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Abstract—Traditionally, Surface electromyography (sEMG)
has been the predominant method of sensing muscle activity in
order to control myoelectric prosthesis. While many prosthesis
control schemes used simple direct control, an ever increasing
focus has moved to pattern recognition based approaches which
promise a greater degree of natural control such as to further
improve an amputees quality of life. Although pattern recognition
based approaches have shown great promise, they have innate
limitations due to changes that may occur during long term
use which prevent clinical acceptance. Due to these limitations,
researchers have increasingly investigated alternative modalities
to provide more robust control schemes. A particular modality
that has seen increasing interest is ultrasound based sensing due
to its capability to better understand deep tissue activity.

Within this research, A-mode ultrasound based sensing is
proposed not as a replacement for sEMG based sensing but
instead to augment and drive sEMG based sensing during
activities that may otherwise prove challenging to traditional
sEMg based control schemes.

Index Terms—A-mode Ultrasound sEMG Hand Motion Recog-
nition Rehabilitation

I. INTRODUCTION

Bio-Signal controlled prosthesis have long been seen as im-
portant tools in providing higher quality of life to amputees [1].
Classical approaches use simple direct control schemes that are
functional although not fully intuitive, subsequently causing
longer periods of rehabilitation and less freedom of use than
desirable. In order to overcome this challenge, research has
increasingly delved into various sensing modalities that can
not only provide an intuitive and natural sense of control to
amputees [2] but also one which is robust enough such that
daily use can be achieved with minimal training or calibration.

Frequently in both clinical and academic environments,
sEMG based sensing has been the chosen modality for these
control schemes. The typical approach to detecting sEMG
activity is to detect the period of rapid depolarization and
repolarization seen within excited muscle fibres, creating an
Action Potential (AP) [3]. Typically the relationship between
muscle contraction and action potential is exploited in sEMG
sensing to detect the collective impulse of the excited muscle
fibres within a motor unit can be considered as the Motor unit
action potential (MUAP). It can therefore be described that the
raw sEMG signal is the output of detecting the recruitment of

MUAPs across a muscle and their subsequent firing rates [4]–
[6].

Although these MUAPs provide a reasonably high fidelity
description of muscle activity provided the proper processing,
they also suffer limitations due to the way in which transient
changes may occur during long term use when using sEMG
based sensing. These transient changes may include electrode
shift [7], crosstalk, fatigue [8], changes to skin conductivity,
time [9]–[11], and concept drift.

Ultrasound based sensing has long been used as a non-
invasive diagnostic device in observing muscoskeletal disor-
ders such as arthritis [12], [13]. Typically this method uses an
array of piezoelectric transducers to project a focused wave
of ultrasound into the body between a range of 2-20MHz. As
these beams interact with varying tissue densities, echos are
formed which can be measured in order to infer aspects of the
muscles state during contraction [14], [15].

Through this capability to get a reliable stream as to tissue
and muscle states within the human body, the application of
ultrasound has been found viable in hand motion recognition
in roles such as accurately predicting finger location [16], [17].

Within this research, A-mode ultrasound based sensing is
proposed not as a replacement for sEMg based sensing but
instead to augment and drive sEMG based sensing during
activities that may otherwise prove challenging to traditional
sEMg based control scehems. A common challenge found
in sEMG based sensing is that of large arm movements
and in situations where the location of an arm is not in
the comfortable position frequently seen within laboratory
experiments. As the arm moves into dynamic poses there
exists a degree of shift and co-activation of muscle groupings
surrounding the targeted muscles which subsequently impact
recognition accuracy. The issue is further amplified when
considering larger muscle groups in the biceps. Therefore it
is proposed that the improved reading of deep muscle activity
form ultrasound based sensing can help overcome issues that
may otherwise occur during larger arm gestures, as to provide
a robust multimodal solution for long term prosthesis control.

II. RELATED WORKS

The topic of provision of ultrasound based hand motion
recognition has been explored by many researchers. Hodges
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demonstrated that it is possible to observe low level of muscle
contractions where the physical muscle architecture changes
the most [18] making ultrasound promising when observing
smaller muscle activation’s. A further aspect is the nature of
ultrasound based sensing makes it robust to crosstalk that is
often seen in fatigued muscles [19]. Perhaps one of the more
promising aspects of ultrasound based sensing is that of the
recorded performance in accurately detecting individual finger
positions [20]–[22]. Expanding on this work, other researchers
have found that ultrasound provides great promise in detecting
multiple finger based hand motions [23].

While it has been shown that ultrasound may complement
sEMG during wrist extension activities, the space required
to mount both an ultrasound probe and sEMG electrodes
in the same location was found to be difficult [24]. Within
laboratory settings, B-mode ultrasound has been shown to be
highly reliable in providing accurate hand motion recognition
[25], [26]. As research has progressed, newer ultrasound
based devices have been proposed which are increasingly
[22], [27]. Further aspects of integrating multiple sensors into
these devices has been explored by numerous researchers,
largely towards combining sEMG and ultrasound capabilities
into a single device [28], [29], especially with A-mode based
devices.

Interest in ultrasound based hand motion recognition has
increased a wearable ultrasound based devices for hand motion
recognition continue to be developed and show great promise
in the realm of proportional control and accurate detection in
comparison to sEMG based sensing. However, these methods
are frequently used as comparisons to sEMG based sensing
and are seldom integrated with sEMG based sensing [23], [30],
[31].

This paper is structured as follows: Firstly the system and
experimental design for this study are described. Secondly a
description is given of methods used to perform data data
processing and evaluation is given. Finally the results of this
study are detailed, a discussion is made as to the implications
of these results, and finally a conclusion is given with potential
future avenues of research into this topic..

III. HYPOTHESIS

The Hypothesis of this study is therefore that the addition
of a-mode ultrasound based sensing to sEMG based sensing
can provide a meaningful increase to hand motion recognition
during hand motion activation with larger arm movements.

IV. SYSTEM AND MATERIALS

A. Participants

Two able bodied participants aged 26 and 32 were used in
this study. Both participants had no history of limb injury and
had previous experience with sEMG but not ultrasound. Prior
to the study all participants were informed of the contents of
the experiments and the series of gestures to be performed.
All work done in this study was approved by and done in
accordance with the local ethical committee.

Fig. 1. Ultrasound collection hardware

B. A-Mode Ultrasound Hardware

A-mode Ultrasound manifests itself as a linear set of time
points and amplitudes that describe the echo intensity from
the Ultrasound diode.

The ultrasound data used in this study was collected through
a 4 channel A-Mode Ultrasound device that collected 1000
data points (or time dots) at a rate of 10MHZ with an inspec-
tion depth of around 39mm. The device was placed on the
muscle grouping on the lower forearm, above the wrist of the
candidate. To maintain a secure fitting for the US sensors, an
elastic skin tape was used to secure the sensors in their correct
location along the subjects arm. Hypoallergenic Ultrasound gel
was applied prior to each set of data collection as to ensure
improve the transmission quality of the ultrasound signals and
to reduce interference from air gaps. Data transmission was
performed via Ethernet from the ultrasound hardware to a
windows 10 based machine.

C. sEMG Hardware

The sEMG based sensing utilized an sEMG data collection
device capable of recording 16 channels with 12 bits ADC
resolution and 1Khz sampling frequently as is typically used
within literature [32]–[34]. Gathered data was within the
10Hz to 500Hz range through a hardware based band pass
filter. As power-line noise can degrade the quality of the
collected signals, 50Hz power-line noise was removed through
a hardware based notch filter and a software based comb filter,
the usage of these two filters also aid in removing motion
artefacts from the larger arm movements. Data transmission
was performed via USB and processed through the same
Windows 10 based machine as the ultrasound data. Further
information about the hardware device can be found in [35],
[36] . The participant was fitted with 6 pairs of bi-polar wet
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Fig. 2. Multimodal Ultrasound and sEMG experimental setup

electrodes distributed on the major muscle sites of the arm as
to provide muscle activation information during larger arm
movements. The chosen electrode locations are the lateral
deltoid, biceps bracchii shorthead, supinator, and pronator
teres and ticeps bacchii. The fitting of the wet electrodes and
a-mode ultrasound hardware can be seen in figure 2. Each
electrode location was cleaned with an alcohol wipe prior to
electrode fitting.

V. METHODOLOGY

A. Data Capture

The data capture was divided into 5 trials with ten gestures
performed per trial. In order to acquire a dynamic range of
motion activity across the whole arm five motion primitives
were selected and performed in their open pose and inverse
totalling in ten hand and arm motions. The chosen primitives
were as follows in order Hand Open (HO), Hand Closed (HC),
Forearm Pronation (FP), Forearm Supination (FS), Rotation
In (RI), Rotation Out (RO), Humerus Forward (HF), Humerus
Backward (HB), Wrist Flexion (WF), Wrist Extension (WE).
Each individual motion was performed for five seconds before
shifting to its inverse motion and then a rest period of ten
seconds between motion primitive. Each trial lasted for a total
of 110 seconds including the initial rest period with a total
of 50 seconds of motion activity. There was no change of
the electrode or ultrasound sensor placement between trials
as to introduce a degree of the natural shift that may form
with daily use of this combined sensing modality while also
removing potential larger shift from donning and doffing.

B. Data Processing

All data processing was completed using Matlab r2017b.
The first step of pre-processing for both the ultrasound and
sEMG data was to remove 0.5 second of motion data from
the beginning and end of each 5 second gesture performance
as to remove transition data. The resulting data set provided

Fig. 3. Windowing of Ultrasound Signal

4 seconds of stable motion data from each 4 second gesture
performed with 5 trials in total per participant of all gestures
providing a total of 20 seconds of gesture data across all trials.

The A-mode ultrasound data consists of a single frame
every 100ms containing 1000 time points, these time points
indicating the muscle activity at a given depth from the US
Diode. The starting and ending 20 time points of each frame
of ultrasound data were removed as the information carried
here was not considered meaningful with the initial 20 time
points holding largely skin boundary data and final 20 time
points being unlikely to properly represent any usable muscle
boundaries that it comes into contact with, resulting in each
frame holding 960 time points. Presently, there exists little
comparative US feature selection strategies or comparisons.
Therefore, traditional feature extraction methods for EMG
data were to be modified to better exploit the generalizable
traits of the data. The approach to feature extraction was
to operate directly on the time points within each frame, as
opposed to across multiple frames, using a 120ms window
and a 30ms sliding window. It was shown in [37] that the
Waveform Length feature provides a robust performance in
A-mode ultrasound based hand motion recognition and is
resilient to diode shift.

Waveform length can be considered to be the measure of
complexity of the sEMG signal over a specific time segment
[38]

WL =
n−1∑
i=1

|xi+1 − xi| (1)

As stated above, transient changes in the signal were
removed as to assure that only stable signal is used for
training and testing. The feature extraction for sEMG signal
was performed using a 250ms window with a 50ms sliding
window, this time was selected as it provided the maximum
degree of time for activity detection while also being below
the quantity of time that can create a perceivable delay to a
person [39].

the Root mean square (RMS) feature was selected to repre-
sent the sEMG signal in this study. The RMS feature can be
considered as the square root of the mean values for a set of
squared raw sEMG values over a period of time. This method
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Fig. 4. Process of ultrasound signal processing and feature Extraction

is frequently used as a relatively stable measure in domain
both hand motion classification and analysis of stroke patients
[40]–[42].

RMS =

√√√√ 1

N

N∑
i−1

x2
i (2)

C. Evaluation

Within this study, the three conditions were evaluated as
unimodal sEMG, unimodal Ultrasound, then finally multi-
modal Ultrasound driven sEMG. Synchronisation of the sEMG
signal and Ultrasound signal was performed through manual
recognition of the first muscle activation of each gesture set
in sequence during the multimodal condition.

All classification was performed using LDA with naive
bayes. The decision to select LDA is due to the classifiers
robustness to changes in the transient changes in the signal
when compared to other traditional classifiers, such as SVM,
as demonstrated in literature [43]–[46]. Classifier training was
performed using a single trial that was evaluated against other
4 trials for each participant.

VI. RESULTS

To verify the performance of the ultrasound led method,
each set of 5 trials were evaluated on the basis of sEMG alone,

TABLE I
CLASSIFICATION ACCURACY

Modality Accuracy (%) Standard Deviation (%)

sEMG 71.77 6.83
A-Mode Ultrasound 77.43 8.32
Ultrasound driven sEMG 80.21 8.44

a-mode ultrasound alone, and finally the a-mode ultrasound led
approach.

As seen in fig.5, the sEMG unimodal approach demon-
strated the poorest performance overall, achieving an accuracy
of 71.77% across both participants and all trials. The A-mode
ultrasound unimodal approach demonstrated some improve-
ment over unimodal sEMG with an accuracy of 77.43%. The
strongest modality for performance was the ultrasound led
multimodal approach with an accuracy of 80.21%.

It can be inferred from this result that sEMG unimodal
sensing is more susceptible to reduced classification accuracy
during larger arm motions where crosstalk and interference
from cabling may be more apparent. Furthermore, while the
sEMG sensor locations and electrodes used should ensure
decent coverage and signal collections, it is quite possible
that the activating muscle groupings in larger gestures may
become less separable than lower arm gestures alone. An
interesting result is that of the performance from the unimodal
ultrasound approach, which although only focused on the
forearm area had managed to achieve reasonable accuracy
during larger arm motions. The cause of this performance
increase may likely come from smaller muscle changes that
occur due to physiological changes of the arm as opposed to
active MU activity, something which would explain the poorer
results from unimodal sEMG. The results of Ultrasound led
multimodal approach are quite promising in displaying that
the ultrasound can provide a high degree of accuracy in the
hand motions while further improving sEMG based sensing.
The potential for ultrasound to better recognize subtle changes
in muscle boundaries is promising for future usage of a-mode
ultrasound.

VII. DISCUSSION

As demonstrated in the results section, the proposed multi-
modal a-mode ultrasound led control scheme showed promis-
ing performance over unimodal implementations of sEMG and
ultrasound based sensing. The implications that can be inferred
from this is that while sEMG based solutions are capable of
providing high fidelity information into muscle group activity,
when undesirable arm positions are obtained then robustness
may not always be guaranteed. Much like other researchers
who have seen improved performance in monitoring muscle
grouping activity for smaller adjustments within the hand and
arm [16], [17], [20]–[22]. Furthermore this promising result
reaffirms findings of other researchers towards augmenting
sEMG based sensing through ultrasound [23]. Although this
study differs by using sEMG to bolster ultrasound in providing
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Fig. 5. Multimodal hand motion recognition results

extra context as to larger arm movements while the ultrasound
signal focuses on the hands activity.

Subsequently, through the usage of a-mode ultrasound led
sEMG based sensing there was a clear improvement in robust
sensing in larger arm movements beyond that of the constituent
modalities. placed in context of the investigation into ultra-
sound diode shift [37], [47] and present research into sEMG
sensor shift [48], there exists an argument that the ultrasound
based approach provides robustness to larger arm movements,
whereas sEMG based sensing may improve the robustness to
sensor shift during daily use.

VIII. CONCLUSION

In this study, a multi modal a-mode ultrasound led sensing
platform was implemented and demonstrated to be feasible
during larger arm motions particularly in comparison to uni-
modal sEMG and furthermore was shown to contribute to
improving the quality of sEMG based sensing in this area.

It is suggested that future directions in Ultrasound hand
motion recognition is to investigate whether the inclusion
of more channels when considering sensor shift may further
improve the classification accuracy alongside the impact of
larger arm motions. Furthermore, it is suggested to further
investigate the relative comparison of Ultrasound based hand
Motion Recognition, in comparison and in complement to
sEMG when considering Long Term Use. Finally, it is sug-
gested to explore the capability of ultrasound led hand and
arm motion recognition during more dynamic tasks as a multi
modal approach with sEMG sensing.
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