verification of
handwritten signatures has evolved strongly, including forensic
aspects. Some factors, such as the complexity of the background
and the small size of the region of interest - signature pixels - in-
crease the difficulty of the targeting task. Other factors that make
it challenging are the various variations present in handwritten
signatures such as location, type of ink, color and type of pen, and
the type of stroke. In this work, we propose an approach to locate
and extract the pixels of handwritten signatures on identification
documents, without any prior information on the location of the
signatures. The technique used is based on a fully convolutional
encoder-decoder network combined with a block of refinement
layers for the alpha channel of the predicted image. The exper-
imental results demonstrate that the technique outputs a clean
signature with higher fidelity in the lines than the traditional
approaches and preservation of the pertinent characteristics to
the signer’s spelling. To evaluate the quality of our proposal,
we use the following image similarity metrics: SSIM, SIFT, and
Dice Coefficient. The qualitative and quantitative results show a
significant improvement in comparison with the baseline system.

Index Terms—Handwritten signature, Image segmentation,
Deep learning, Encoder-decoder, FCN.

I. INTRODUCTION

Handwritten signature is a biometric authentication method
widely used for personal documents and legal contract valida-
tions. Besides, experts in forensic analysis examine handwrit-
ten signatures to certify the authenticity of the writing and
reveal possible fraud, which in some cases can mean high-
value financial losses.

One possible approach to signature authentication is through
human operators who must compare the signature present in
the document with the signature of the original subscriber.
However, this approach can be expensive and time-consuming,
given the amount of data accumulated in institutions that
use a handwritten signature as a means of identification and
authentication [1].

Several approaches have been developed in the field of ma-
chine learning and statistical methods to perform the signature
detection and verification tasks automatically. Among these
approaches, we can mention techniques based on Artificial

Neural Networks (ANN) [2], Hidden Markov Models (HMM)
[3], Support Vector Machines (SVM) [4], and Fuzzy Logic
[5]. Among the neural network techniques, it is important to
mention Faster Region-based Convolutional Neural Networks
(RCNN) [6] and YOLOv2 [7]. Both models were adapted for
logos and signature localization in noisy documents [8].

Many of the techniques that address signature verification
use public databases [9] [10] [11] [12]. However, such bases
as GPDS [13], and MCYT [14] present images with a light
background and dark signatures. This characteristic does not
present an environment of great complexity for segmenting
the signature pixels. Besides, due to the insertion of mobile
devices and their growing popularity, several commercial and
banking applications, for example, use images captured by
smartphones for transactions, payments, account opening, and
copies of documents [15] [16].

On the other hand, document images captured by smart-
phone cameras are usually presented with distortions and back-
ground noise. Therefore, treating these images in such a way
that only handwritten signatures can be extracted for analysis
of their characteristics becomes a challenging task in image
processing. These images do not always present the desired
features or the expected quality, negatively influencing the
process of recognition and classification of these handwritten
signatures.

The situation may become more critical if the image of
the source document has unwanted characteristics, such as
imperfections, backgrounds, printed text, shape, and variations
in size. Another condition that can affect the quality of the
attributes of handwritten signatures occurs when the image
presents some distortion, such as perspective, inclination,
scale, or unexpected resolution, all of them when scanning
photos. All these interference can also harm the verification
systems of handwritten signatures with the increase of false
positives or false negatives in the classification process.

In this work, we propose an approach to the pixel-level
segmentation of handwritten signatures on images. Our model
has been trained with ID document images with the same
characteristics and interference that can arise in a real-world
scenario. With this, our model will be able to get around the
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problems presented during the capture of signature images in
different identification documents in noisy environments. Our
proposal will also enable the acquisition of signatures with
greater fidelity in the strokes regardless of the types of pen,
ink, background, preserving the graphic characteristics. An-
other contribution is that the preservation of the characteristics
of the signature features will also make it possible to carry out
graphotechnical analyzes. These features are used by forensic
experts and may be applied in future systems for verifying
handwritten signatures with a bias in forensic science.

We use a Fully Convolutional Network (FCN) [17] for
signature segmentation on identity document images with
refinement layers for the alpha channel of the image.

The remainder of this paper is organized as follows: The
Section II presents the Related Works; in Section III we
describe the Proposed system; Section IV presents the Ma-
terial and Methods; in Section V we present the results and
analysis of our proposal; and finally, the Section VI depict the
conclusions obtained from this work.

II. RELATED WORKS

Handwritten signatures can be analyzed by online verifi-
cation systems when an analysis is carried out during its
production. In the most recent work by [18], an online
handwritten signature verification system based on a critical
segment is proposed. The system identifies and exploits the
segments that remain unchanged in the signatures to capture
the intrinsic behavior in the signature incorporated in the
signatures of each signatory. Another way to perform the
signature analysis is offline when the signature has already
been produced by the signatory. In [19], a model based on
Convolutional Neural Networks inspired by the architecture
of Inception V1 is presented to learn about the characteristics
existing in genuine signatures and forged signatures. The study
uses offline subscriptions to public databases such as CEDAR.
Our work is focused on offline subscriptions.

Studies have been carried out to investigate the performance
of the Deep Learning algorithms from literature facing the
task of signature and logo detection. The deep learning-based
object detectors, namely, Faster R-CNN, ZF, VGG16, V GGM

and YOLOv2 where examined for this task. The proposed
approach detects Signatures and Logos simultaneously [8].
Mainly, in that study, the authors worked to detect signatures
rather than segmentation of signature traits.

Thus, bounding boxes were generated around the detected
signatures and logos. The dataset used was the Tobacco-
800 [20], which has a clear background and is composed of
scanned documents comprising printed text, signatures, and
logos.

Other scientific papers have presented methods for the
stroke-based extraction of signatures from document images.
The proposed approach in [1] is based on an FCN trained
to learn, map, and extract the handwritten signatures from
documents. Although the proposal achieves good results, the
network architecture requires a fixed size (512 x 512) of the
input images [1].

In [21], a similar approach is used for signature extraction
in identification documents. For this, the authors used an
optimized U-net network with less trainable parameters and
input nodes than [1]. To increase the generalization of the
model, the authors applied the data augmentation technique
in the database, generating greater image diversity during
training. The model proposed in [21] achieved higher rates
than [1], despite having fewer parameters.

To compose the structure of the first stage of our FCN+RL
model, we selected an approach similar to the one proposed
by [21]. The proposal of [21] presents a segmentation model
at the stroke level, with promising results for the objectives of
the first stage of our system proposed in this work.

In fact, stroke pixel integrity is of great importance to the
offline signature verification process. Maintaining this integrity
to the maximum can increase confidence in Handwritten Sig-
nature Verification (HSV) systems, especially if more technical
approaches, such as graphoscopy in forensic science, are used.

In this sense, proposed methods have been presented for
feature extraction using Deep Convolutional Neural Network
combined with the SVM classifier to writer-independent (WI)
handwritten signature verification systems. The proposed ap-
proach described in [22] outperformed other WI-HSV methods
from the literature and outperformed writer-dependent meth-
ods from literature in some Brazilian dataset. Nevertheless,
both works, which reach the state-of-the-art in the HSV task,
assume the image signature pixels are available in a clean area.

In this paper, we are proposing a robust handwritten signa-
ture segmentation method that can be used to detect and extract
only the signature pixels in some document. As much more the
signature pixels can be extracted without noisy and distortion,
better will be the results achieved by any HSV system in the
signature verification task.

III. THE FCN+RL PROPOSED ARCHITECTURE

The handwritten signature segmentation task is performed
by an approach using an FCN encoder-decoder network ar-
chitecture along with the refinement layers (RL) for the alpha
channel of the signature image. The FCN is based on the
signature segmentation neural network architecture proposed
by [21], that uses the FCN U-net architecture [23]. This FCN
U-net model is then improved by the addition of the RL model,
motivated by the results obtained by Xu et al. [24].

Fig. 1 shows the architecture of our proposed model.

A. The FCN Encoder-Decoder stage

The convolutional operations (in blue) are set to 3 × 3 of
size with ReLU activation function. The max-pooling layers
(in red) are set to 2 × 2 with stride 2. In the expansive path,
there are upstream operations (in green) of size 2 × 2 con-
catenating with the corresponding characteristics of the path
of contraction (gray arrows), followed by two convolutions of
size 3× 3 followed by ReLU operation.

The training is carried out by two stages. First, we train the
FCN encoder-decoder layers to learn the signature pixels. At
the FCN stage, the 512×512 image is sent to the network input
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Fig. 1: The FCN+RL proposed architecture. In this example, FCN performs segmentation by pixel classification, providing an
image with the estimated signature pixels in the foreground. After the first stage, the concatenation between the input image
and the image predicted by the FCN encoder-decoder layers is sent for input from the layer block for RL at stage two.

that follows the contraction layers. Feature maps generated
in the contraction layers are cropped and copy applied to
concatenate the expansion layers. The expected output result is
a binary image containing only the signature pixels predicted
by the model.

To calculate the error and adjust the weights, a ground-truth
image is used. In this way, the model returns the error between
the prediction and the ground truth images to fit the weights
later.

In [24], the authors use the original image and a corre-
sponding trimap of the original images that are concatenated
during the train process. These images then proceed to the first
convolution layer. The disadvantage of using the trimap in our
case is that the trimap image is also needed in the inference
process. Therefore, in our model, we ignore the trimap and
send only the original image to the input layer. Concatenation
is performed between the contraction and expansion layers
when training the FCN. Thus, in the inference process, we use
only the original image, to keep as much signature information
as possible, such as the forensic experts would use in a real-
world scenario.

B. The Refinement Layer stage

The RL model architecture consists of 4 convolutional
layers. A non-linear ReLu layer follows each of the three
first layers. Each convolution layer has a 64 × 3 × 3 setting.
Convolutional layers for refinement do not have max-pooling
layers or upstream layers, so we add a Batch-normalization
layer after each of the first three convolutional layers.

Before training the refinement layers, the weights of the
FCN layers need to be frozen. The RL input image is generated
using the concatenation between the original image and the
output image predicted in the previous stage. This concatena-
tion extends the alpha channel information and assists in the
refinement process for the subscription region.

The weight adjustment of RL block is performed using the
same ground-truth image and procedure used for training the
FCN block.

The expected result of the whole process is a binary image
with the pixels of handwritten signatures as one and the any
other irrelevant pixel as zero. Therefore, this binary image
serves as a mask to select the pixels of the handwritten
signatures in RGB or gray level from the original input image.

IV. MATERIALS AND METHODS

A. Datasets

Public datasets of handwritten signatures, such as MCYT
and GPDS, do not meet the purpose of this work due to
their composition because they do not show the poor image
conditions that might impair the classification process. Another
challenge for the acquisition of a database is the confiden-
tiality of information, as these are documents with personal
information. To overcome this drawbacks, the DSSigDataset-
2 database [21] was used for the experiments in this work.

The DSSigDataset-2 is made up of 20, 000 document´s
images with 200 background samples, and different distortion
in the image. The handwritten signatures blended in the
document image were selected from the MCYT dataset [25]
together with voluntarily generated signatures.

Another aspect of the DSSigDataset-2 is the type of pen
used, in which different types and different colors were used
to avoid possible bias in the learning of the network regarding
the color and type of ink. Fig. 2 presents an example of an
image from the DSSigDataset-2 database. A small area of the
target handwritten signature is highlighted to give an idea of
the challenge to detect the signature pixels in such conditions.

B. Training procedure

We split the 20,000 images of DSSigDataset-2 for training,
validation, and test using the cross-validation method. We
assigned 80% for training and 15% for validation, and 5% for
test, which respectively resulted in 16, 000 training images,
3, 000 validation images, and 1, 000 test images taking into
account different handwritten signatures in all partitions. Also,
since we had random image transformations applied in the
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Fig. 2: Example of an image of an identification document in
the composition of the training database.

document and the background, during the DSSigDataset-2
construction, we assure a complete unbiased dataset.

We used the Adam optimizer [26] to minimize the objective
function, which was the Dice coefficient (DC) [27], shown in
Equation 1.

DC = 2
|A ∩B|
|A|+ |B|

(1)

where A represents the ground-truth image and B represents
the segmented image at the network output.

Fig. 3: Graph of the evolution of the similarity rate for the
evaluation metric with the Dice coefficient in the validation
and training sets.

For training the FCN encoder-decoder (first stage), 10,000
epochs were used. For training the refinement layers, 5,000
epochs were used. Despite this number, our model has already
obtained results with rates above 0.80 from epoch 1,000 for the
data similarity rate between the output image and the ground-
truth. Fig.3 shows the similarity rate between the predicted and
the expected data (pixels) for the Dice similarity coefficient

Fig. 4: Graph of the evolution of the rate for objective function
with the Dice coefficient in the validation and training sets.

(evaluation metric) during the training. Parallel to the increase
in the similarity rate, the model showed a loss rate consistent
with the results. Fig.4 shows the evolution of the rate for the
loss function (objective function).

V. RESULTS AND DISCUSSION

We performed several experiments to determine the best
possible configuration and to validate the model’s ability. We
tested different configurations by evaluating the effects on
optimization of hyper-parameters. However, we report in this
paper the best validated configurations after all the preliminary
experiments.

To compare the results obtained from the experiments of
this work, we implemented the model described in [21] as
a baseline system. The reference model was also subjected
to training with the DSSigDataset-2 database under the same
conditions for the number of epochs and division of training
and validation data. Tests applied to both models took place
under the same conditions on the test set. Three metrics
were used on the predictions of the models covered in this
work: Structural Similarity (SSIM) index [28], Scale Invariant
Feature Transform (SIFT) [29], and Dice Similarity Coefficient
(DSC). Quantitative results for similarity metrics are presented
in Table I.

TABLE I: results for similarity metrics

Model SSIM SIFT DSC
rate std rate std rate std

FCN+RL 96% 0.04 97% 0.05 88% 0.18
Reference model [21] 92% 0.06 56% 0.4 45% 0.39

The FCN+RL model presents superior results for the three
evaluation metrics. The results show different rates for dif-
ferent parameters. This observation is relevant to the charac-
teristics considered by each metric used. The DSC technique
presents lower values because it evaluates pixel-by-pixel of
the entire region of the image and not just the morphology of
the segmented area. Moreover, our proposed model is much
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more robust against scale and other distortions in the signature
image. The RL block is responsible to filter out irrelevant
pixels and filter in some pixels which cannot be detected by
the FCN autoencoder block.

After performing the tests and applying the similarity met-
rics, three sets of data were selected with thirty samples
for each set. These data were collected from the results of
the SSIM, SIFT, and DSC tests and subjected to statistical
analyses.

First, we applied the Shapiro Wilk test to verify the nor-
mality of the data. This test indicates that the data do not
follow a normal distribution for the datasets, so we applied
the Wilcoxon-Mann-Whitney test. Tables II and III shows the
results of the normality test and Wilcoxon test, respectively.

For the null hypothesis, we consider that the means are the
same for both models, and as an alternative hypothesis, we
consider the difference in means between the two models. We
considered a significance level of 0.05.

TABLE II: Normality test results

Shapiro Wilk test
proposed model reference model
W p-value W p-value

SSIM 0.659 4.25e-07 0.860 0.001
SIFT 0.510 6.93e-09 0.717 2.79e-06
DSC 0.600 7.32e-08 0.837 0.0003

TABLE III: Results of the Wilcoxon-Mann-Whitney test.

Wilcoxon-MW
W p-value

SSIM 218.5 0.0003
SIFT 102.5 1.24e-7
DSC 158.5 8.03e-6

The results of the Wilcoxon test show that the p-value
values are lower than the level of significance. Therefore,
we reject the null hypothesis. This result grants evidence that
the models perform differently for the tests performed in this
work. Observing the results of similarity rates between the two
models, the statistical tests show evidence that our proposed
model is statistically superior to the reference model.

Finally, we performed a qualitative assessment of the images
predicted by the models. In this evaluation, it was possible
to infer about the noise levels that negatively impact the
subscription segmentation.

Qualitative results show an improvement in the segmenta-
tion of handwritten signatures by our FCN+RL model. Fig. 5
shows the results for the two models, the reference model [21]
and our model FCN+RL. Fig. 6 shows the enlarged results of
the subscriptions. It is easy to observe the results produced by
our FCN+RL model show greater fidelity to the original image,
in addition to having less background noise and keeping the
fine details of the signatures in both examples.

VI. CONCLUSIONS

Extracting handwritten signatures from images with a com-
plex background and noise interference, such as identification

documents, is a complex but promising task for the application
of signature verification systems. Achieving the maximum
fidelity of a signature’s characteristics can have a positive
impact on the classification results, including guaranteeing the
graphotechnical characteristics used by forensic specialists.

In this article, we proposed an approach to an FCN encoder-
decoder network with refinement layers using a concatenation
of the alpha channel of the region of interest on the original
image for the segmentation of handwritten signatures, the
FCN+RL. The technique used with the alpha channel opacity
over the image in the second stage of the convolution layers,
refinement stage, provided an increase in the similarity rate
between the predicted images and the ground truth. This
refinement reduces the scattering of the region of interest
and presents the pixels of the signatures much less sparse
and greater preservation of the graphic characteristics of the
signatures.

With this result, signature verification systems can be used
on handwritten signatures extracted from different images of
ID documents captured by various computing devices such
as smartphones. Catch signatures will be much cleaner and
preserved in the segmentation process. In this way, more
technical analyzes, such as those used by forensic science,
may make use of the graphotechnical characteristics held in
the signatures, even submitted in digital systems.

The evaluation metrics used were SSIM, SIFT, and the
Data Similarity Coefficient. To compare the results obtained
with the proposed approach, we replicate the subscription
segmentation model proposed by [21] to use as a reference.

The best results of our proposed model obtained an im-
provement rate of more than 40 percentage points about the
reference model. The qualitative results show a greater fidelity
in the characteristics of the signature and a low level of
background noise.

In the next works, we intend to present the signature
verification models that are being developed by us and will
be used for the calculation of graphotechnical analyzes.

As possible future works, it is also possible to point out the
implementation of a semantic segmentation solution based on
the proposed architecture for the application domain relevant
to the structure and characteristics of documents. An example
is the detection of anomalies in documents forged or created
by gross forgeries—interest area of the forensic science, the
documentoscopy.

In addition to the implementation, as mentioned earlier,
instantiating the model to other application domains would
allow a way to assess the generalization capacity of the
proposed model, as well as to detect possible adjustable points
in the architecture.
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(a) Input image signature. (b) Reference model [21] result. (c) Our FCN+RL model result.

(d) Input image signature. (e) Reference model [21] result. (f) Our FCN+RL model result.

Fig. 5: Qualitative result of the model used in [21] and our FCN+RL proposed model.

(a) Input image signature. (b) Reference model [21] result. (c) Our FCN+RL model result.

(d) Input image signature. (e) Reference model [21] result. (f) Our FCN+RL model result.

Fig. 6: Zoom in the images shown in Fig. 5.
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