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Abstract—
Local learning algorithms are a very general class of non-

parametric lazy learners obtained by stitching together systems
of locally weighted parametric models. For a system of locally-
learned classifiers, there is currently no convenient method to
find points on the decision surface. In this paper, we introduce a
generic algorithm for finding the decision surface for systems of
localized classifiers using arbitrary model families. The decision
surface of a classifier is often useful for obtaining pseudo-
probabilistic output from the orthogonal distance of a point
to the decision surface. We therefore extend our method to
find this orthogonal projection of an arbitrary point onto the
decision surface for a broad class of classifier families. We
specifically derive the necessary equations for computing the
orthogonal projection onto the decision surface of systems of
locally linear support vector machines. We demonstrate how this
can be used for pseudo-probabilistic calibration, and by extension
for multiclass classification strategies such as one-vs-rest or one-
vs-one. Lastly, we demonstrate the efficacy of this method to
obtain more accurate multi-class classifiers on popular datasets.

I. INTRODUCTION

Parametric classification methods form a broad class of
statistical and machine learning algorithms for data with
categorical dependent variables. Typically, parametric methods
require stringent assumptions about the distribution of the
underlying data, making them inflexible, but providing a
limited set of parameters that can be used to interpret the
model. On the other hand, nonparametric methods forego these
assumptions, making them more flexible, but less interpretable.

Methods for creating a nonparametric model family from
a parametric one via model localization are common in the
statistics community. A common scheme when the indepen-
dent variables are continuous is via kernel weighting methods
[1], which are a category of “lazy learners” [2]. Nonpara-
metric regression methods evolving from the kernel-weighting
paradigm include the Nadaraya-Watson estimator [3], LOESS
[4], and local polynomial models [5]. This scheme is not
limited to regression, and the same general idea has been
extended to clustering problems [6], density estimation [7],
anomaly detection [8] and surface reconstruction [9]. More
recently, learning local representations of data has become
an important part of supervised learning in many domains,
including image-processing [10] and time-series analysis [11].

A broad class of local models can be formed by localiza-
tion of classification models. Many properties of systems of
local models employing specifically linear SVMs have been
investigated. Work on the topic begins circa 1992 with the

seminal work by Bottou and Vapnik [1], who employ linear
SVMs with the square KNN kernel. Local modeling remains a
popular topic, and improvements to the base algorithm include
extensions using the “kernel trick” [12], kernel and bandwidth
selection [13], feature weighting [14], efficiency heuristics [15]
and others. Interestingly, despite the seemingly large interest
in constructing new classifiers by means of systems of local
SVMs and other models, to our knowledge no attention has
been paid to the discovery of or the properties of the decision
surface of the resulting classifier in the input space. This is
problematic, since many applications of a classification model
family depend on the decision surface. One obvious example
is obtaining scores from a classifier, which are often some
function of the orthogonal distance of a point to the decision
surface. We anticipate that the topic of this investigation will
be of use to any future investigations into local SVMs and
other varieties of local classifiers.

Although a distance to the local decision surface can be
readily obtained from the local model at a test point, it is
unclear whether these distances can be meaningfully compared
between two test points. This problem has repercussions for
techniques that rely on score comparisons, such as extending
classifiers to multi-class problems using the one-vs-rest or one-
vs-one schemes. It is therefore important to be able to find the
decision surface of a system of localized classifiers, as distinct
from the decision surfaces of the individual local models.

Unfortunately, although the individual local models can be
used to obtain predictions from many classification model
families, individual models at arbitrary query points q cannot
be used to directly compute the decision surface of the system.
Recently, algorithms such as Subspace-constrained Mean Shift
[9] have been developed that use local models to perform
the superficially similar problem of surface reconstruction in
point-cloud problems. We will show that this approach can be
modified to obtain the decision surface for localized classifiers
such as systems of local support vector machines.

The modified Subspace-constrained Mean Shift that we
introduce can be used to find points lying on the decision
surface, but it is difficult to predict precisely where on the
surface the algorithm will terminate. To remedy this, we
introduce a simple enhancement to the algorithm that allows
resampling of the surface along a particular direction. For
well-behaved classifiers, we demonstrate that this resampling
technique can be used to find the orthogonal projection of an
arbitrary point onto the decision surface.

978-1-7281-6926-2/20/$31.00 ©2020 IEEE



Armed with the decision surface, and the orthogonal pro-
jections, we can readily apply calibration techniques to obtain
pseudo-probabilistic output from the resulting model. We then
use the resulting probabilities to tackle multi-class classi-
fication problems. To demonstrate the effectiveness of the
algorithm, we apply this technique to a simple toy dataset,
and also to a handwritten digits classification task [16].

II. BACKGROUND

A. Local Models

Local regression methods are frequently employed as non-
parametric smoothing procedures. Such popularly used meth-
ods include local constant models (Nadaraya-Watson) [3],
local linear models (LOESS) [4], and local polynomials [5].
The procedure used to localize these models can be applied to
arbitrary models that allow a weighted learning procedure, and
that make predictions [17]. The authors of [1] apply this same
concept to obtain predictions from localized linear classifiers.

The general idea of local modeling is to fit a model to a
locally-weighted neighborhood of the training data, and then
to make a prediction with the obtained local model. If the
weighting scheme and loss function of the model family are
in Cm, and the loss function is convex, then the parameters of
the local models will generally be Cm in the query point as
well, resulting in well-behaved predictions across the space.
Although this process can apply to many model families,
simple models are the most popular candidates for localization,
since convexity is a desirable property of the candidate model
family, and also since the reduction in training data caused by
the localized-weighting step often opposes the construction of
complex local models.

Still, other applications for local models than mere predic-
tions have suggested more complex models for localization. In
[8], the authors use the model parameters of localized ARMA
models for anomaly detection. In [18], the authors use the
model parameters of localized Gaussian Process models for
time series classification.

We formalize the notion of local models as follows: Suppose
a model family F together with some training algorithm A that
admits a weighted training scheme. Each training point xi ∈
X ⊂ D is weighted as wi ∈ IR, so that A : P(D × IR)→ F
for some domain D. We define the corresponding system of
localized models F ′ to give a single model in F for each point
in the domain D, F ′ =

∏
q∈D F . The localized algorithm

A′K : P(D) → F ′ extends A by considering the weights
wi = K(q, xi) to be a function of the data X ⊂ D and some
query point q ∈ D. Thus, A′K takes in a dataset X ⊂ D,
and returns a set of models, one fq ∈ F for every point
q ∈ D. Some local algorithms, such as LOESS, only require
that q ∈ D∗ where D∗ is some subspace of independent
variables of D, but we will not formalize this distinction in
our analysis. In the proceeding, the weight function K and
other functions are assumed to handle the division between
dependent and independent variables appropriately, and we
will abuse the notation accordingly.

If the training algorithm A minimizes a loss function that
is the sum of individual model errors:

L(X) =
∑
x∈X

E(x, f) (1)

Then the localized algorithm is easy to obtain as:

A′K(X) = argminfq∈F
∑
x∈X

E(x, fq)K(q, x) (2)

Support vector machines happen to be of this type. K(q, x)
is usually called the “kernel”, and many choices of kernel
are common in the literature. One popular choice is a square
KNN-kernel, as employed with locally linear SVMs in [1] and
[14].

K(x, y) =

{
1 ||x− y||2 ≤ ||x− yk||2

0 else
(3)

where yk is the kth-nearest training point to x. We will employ
the Gaussian Kernel with a fixed radius (the “bandwidth”) in
our experiments, because it is smooth:

K(q, x) =
1√
2π
e−
||x−q||2

2h2 (4)

Yet other functions can provide a both smooth and variable-
width kernel if desired. Although optimal bandwidth selection
is an important problem in local modeling, it is not the focus
of this work.

In this notation, the Nadaraya-Watson estimator can be
obtained by taking F to be constant functions, and letting E be
ordinary least-square errors against the dependent dimensions
of x. LOESS can obtained by taking F to be linear functions
of the independent dimensions of x, and E as ordinary least-
square errors.

Often, a particular use case of a system of localized models
has the convenient property that the desired quantity is directly
obtainable from the learned model fq . For example, LOESS
is commonly used for scatterplot smoothing, requiring pre-
dictions at arbitrary independent variable inputs. Since the fq
returned by training an ordinary least squares model represents
a linear function of the independent parts of x, we can easily
obtain a prediction from fq at the query point q by simply
evaluating the function.

Unfortunately, it is not always the case that the desired
quantity can be directly obtained from the learned model fq .
For example, points on the decision surface of a system of
localized classifiers cannot be obtained from the individual
fq at arbitrary points q. This is the problem of the current
investigation, the solution to which is inspired by another class
of local modeling methods that also suffer from this issue.

B. Mean Shift

Although they incorporate local modeling methods, the
Mean Shift [19] and Subspace-constrained Mean Shift [9]
algorithms are more typically considered to be a subset of
the theory surrounding kernel density estimation [7]. This is
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to some extent because, although Mean Shift is often used
as a clustering algorithm, it is theoretically convenient that it
happens also to find the modes of the kernel density func-
tion. Likewise, it is theoretically convenient that Subspace-
constrained Mean Shift happens to find the “ridges” of the
kernel density function [9].

We can also view Mean Shift and variants as algorithms
that operate on systems of localized models. The primary
difference between these methods and the methods described
in the previous section is that the use case does not possess
the convenient property that the desired output is directly
obtainable from the learned model fq . MeanShift and variants,
rather than seeking properties of arbitrary query points q,
seek to find query points that satisfy a particular property.
Namely, they seek points q that have 0 error evaluated against
their own local regression model. For LOESS, the distinction
between dependent and independent variables causes this to
be a property at all query points. Since the model families
of MeanShift variants do not distinguish between independent
and dependent parts, these points are slightly more difficult
to obtain. For these models, the points that lie on their
own regression surface can be found by projecting a point
iteratively onto its local regression surface, “chasing down”
the regression surface in a sense. It is easy to see that such
an iterative method can only terminate at a stationary point
of the local modeling/projection algorithm. Whether or not
the algorithm ever terminates is another question entirely, and
whether or not Mean Shift converges in the general case
remains an open question [20].

In the notation introduced above, Mean Shift operates on the
family F of constant functions returning a vector of the same
dimensionality as D, and with E being total least-square errors
against x. We can then obtain a projection from q onto the
image of fq . By iterating this projection scheme, we obtain an
algorithm that terminates (if it terminates) in a 0-dimensional
set, which is convenient as a clustering algorithm, and which
we call Mean Shift. Subspace-constrained Mean Shift can be
obtained by taking F to be m-dimensional linear embeddings
in D, and letting E be total least-square errors against x. By
iteratively projecting a point onto the surface of the local total
least-squares regression model, we obtain a point on an m-
dimensional surface reconstruction of the input data X [9].
We will replicate this intuition of “chasing down” the local
surface and apply it to systems of localized classifiers in the
proceeding section.

III. METHODOLOGY

In the following, we will refer to properties of an “(individ-
ual) local model”, in which we mean a single model trained
at some query point q. For example, for local classifiers,
individual local models each possess a unique decision surface.
On the other hand, if we form a new classifier g by combining
the predictions of the individual models so that g(q) = fq(q),
then g has a decision surface that is distinct from the decision
surface of any individual local model. We distinguish these
as properties of the “system of localized models”, in which

Algorithm 1 Localized Classifier Decision Surface Projection
given A,K,X, q
y ← q
repeat
fq ← AK(q,X)

y ← proj(y,DS(fq))
until convergence
return y, fq

we mean the class of algorithms resulting from the process of
training many local models and combining the results in some
way.

For classification models, we can obtain a prediction at a
query point q from the individual local models fq directly,
so that nothing further is required whenever predictions are
the ultimate goal. It is often desirable to obtain additional
properties of the trained model when employing classification
models. For example, when extending an algorithm to mul-
ticlass problems via a one-vs-rest or one-vs-one strategy, it
is necessary to obtain scores. For such applications, a natural
scoring mechanism is to obtain the orthogonal distances to the
decision surface. The decision surface of a system of localized
classifiers is not naively given by the decision surfaces of or
any other property of the individual fq at arbitrary query points
q.

However, it is easy to see that a point q will lie on the
decision surface of the system of localized classifiers if and
only if it lies on the local decision surface at q. To be clear,
if we let A be some family of simple binary classifiers, then
the combined predictor g described above predicts 1, 0 or
“decision surface” precisely when fq does, by definition. If we
adopt an iterative projection scheme analogous to Mean Shift
variants, then the decision surface of the system is precisely
the stationary points of the projection scheme.

Letting proj(x, Z) be the orthogonal projection of x ∈ D
onto Z ⊂ D, and DS(f) the decision surface of f :

Although this algorithm will converge to a point on the
decision surface if it converges, the fact that there is currently
no general proof for the convergence of Mean Shift [20] causes
us to suspect that a proof of convergence of this algorithm is
non-trivial. We will therefore forego an attempt at a proof and
provide empirical evidence instead, provided in Section IV.

Unfortunately, this scheme generally will not proceed to-
ward the nearest point on the decision surface. Therefore, we
introduce some additional mechanics to obtain the orthogonal
projection. The general idea is to iteratively project a query
point toward the decision surface of a single local model
defined at that point along some initial vector v. This algorithm
terminates (if it terminates) at a point on the global decision
surface for the localized classifier in the direction of v if one
exists. v is then iteratively adjusted toward the surface normal
at that point. The result is the orthogonal projection of the
query point onto the decision surface, which can then be used
toward, e.g. Platt calibration of the full model.

Suppose that the kernel K is continuously differentiable,
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Algorithm 2 Constrained Decision Surface Projection
given A,K,X, q, v
y ← q
repeat
f ← AK(q,X)

y ← proj(y,DS(f) ∩ {x|x = y + λv})
until convergence
return y, f

the error function E is continuously differentiable, and the
loss function L is convex. Then the localized classification
algorithm A′ in Equation 2 is a composition of continuously
differentiable functions and is therefore itself continuously
differentiable. This is a convenient property, since it implies
that the scores obtained from the orthogonal distance from q
to DS(fq) can thus be stitched together into a single continu-
ously differentiable function f∗(q) = ||q−proj(q,DS(fq))||.
The implicit function theorem gives that the level set f∗(q) =
0 is locally a differentiable function of one of the components
of q whenever the gradient is not the zero vector. Note
that although some loss functions such as hinge loss are
not everywhere differentiable, we only require differentiability
along the decision surface. For hinge loss, this will only occur
when one of the training data lie exactly on the local decision
surface. This is almost guaranteed to occur at some points, but
for finite training sets, this set of points will be limited. Thus,
even for common non-differentiable loss functions, the normal
vectors to the level set exist and are differentiable almost
everywhere, allowing us to apply a wide range of optimization
strategies to the direction of our projection.

In order to perform various optimization algorithms against
the direction of projection, we require a means to resample
the decision surface in a orderly fashion. We amend algorithm
1 to allow constraint to a particular direction vector v.

It is important here to choose v so that there exist points
on the decision surface in that direction. However, it is easy
to check if this algorithm has converged to the decision
surface, by simply evaluating proj(y,DS(f)) on the result,
and ensuring that it gives y.

For classifier families with a linear decision surface, the
constrained projection is given by:

proj(y,DS(f) ∩ {x|x = y + λv}) = y − y · n
v · n

v

where n is the normal vector to the local decision surface.
For non-linear classifiers, a means to project onto the decision
surface along a particular direction may or may not have such
a convenient closed-form.

By varying the vector v along which we make our projec-
tion, we can search for a point on the decision surface that
is closest to our query point q. If we further require that K
and E are twice differentiable, then the normal vectors to
the decision surface will also be differentiable, and we can
therefore perform ordinary gradient-dependent optimization
algorithms on v to minimize its difference with the surface

Algorithm 3 Orthogonal Decision Surface Projection
given A,K,X, q, α
y, f ← Algorithm 1(A,K,X, q)
repeat
n← (∇S)(y)
v ← (1− α)(y − q) + αn
y, f ← Algorithm 2(A,K,X, q, v)

until convergence
return y

normal. Again, we note that we only require this property
along the decision surface, so that loss functions that are
twice differentiable almost everywhere are likely to not exhibit
problems for non-contrived datasets.

First, we run the above described iterative projection pro-
cedure to find some point on the decision surface, y0. Since
the level set at that point is a differentiable function within
some ε ball by the implicit function theorem, we consider the
level surface at that point in the reference frame where ni, the
normal vector to the surface at yi, is the independent variable.
The level surface near yi can thus be written as a function
g(a) ∝ ni, where a is a vector in the null space of nTi . The
gradient of the distance between q and yi can be taken with
respect to this new domain to obtain:

∂

∂a
||q − yi||2 = 2rejni

(yi − q)

where rejni
(x) is the vector rejection of x onto ni. Since

actually writing our decision surface as a closed-form function
is infeasible, we would like to make a small step along the
surface in this direction instead. We can accomplish this by
constraining the projection step of our iterative algorithm from
q to be some convex combination of the vector ni and (yi−q).
If yi+1 is forced to lie along such a line from q, then:

rejni
(yi+1) =

rejni
(q + λ((1− α)(yi − q) + αni)) =

rejni
(q) + C1 ∗ rejni

(yi − q) =
rejni

(yi) + C2 ∗ rejni
(yi − q) =

rejni(yi) + C2 ∗ ∂
∂a ||q − yi||

where Cj are some constant values. We therefore obtain a
simple gradient descent algorithm. This assumes that our
constrained iterative projection algorithm actually converges
to some point yi. For an arbitrarily chosen direction, this is
not guaranteed. Still, since there exists some ε on which our
level surface is a function, as long as we constrain α to be
small enough that our algorithm does not leave that ε ball, the
existence of yi is assured. It is not clear how to find the size
of ε, so we will satisfy ourselves with simply choosing α to
be “small”, in the same sense that ordinary gradient descent
chooses a “small” step size.

We can now apply the gradient descent process described
above to obtain an orthogonal projection onto the decision
surface:
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where S is the decision surface of our system of local
classifiers. Note that if algorithm 3 fails to converge to the
decision surface due to having “missed” it via poor selection
of v, a simple heuristic to allow the algorithm to continue is
to simply apply algorithm 1 to the result. We have found that
this generally gives good results.

What remains is a convenient way to compute (∇S)(y).
One possibility is to perform a finite difference by taking a grid
in some small neighborhood of y and applying algorithm 1 to
obtain points on the decision surface S. We can then compute
a hyperplane estimation from those points with, for example,
total least-squares regression, which gives an approximation
to (∇S)(y).

Finite difference approximations are generally inferior to
direct differentiation, which can be computed for most loss
functions with a nicely-behaved second derivative. For clas-
sifiers with linear decision functions, the derivative has a
particularly nice form. Although we limit our proceeding
discussion to linear classifiers, much of the reasoning can be
applied to classifiers with non-linear decision functions, but
must be handled on a case-by-case basis.

Suppose that our classifier family has a linear decision
function. Then the distance from q to the projection of q onto
the decision surface of the local model centered at q can be
written in terms of the parameters of the linear model:

f∗(q) = qTn∗ − λ∗ (5)

where n and λ are the normal vector to the local decision
surface and the offset from the origin, respectively. n∗ and
λ∗ are the optimal values computed by our training algorithm
localized at q. The derivative of this w.r.t q is:

∂f∗

∂q
= n∗ + qT

∂n∗

∂q
− ∂λ∗

∂q
(6)

It is very often the case that n∗ and λ∗ are the result of an
argmin operation on some loss function L:

n∗, λ∗ = argminn,λL(X, q, λ,n)

Unfortunately, argmin does not have a convenient derivative.
A common trick to differentiate such functions is to rely on
the fact that, for differentiable loss functions L, the minimum
is obtained only when the derivative w.r.t the argmin variables
is 0. If L is differentiable and convex, then:

∂

∂n
L(X, q, λ,n)|n=n∗ = 0

where ·|a=b denotes substitution of a with b. Taking a deriva-
tive of both sides of this formula w.r.t q yields:

∂2L

∂q∂n
|n=n∗ +

∂2L

∂n2
|n=n∗

∂n∗

∂q
= 0

The ∂2L/∂n2 term is the Hessian of L w.r.t n. If the
Hessian is invertible at n∗, we can continue to solve this
equation for ∂n∗/∂q:

∂n∗

∂q
= −

(
∂2L

∂n2
|n=n∗

)−1
∂2L

∂q∂n
|n=n∗ (7)

A parity of reasoning holds for ∂λ∗/∂q:

∂λ∗

∂q
= −

(
∂2L

∂λ2
|λ=λ∗

)−1
∂2L

∂q∂λ
|λ=λ∗ (8)

Specifically for SVM classifiers with squared hinge loss, the
Hessian above is invertible whenever none of the training data
lie on the decision surface of the local model centered at q. We
can then compute a nice closed form for ∇S. If we let SV (X)
be the set of support vectors for X (i.e. 1− y(xTn−λ) > 0),
then the squared hinge loss is given by:

L(X,λ,n) =
∑

x,y∈SV (X)

(1− y(xTn− λ))2 (9)

Applying the localization process in equation 2 gives the
following loss function for our system of localized SVMs:

L(X, q, λ,n) =
∑

x,y∈SV (X)

(1− y(xTn− λ))2K(q, x) (10)

The derivatives of this w.r.t n, λ and q exist and are
straightforward. Employing these and equation 5 directly in
equation 7, we obtain:

∂n∗

∂q
=

 ∑
x,y∈SV (X)

xxTK(q, x)

−1 ∗
 ∑
x,y∈SV (X)

yxT
∂K

∂q
− x(x− q)T ∂K

∂q
n∗T


And similarly in equation 8:

∂λ∗

∂q
=

 ∑
x,y∈SV (X)

K(q, x)

−1 ∗
 ∑
x,y∈SV (X)

(x− q)T ∂K
∂q

n∗T − y ∂K
∂q


These can be employed in equation 6 to exactly compute
∇S at q satisfying the above conditions, and lying on the
decision surface of the system of localized classifiers. Note
that the inverse term in ∂n∗/∂q is the inverse of the weighted
covariance of the independent parts of X , which is generally
expected to be invertible for non-contrived data. Also, if we
choose a kernel K that is not everywhere 0, the denominator
in ∂λ∗/∂q exists as well.

If the data are well-balanced near q, then these two inverse
terms should be comparatively large. On the other hand, the
sum-over-y terms should be relatively small since they involve
the sum of many comparably-sized positive and negative
terms. The sums involving an (x − q) term should also be
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relatively small, since there will similarly be much canceling
out of vectors pointing in various directions around q. Thus, at
points that are within the bounding box of the training data,
the largest contributor to ∂f∗/∂q will generally be the unit
n∗. We can therefore approximate (∇S)(y) with the normal
vector of the local decision surface at y. All of our experiments
in section IV employ this approximation. Comparing this
approximation with the finite difference formula proposed
above, we have found that for squared hinge loss SVM, for
points on the decision surface within the bounds of the training
data, this approximation holds to a high degree of accuracy.

We also yet again note that we only require a non-zero
second derivative along the decision surface, so that even loss
functions that are not differentiable everywhere may still be
differentiable almost everywhere on the decision surface. Our
experiments show that the approximation of the normal vector
of the decision surface of a system of localized SVMs with
hinge loss is reasonably well approximated by the normal
vector of the local model at a point lying on the decision
surface. We demonstrate this in the proceeding section.

IV. RESULTS

In this section we apply the algorithms described in the
previous section with a linear support vector classifier on both
a toy dataset and a handwritten digit classification task [16].
We employ the LinearSVC class of the scikit-learn library,
which provides a wrapper for the liblinear [21] support vector
classifier implementation. Since the loss functions available to
SVM classifiers are of the sum-of-individual-errors form, we
employ the localization scheme described in equation 2.

A. Toy Data

The toy dataset shown in Figure 1 was generated from
the scikit-learn “make moons” method, using a noise level
of 0.06, mean-centered and scaled to have unit variance in
both x and y. For our local models, we employ a Gaussian
kernel (equation 4) with bandwidth parameter h = 0.6. This
parameter was cherry-picked to give pleasing results. Note that
as h → ∞, the system of local linear SVMs approaches a
single global linear SVM. We found that for very low values
of h, the resulting vanishing weights caused problems with
liblinear, and the individual models would fail. For the α
parameter of algorithm 3, we have found that a wide range of
values are viable. We have found that α values up to 0.5 result
in pleasing convergence properties, and we note that setting
α as high as possible will generally enable the algorithm to
converge more quickly.

In addition to the training data, Figure 1 shows the decision
surface of the system of localized classifiers in red, found
via algorithm 3 applied on a grid. The squared hinge loss is
employed, resulting in a differentiable decision surface. Also
shown are the orthogonal projections of the training data onto
the decision surface found via algorithm 3, shown as black
vectors. Lastly, the scalar field of orthogonal distances from
each point in a dense grid to the red decision surface, as the
background color gradient. Since these orthogonal distances

Fig. 1. Local SVM decision surface on toy data, square hinge loss. The scikit-
learn “noisy moons” dataset in blue and orange dots. Dot color represents the
ground-truth binary label. Decision surface in red. Global scores evaluated on
a regular grid in background color gradient. Orthogonal projections of training
data onto decision surface in black.

are globally relevant, we can scale these to the unit interval
to obtain pseudo-probabilistic output, as we will show in the
next section. In these experiments, we have approximated the
surface normal at a point q on the surface by the normal of the
local SVM centered at q. We also computed a finite difference
using a neighborhood of points on the surface for comparison.
For query points within the bounding box of the training data,
the average cosine similarity between the approximate normal
and the finite difference normal was 0.993, with a standard
deviation of 0.0079. 99.9% of approximated normals within
these bounds had a cosine similarity of at least 0.968. Points
outside of the bounds of the training data were less likely to be
well approximated. It is well-known that kernel methods tend
to have trouble extrapolating, and when moving significantly
outside of the range of the training data, the decision surface
itself is probably not trustworthy.

We repeat the experiment for the hinge loss, which is not
differentiable, to show how this affects the results of the
algorithm. Results are in Figure 2. Note that even though
the decision surface is not everywhere well-behaved, it is
well-behaved enough so that algorithm 3 produces reasonable
results for the orthogonal distances. For query points within
the bounding box of the training data, the average cosine
similarity between the approximate normal and the finite
difference normal was 0.911, with a standard deviation of
0.216. 80% of approximated normals within these bounds had
a cosine similarity of at least 0.943. Thus, the approxima-
tion is not nearly as good for the hinge loss. Nevertheless,
algorithm 3 seems to employ it to good effect, as can be

978-1-7281-6926-2/20/$31.00 ©2020 IEEE



Fig. 2. Local SVM decision surface on toy data, hinge loss. As Figure 1,
but employing the hinge loss. The decision surface is not very well-behaved.
Still, algorithm 3 gives reasonable estimates for the orthogonal projection.

seen in the figure. As expected, since the hinge loss is not
differentiable, the decision surface is not differentiable either.
Despite appearances, the decision surface is continuous, but
our algorithm for finding orthogonal projections is imperfect
for non-differentiable loss functions, and small crags in the
surface are therefore difficult to discover. Although the hinge
loss provides satisfactory results for individual linear SVMs,
because of these problems with systems of localized SVMs
utilizing hinge loss, we recommend that researchers and users
of localized systems of SVMs consider employing squared
hinge loss instead.

B. Handwritten Digits

For this dataset, we employ a one-vs-rest strategy to obtain
a multiclass classifier. To this end, we apply Platt Scaling [22]
in the ordinary fashion. Due to the small size of the dataset,
we have simply set a regularization factor for Platt Scaling
a priori at 0.01 rather than using cross-validation to select it
automatically. We also set the bandwidth to be fixed a priori
at 20 times the average 1-nearest neighbor distance across all
training points. We set the SVM regularization to be the library
default, which is 1. Choosing better hyperparameters might
reasonably improve the results, but we stress that the primary
motivation with these experiments is to illustrate a use case
of the decision surface for a system of localized classifiers,
rather than to earnestly tackle the problem of handwritten digit
classification.

We employ here the squared hinge loss to define a system of
localized SVMs for each digit label against the rest. For each
of these, we compute the orthogonal distance of the training
points to the decision surface for the system of localized

TABLE I
LOCAL SVM ONE-VS-REST CLASSIFIER.

Accuracy Precision Recall
Local SVMs 0.961 0.960 0.960
Linear SVM 0.948 0.947 0.948

SVMs. We then train a logistic regression with this orthogonal
distance multiplied by the sign of the local prediction at the
training point as input. The ground-truth label is taken as
output, and the resulting model is used to obtain pseudo-
probabilistic scores for each digit. To perform multi-class
classification, we compare the probabilities of each model,
and choose the digit that scores the highest.

We validate this process on a 30% test split in Table I. Algo-
rithms 1 and 3 were seen to converge for all of our training and
test points. We see that this produces modest improvements
upon the linear classifier, which we might reasonably expect a
non-linear classifier to accomplish. These results demonstrate
that computing scores via orthogonal distance to the decision
surface of the system of localized classifiers is viable for high-
dimensional real world datasets.

V. CONCLUSION

In this paper we describe an algorithm that, if it converges,
converges to points lying on the decision surface of a system
of localized classifiers. To our knowledge there currently exists
no other algorithm to find points on the decision surface.
Although we have provided no proof of convergence, and
suspect from relationships to other algorithms that such a proof
would be difficult to come by, these same relationships and our
experiments suggest that the algorithm has nice convergence
properties nonetheless.

We further extend this algorithm to find points on the
decision surface along an arbitrary direction. This improves
upon the naive algorithm which only finds an arbitrary point on
the decision surface. We have demonstrated that this algorithm
can be used to resample points on the decision surface in an
orderly fashion.

We use this algorithm to develop a gradient-descent tech-
nique for finding the orthogonal projection of a point onto
the decision surface. We demonstrate how the orthogonal
projection, and the corresponding orthogonal distance, can be
used as scores for pseudo-probabilistic regularization on both
toy data and real-world datasets.

For the future, we conjecture that the intuition behind both
algorithm 2 and algorithm 3 would work equally well as an
extension to Subspace-constrained Mean Shift. These could
be used to resample grids over principal surfaces so that
a triangular mesh might be obtained, or to find orthogonal
projections onto the reconstructed surface which “is one of the
most critical operations in computer aided geometric design
and applications” [23]. Other future work would involve tech-
niques to improve the efficiency of the proposed algorithms.
For example, memoization might be employed to more quickly
find nearly-orthogonal points on the decision surface. Also,
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we suspect that adapting the resampling algorithm to start at
points closer to the decision surface would provide significant
speed improvement.
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