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Abstract—Given a large amount of data in the base classes
and a small number of data in the new classes, meta-learning
can learn prior experience from the base classes and transfer
knowledge to the new classes by generating network parameters
for data generation. In this paper, we propose a novel generative
adversarial network called MetaCGAN for generating high
quality and diversity images to achieve data augmentation for
the new classes with few data. In particular, MetaCGAN consists
of two modules, the conditional GAN (CGAN) and MetaNet
modules. The CGAN module is our skeleton network that is
applied to generate images, while the MetaNet module is our
auxiliary network that is applied to provide deconvolutional
weights for the generator of CGAN. Experimental results on the
MNIST, Fashion MNIST and CelebA data sets demonstrate the
superiority of MetaCGAN over baseline models. Both qualitative
and quantitative results show that the MetaNet module can learn
prior knowledge and transfer it from the base classes to the
new classes, which is beneficial for generating high quality and
diversity images to the new classes with few images.

Index Terms—MetaCGAN, meta-learning, prior experience,
CGAN, MetaNet

I. INTRODUCTION

In recent years, since generative adversarial network (GAN)
can learn data distribution and generate new data according
to the distribution, it becomes a research hotspot in the deep
learning area. In general, however, to generate high quality
images, GAN needs a large amount of training data. When
the training samples are scarce, it is a very challenging task to
generate high quality images using GAN. Therefore, a critical
issue we confront is how to generate high quality and diversity
images with few data.

One method to tackle this issue is to use the idea of
transfer learning. A model is first trained on the source data
set that has large scale of samples and similar distribution
with the target data set, and then, the trained model is fine-
tuned to adapt to the target data set that has a small number
of samples. However, in this case, the fine-tuned model may
forget how to generate source samples, which is undesirable.

* Corresponding author.

It should be able to generate both source and target samples
simultaneously.

Inspired by humans’ ability that one can transfer past expe-
rience to new tasks, employing past experience to learn new
tasks and still remembering past experience, meta-learning is
proposed to learn how to learn, which has been widely used
in few-shot learning, transferring knowledge from the support
sets to the query sets with few samples [1] [2].

In order to address the problem that GAN cannot perform
well on scarce training data, we propose a novel model named
MetaCGAN that applies a MetaNet module to the generator
of the CGAN framework. In particular, the MetaNet module
can learn the prior knowledge with a large amount of data
in the base classes and transfer knowledge to the new classes
with a small number of data, which encourages the generator
of MetaCGAN to perform well on generating high quality and
diversity images for the new classes.

In summary, our contributions are as follows:
• We propose MetaCGAN, which adds a MetaNet module

to the generator of CGAN to learn the prior experience
on the base classes and transfer knowledge to the new
classes.

• The MetaNet module can generate weights for the gen-
erator of MetaCGAN, which enhances MetaCGAN to
generate high quality and diversity images with few data
in the new classes.

• Qualitative and quantitative experimental results on the
MNIST, Fashion MNIST and CelebA data sets show that,
compared with baseline models, MetaCGAN performs
the best.

II. RELATED WORK

Meta-learning is also called “Learning to learn”, and
generally deals with the few-shot learning problem or zero-
shot learning problem by learning prior knowledge to guide the
performance on the new classes. Because it learns transferable
prior knowledge between the base classes and the new classes,
it can be well adapted to the few data in the new classes.
Existing mete-learning algorithms can be roughly divided
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into three categories: that sharing a distance metric between
the base and new classes [3] [4] [5] [6], that sharing the
initialization of network parameters [7] [8] [9] [10] [11] [12],
and that sharing the optimization algorithm [13] [14] [15].

Generative Adversarial Network (GAN) consists of a
generator and a discriminator, and is originally proposed by
Goodfellow et al. [16]. The generator hopes that the distribu-
tion of the generated samples is closer to the distribution of
real samples, so that the generator can generate more realistic
samples to fool the discriminator, whereas the discriminator
strives to distinguish real images and generated images. The
ideal state is that the generator and the discriminator achieve
Nash equilibrium, namely, the generated samples by the gen-
erator are so realistic that the discriminator can judge with
50% correctness. GAN can be applied in many fields, such
as image generation [17] [18] [19], image transformation [20]
[21] [22], scene synthesis [23] [24], face synthesis [25], text
to image generation [26], style transferable [27], image super-
resolution [28], image domain transformation [29], and image
inpainting [30] [31].

In the literature, some pieces of work have successfully
combined meta-learning with GAN. Specifically, most of
the existing approaches combining meta-learning with GAN
are from the perspective of few-shot learning. In general,
applying both the GAN and meta-learning modules improves
the performance of few-shot learning. Specifically, MetaGAN
combines two meta-learning methods with the discriminator
in GAN [32]. However, the quality of the generated images
by MetaGAN is not high. Wang et al. combine a meta-
learner with a hallucinator, which produces additional training
examples to train the generator in GAN, leading to a 6 point
boost in classification accuracy on the challenging ImageNet
low-shot classification benchmark [33]. Similar to the idea of
MetaGAN, it only considers whether GAN is beneficial for
few-shot classification but does not consider the authenticity
of the generated samples. In order to improve the quality of
the generated samples, a GAN meta-trained with Reptile, is
proposed to generate novel samples with few training data
[34]. Though the quality of the generated samples are better
than that generated by the above two methods, the generated
samples are noisy and still in low quality.

Unlike existing methods, we add a MetaNet module to the
generator in GAN, and apply meta-learning to learn prior
experience from the base classes and transfer knowledge to the
new classes, which is beneficial to the quality of the generated
images and increases the generation ability of the generator.
Our proposed method MetaCGAN not only performs well
with respect to the quality of the generated samples, but also
encourages the generated samples to be diverse.

III. METHODOLOGY

In order to improve the quality and diversity of the generated
samples under the condition that the training data are scarce,
we build our conditional generative adversarial networks (C-
GAN) with a MetaNet module and called it MetaCGAN. We
employ the MetaNet module to generate weights that are

needed to generate images. With the help of the MetaNet
module, MetaCGAN can produce high quality and diversity
samples of the new classes.

A. The CGAN framework

We first introduce the CGAN framework on which our
model is built. Unlike standard GAN, CGAN adds supple-
mentary information y that may be image or label in both
of its generator and discriminator. We regard y as additional
input layer in both the generator and discriminator. Same as
standard GAN, CGAN achieves Nash equilibrium by maxi-
mizing discriminator loss and minimizing generator loss. The
objective function of the CGAN framework is:

min
G

max
D

V (D,G) = Exvpdata(x)[logD(x|y)]+

Ezvpz(z)[log(1− (D(G(z|y)))]
(1)

In Equation (1), G represents the generator, D represents
the discriminator, pdata(x) stands for the probability of the
real samples, and pz(z) is the probability of noise.

B. The MetaNet module

Our MetaNet module comprises of three parts, two encoders
(a task encoder and an image encoder) and a parameter
generator.

1) Encoders: Task encoder. The task encoder is fed with
information output from the third deconvolutional layer of the
generator. Through the task encoder, we can obtain a series of
means and variances that are respectively denoted as µt and
σt in a batch.

Image encoder. In order to improve the performance of the
MetaNet module on generating the deconvolutional weights,
we feed real images into the image encoder. With the informa-
tion from real images, the generator can generate high quality
images. Through the image encoder, we can obtain a series of
means and variances that are respectively denoted as µi and
σi in a batch.

Then, we calculate the means of µt and µi, σt and σi,
respectively denoted as µj and σj , which contains sufficient
statistics for the distribution of the weights.

2) parameter generator: We apply the parameter generator
to learn knowledge from the base classes and provide weights
for the fourth and fifth deconvolutional layers of the generator
to produce high quality images. We use two encoders to
calculate means and variances, and employ reparameterization
trick that means sampling a random number ε from N(0, I)
to make z = µN

j + σN
j × εNj rather than directly sampling a

z from N(µj , σ
2
j ). In the formula, N means the number of

samples in a batch. For the fourth and fifth deconvolutional
layers of the generator, we use a single layer perceptron to
generate weights that are represented as θNj .

In order to stabilize training and prevent from generating
large weights, we employ weight normalization to constrain
the weight scale. Specifically, we apply L2 normalization in
each filter in the fourth and fifth deconvolutional layers of the
generator.

978-1-7281-6926-2/20/$31.00 ©2020 IEEE



Fig. 1. The architecture of MetaCGAN. The top is the CGAN module, while the below is the MetaNet module.

C. The MetaCGAN model

To enforce the generator of CGAN generating high quality
and diversity images with few data in the new classes, we
use a MetaNet module to generate deconvolutional weights to
improve the generation ability of the generator.

As shown in Fig. 1, our MetaCGAN model comprises of
two parts, the MetaNet module and the CGAN framework.
We concatenate label and noise, and feed them into the CGAN
framework, of which the deconvolutional weights of the fourth
and fifth layers are provided by the MetaNet module that can
help the CGAN framework to produce high quality and diver-
sity images. For example, as shown in Fig. 1, in the MetaNet
module, an face image is fed into the image encoder, while
information in the generator through three deconvolutional
layers is fed into the task encoder, and then, we employ the
reparameterization trick and parameter generator to produce
the weights that are needed to generate images for the new
classes. Subsequently, we calculate the losses and update the
gradient of MetaCGAN in a batch manner. Finally, the CGAN
framework with the generated weights can perform well on
generating high quality and diversity images with few data in
the new classes. Algorithm 1 shows the training scheme of
MetaCGAN.

D. Normalization

In MetaCGAN, we employ the MetaNet module to generate
useful generator weights that are used for helping to produce
high quality samples with few data in the new classes. On
the purpose of learning common prior knowledge between the
base classes and the new classes, we hope similar classes can
share valuable information. In order to enable the base classes
and the new classes to interact with each other in a batch, we
apply instance normalization (IN) technique [35]. Specifically,
in the experiment, we apply IN in both the image encoder and
the task encoder modules. Namely, we use IN to the training
samples in a batch, and calculate mean, variance and scale

Algorithm 1 The training scheme of MetaCGAN.
Require: θG: G’s parameters; θj : feature extractor’s parame-

ters; θd: discriminative layers’ parameters; N : batch size;
Nc: the learning steps per iteration.

Require: Adam hyperparameters: α = 0.5, β = 0.9, Nc = 4.
1: Initial discriminators parameters θd, initial generators pa-

rameters θG, learning rate= 2× 10−4.
2: while not converged do
3: for i = 1, 2, ..., epoch do
4: Divide the original data set into base classes and new

classes.
5: if number%Nc = 0 then
6: Samples (xi, zi, yi) from the base classes.
7: else
8: Samples (xi, zi, yi) from the new classes.
9: end if

10: Employ the task encoder to calculate µt and σt.
11: Employ the image encoder to calculate µi and σi.
12: µj , σj = (µt + µi)/2 + (σt + σi)/2.
13: Employ reparameterization trick to obtain zi = µi

j +
σi
j × εij .

14: Employ the parameter generator to obtain deconvo-
lutional parameter θij .

15: Sample and allocate weights θij for deconvolutional
layer of the generator.

16: LD ← logD(xi|yi) + log(1−D((G(zi|yi))))
17: LG ← logD(G(xi))
18: θd, θj = RMSProp(LD, θd, θj)
19: θG = Adam(LD, θG, α, β)
20: end for
21: Compute batch losses and update weights.
22: end while
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parameters that are shared between the base classes and the
new classes.

IV. EXPERIMENT

In this section, we report the performance of the proposed
MetaCGAN method on the MNIST, Fashion MNIST and
CelebA data sets. In the following, we mainly evaluate the
effect of the MetaNet module in MetaCGAN, and compare
MetaCGAN with previous GANs, on the three data sets.

A. Baseline models

We adopted CGAN, DCGAN and WGAN as our baseline
models. When we compared MetaCGAN with CGAN, DC-
GAN and WGAN, we respectively applied a small number
of data in the new classes and a large amount of data in the
new classes to train CGAN models. However, DCGAN and
WGAN were trained only using a large amount of data in the
new classes, and MetaCGAN was only trained on few data in
the new classes.

DCGAN increases the generator ability of generating sam-
ples by introducing convolutional networks into the generator,
which makes the generated samples to be of high quality.

WGAN uses Wassertein distance to measure the distance
between the generated data distribution and the real data
distribution. In addition, WGAN applies the truncation trick
to scale the discriminator’s parameters, which to some extent
solves the unstable training issue of GAN.

B. Data sets

MNIST. We regarded the numbers 0, 1, 2, 3, 4 as the base
classes that totally included 28038 images and regarded the
numbers 5, 6, 7, 8, 9 as the new classes that each class only
included 10 images during training using MetaCGAN. In the
test phase, we did not input real images to MetaCGAN when
the generator produced fake images, and only fed real images
into the discriminator.

Fashion MNIST. We regarded t-shirt class, trouser class,
pullover class, dress class and coat class as the base classes
that totally included 27494 images and regarded sandal class,
shirt class, sneaker class, bag class and ankle boot class as
the new classes in which each class only included 10 images
during training using MetaCGAN. The test phase was as the
same as MNIST.

CelebA. We regarded woman as the base class and used all
women images during training using MetaCGAN. In addition,
we regarded man as the new class and used 50 men images
during training using MetaCGAN. The test phase was as the
same as MNIST.

C. Implementation details

We conducted experiment on the NVIDIA GeForce GTX
1080Ti GPU with Python 3.6.9 and Tensorflow 1.12.2. The
discriminator with five convolutional layers was trained using
RMSProp with learning rate 2 × 10−4. Generator with five
deconvolutional layers was trained using Adam with α = 0.5,
β = 0.9 in our MetaCGAN. We set batch size to 16. We

sampled three times from the base classes and one time
from the new classes, four images each time. We trained the
generator with a learning rate 2×10−4 for the first 500 epochs
and exponentially decayed the learning rate to 0. We fed noise
with 100 dimensions. For the baseline models, we downloaded
their publicly available codes from GitHub and set parameters
according to which reported in the original papers.

D. Experimental results

To demonstrate the advantage of the MetaNet module, we
respectively conducted experiments using CGAN and MetaC-
GAN on the three data sets. In order to demonstrate MetaC-
GAN with prior experience is effective, we also compared
the performance of MataCGAN on a small number of data
with that of the baseline models on a large amount of data
in the new classes. We did not only qualitatively evaluate
the experimental results, but also quantitatively compared the
methods.

Qualitative evaluation. Fig. 2 shows the generated images
by applying our method MetaCGAN and the baseline models
on the MNIST digits. Comparing (a) with (e), we can see that
the generated images by MetaCGAN perform better than that
by using CGAN, though we used fewer data in the new classes
than CGAN, which demonstrates that the key of generating
high quality images greatly depends on the MetaNet module.
Comparing (b) (c) (d) (e), it is easy to observe that the gen-
erated images provide the highest visual quality and diversity
using our MetaCGAN, not only on the numbers 0, 1, 2, 3, 4 but
also on the numbers 5, 6, 7, 8, 9, among the baseline models,
even under the condition that the baseline models applied all
data whereas our MeteCGAN only used 10 images in the new
classes. The reason for this is that our MetaCGAN can learn
prior experience on the base classes and transfer knowledge to
generate generator’s weights, helping for generating images.

The generated images applied our method MetaCGAN and
the baseline models on the Fashion MNIST data set are shown
in Fig. 3. As shown in Fig. 3 (a) and (e), it is easy to see that
the generated images on the new classes by MetaCGAN are
of higher quality and diversity when we applied 10 images
in each new class than that by CGAN when we applied 20
images in new class, which demonstrates the MetaNet module
is effective for learning the prior experience of the base classes
and transferring it to generate the new class images. Fig. 3 (b)
(c) (d) are the generated images using all images by CGAN,
DCGAN and WGAN. It is easy to observe that MetaCGAN
performs the best on both the base classes and the new classes
than the baseline models. It demonstrates that the MetaNet
module in MetaCGAN is more capable of generating higher
quality and diversity images than using a large amount of data.

We also applied our method MetaCGAN to more challeng-
ing data set with colorful and high resolution images, the
CelebA data set. The generated images applied MetaCGAN
and the baseline models are shown in Fig. 4. Comparing (b)
(c) (d) with (e), the experimental results show that MetaCGAN
is superior to the baseline models when the baseline models
applied all data whereas MetaCGAN only used 50 images in
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(a) The generated images
by CGAN using 20 images
in each new class.

(b) The generated images
by CGAN using all images
in each new class.

(c) The generated images
by DCGAN using all im-
ages in each new class.

(d) The generated images
by WGAN using all images
in each new class.

(e) The generated images
by MetaCGAN using 10
images in each new class.

Fig. 2. The generated images using the baseline models and MetaCGAN on the MNIST data set.

(a) The generated images
by CGAN using 20 images
in each new class.

(b) The generated images
by CGAN using all images
in each new class.

(c) The generated images
by DCGAN using all im-
ages in each new class.

(d) The generated images
by WGAN using all images
in each new class.

(e) The generated images
by MetaCGAN using 10
images in each new class.

Fig. 3. The generated images using the baseline models and MetaCGAN on the Fashion MNIST data set.

(a) The generated images
by CGAN using 1000 im-
ages in each new class.

(b) The generated images
by CGAN using all images
in each new class.

(c) The generated images
by DCGAN using all im-
ages in each new class.

(d) The generated images
by WGAN using all images
in each new class.

(e) The generated images
by MetaCGAN using 50
images in each new class.

Fig. 4. The generated images using the baseline models and MetaCGAN on the CelebA data set.

the new class, not to mention experimental results of CGAN
using 1000 images in the new class as shown in Fig. 4 (a). It
demonstrates that the generated images by MetaCGAN with
prior experience are of higher quality and diversity than the
baseline models without prior knowledge.

To demonstrate that our MetaNet module can be applied to
any GAN and evaluate the effect of the MetaNet module, we
also did experiment on the MNIST data set using DCGAN
combined with our MetaNet module. The generated images
employing DCGAN with all training data are as shown in
Fig. 5 (a), while that of applying DCGAN combined with
the MetaNet module with 20 images in each new class are as
shown in Fig. 5 (b). Comparing their performances, we can see
that DCGAN combined with the MetaNet module performs
better than DCGAN, on not only the quality of the generated
images but also the diversity of the generated images, which
demonstrates that the MetaNet module is effective and helpful
for the generator in GAN models.

In order to evaluate the influence of the IN strategy for

(a) DCGAN (b) DCGAN combined with the
MetaNet module.

Fig. 5. The generated images on the Fashion MNIST data set.

the generated images, we conducted a comparison experiment
on whether or not employed the IN strategy. The generated
images are shown in Fig. 6, Fig. 6 (a) applied batch normal-
ization to replace the IN strategy. We can see that the quality of
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the generated images by our MetaCGAN with the IN strategy
are better than that without the IN strategy. Furthermore,
experimental results demonstrate that the IN strategy can
help similar classes to share valuable information, which is
beneficial to learn common prior knowledge between the base
classes and the new classes, generating better deconvolutional
weights to improve the ability of the generator for image
generation.

(a) Our method MetaCGAN apply-
ing batch normalization rather than
IN.

(b) Our method MetaCGAN.

Fig. 6. The generated images on the Fashion MNIST data set.

Quantitative evaluation. In order to evaluate the perfor-
mance of MetaCGAN, inception score (IS) was applied to
measure the quality and diversity of the generated images. IS
is defined as IS(G) = exp(Ex[DKL(p(y|x)||p(y))]), where
x means the generated image, y means a vector obtained
by using a well-trained classifier to predict the probability
of x belonging to each class, p(y|x) means the conditional
class distribution, p(y) means the marginal distribution, and
DKL means the KL-divergence. Based on the definition of
IS, we need to ensure not only low entropy of p(y|x) but also
high entropy of p(y), making IS be large. Concretely, low
entropy of p(y|x) represents that the decision boundary of the
classes is compact whereas high entropy of p(y) represents
high diversity of images. Hence, IS combines the quality and
diversity measurements into one criterion.

Generally, the diversity of the generated images can be
represented by the discriminability of the decision boundary
between classes, namely, if two images are dissimilar with
high probability, they should be classified into different class-
es. In addition, classifier can classify accurately when the
quality of the generated images is high. Therefore, we apply IS
to measure the quality and diversity of the generated images.
Nevertheless, as IS is based on ImageNet and applies incep-
tion net-v3, we respectively trained the classifier when we
employed IS to evaluate the generated images by MetaCGAN
and other baseline models on the MNIST and Fashion MNIST
data sets.

Table I shows IS obtained by MetaCGAN and the base-
line models on the MNIST and Fashion MNIST data sets.
Compared with the baseline models that used all data whereas
MetaCGAN only applied few images in the new classes. In this
circumstance, IS obtained by our MetaCGAN is the largest,

TABLE I
COMPARISON OF OUR METACGAN WITH CGAN, DCGAN AND WGAN

ON THE MNIST AND FASHION MNIST DATA SETS IN TERMS OF IS.

Models MNIST Fashion MNIST
CGAN 1.68 2.68

DCGAN 1.88 3.79
WGAN 1.90 3.80

MetaCGAN 2.48 5.46

which demonstrates that MetaCGAN generates the highest
quality and diversity images on the two data sets. The experi-
mental results demonstrate that adding the MetaNet module on
CGAN is beneficial for tackling the image generation problem
with few data. From the perspective of the generated images,
it is easy to see that our MetaCGAN is superior to the baseline
models, though the baseline models use a large amount of data.
What’s more, it also demonstrates that MetaCGAN with prior
experience is effective. There is no doubt that the success of
our MetaCGAN depends on the MetaNet module that learns
prior experience on the base classes and transfers knowledge
to generate the new classes.

Except for IS, we also applied Amazon Mechanical Turk
(AMT) to evaluate the performance of the generated images
on the CelebA data set. Given the generated images by our
method and the baseline models, we required the Turkers to
choose the best generated image based on perceptual realism
and diversity. We provided four randomly generated images
by four kinds of methods. In addition, we asked each Turker
5 to 10 simple yet logical questions for validating whether or
not she/he took it seriously. As a result of which, we found
that 50 Turkers were positive.

TABLE II
THE AMT PERCEPTUAL EVALUATION USING THE BASELINE METHODS

AND OUR METACGAN ON THE CELEBA DATA SET.

Model CGAN DCGAN WGAN MetaCGAN
Score 7.4% 21.7% 23.5% 47.4%

Table II shows the score of the AMT perceptual evaluation
to our MetaCGAN and the baseline models on the CelebA
data set. It is easy to see that the score of using MetaCGAN
is highest, which demonstrates that our MetaCGAN is superior
to the baseline models and the quality of the generated image
is the most authenticity.

V. CONCLUSION

In this work, we propose a novel generative adversarial
network called MetaCGAN for generating high quality and
diversity images with few data in the new classes. Our training
data is based on a large amount of data in the base classes
and a small number of data in the new classes. Under this
circumstance, inspired by meta-learning that can learn prior
experience from the base classes and transfer knowledge to
the new classes to generate network parameters for generating
images, we build our MetaCGAN that is based on the CGAN
framework combined with the MetaNet module. The MetaNet
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module is applied to provide deconvolutional weights of the
generator in CGAN. Furthermore, in order to share valuable
information between similar classes, we employ the instance
normalization (IN) strategy. The experimental results on the
MNIST, Fashion MNIST and CelebA data sets show the
superiority of MetaCGAN over the baseline models. Not only
qualitative results but also quantitative results demonstrate
that our MetaCGAN model can generate the high quality
and diversity images on the three data sets. In addition,
experimental results demonstrate that the MetaNet module
is effective and can transfer prior knowledge from the base
classes to the new classes.
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