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Abstract—How to deal with data that abounds in heteroge-
neous applications, known as multi-outlook learning, is of imper-
ative importance to the creation of general-purpose and flexible
intelligent systems. Prior works envision that each data instance
appears in all outlooks, however, in practice, it is often the case
that every outlook suffers from information incompleteness due
to the data availability issue (e.g., privacy concerns). In such a
case, existing learning models tend to be fooled by the ambiguous
semantics conveyed by the missing outlooks. To fill the gap, we in
this paper propose a new learning paradigm, named Generative
Outlook Reproducing via Repository (GORR), which draws insight
from the human analogy of capturing the commonalities among
outlooks to reconstruct the missing outlooks. Specifically, GORR
leverages the feature relatedness across outlooks to construct an
outlook repository. The instances, once being projected onto the
outlook repository, would have complete feature representations,
where the missing outlooks are generated from the observed
ones. Learner trained on the outlook repository then enjoys a
complete feature information and thus is capable to perform
accurate predictions. Extensive experiments are carried out on
both synthetic and real data sets, demonstrating the effectiveness
of GORR.

Index Terms—Multi-Outlook Learning, Partial Instance, Miss-
ing Data, Heterogeneous Feature Space, Group Lasso

I. INTRODUCTION

Big Data refers to the torrent of information generated by
machines and humans that cannot be handled by a typical
database. The data is not only big in volume, but also in
variety: a range of data types and sources. The data can be rep-
resented by multiple, heterogeneous feature spaces, which we
refer to as outlooks. Consider, for instance, a predictive model
for juvenile delinquency rate [1] may assume the totality of
students’ behaviors. With access to students’ demographic
data, academic records, mental health, alcohol/drug abuse
history, and family environment, we can reveal insights by
learning from multiple outlooks, which enable us to answer
interesting questions, such as: Are parents’ strong opinion of
teenagers’ alcohol usage helpful to prevent their children from
drinking underage while most of their friends have alcohol
consumption issues? Will alcohol prevention program for 8th
grader help to reduce student risk better than parents’ knowl-
edge education and gambling prevention program together
based on the limited resource (such as funding)?

Previous research [2]–[7] showed that significant perfor-
mance improvement can be achieved by multi-outlook learning
(MOL) than single outlook learning. The key to success lies
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in the extraction of a shared feature subspace that harmonizes
the disparate information stored in multiple outlooks. One flaw
of existing approaches is that they all assume the existence
of complete information in every outlook. However, this
assumption is barely met in practice. For example, students
often skip a lot of questions they do not want to face in a
survey. Therefore, each outlook suffers from missing pieces of
information, resulting in many partial instances, i.e., instances
with missing outlooks.

A straightforward solution, that enables the adaptation of
existing MOL method, is to pad zeros for the partial instances,
overlooking information of the missing outlooks. Unfortu-
nately, this solution does not work well in the following sense.
Revisit the student data example. Once the zeros show up in
the student reports in terms of alcohol usage, it could be the
case that either the students do not suffer from alcohol abuse,
or they refuse to answer corresponding survey questions. As a
result, the zeros convey ambiguous semantics. Involving such
ambiguous semantics in the latent subspace extraction could
introduce noises, which tends to persist and escalate in the
later model training phase, leading to the substantial prediction
errors. Our empirical study discovers that, with data instances
missing in 50% outlooks, this straightforward solution yields
an average 54% prediction accuracy in binary tasks – slightly
better than coin-tossing.

To address the issue, we in this paper propose a novel
learning paradigm, named Generative Outlook Reproducing
via Repository (GORR), which draws insights from how hu-
man experts intelligently handle the partial instances: Human
experts are capable to infer the ground truth of missing
outlooks by using the information of the existing ones. As
such, they are unlikely to be fooled by the noisy partial
instances. Such a human inference ability mainly results
from the experts’ experience of leveraging the commonalities
among different outlooks. Analogously, GORR constructs an
outlook repository by capturing the relatedness among features
across all outlooks. Given a partial instance, by projecting it
onto the outlook repository, its feature representations in the
missing outlooks are generated from those in the observed
ones. Learner trained on the outlook repository thus enjoys
complete information included in both the original and the
reconstructed outlooks.

Moreover, to respect the fact that some outlooks encompass
useful discriminant information whereas some outlooks could
be irrelevant to the label of interest, we embed the Group
Lasso (GL) into our learning process. Specifically, during the
outlook repository construction process, GL strengthens the

978-1-7281-6926-2/20/$31.00 ©2020 IEEE



weights of the important outlooks while weakens those of
the non-important ones. Thus far, the irrelevant information
is abandoned, ensuring that the constructed outlook repository
directly serves the learning task of interest. The learning
performance hence can be further improved.

Specific contributions in this paper are summarized as
follows:

1) We explore a new problem, named partial multi-outlook
learning (PMOL), which aims to build an accurate
model with data instances arbitrarily missing in several
outlooks, rather than the prior MOL works that require
full feature information from all outlooks.

2) A novel GORR learning paradigm is proposed to solve
the PMOL problem. Extensive experiments on 8 bench-
mark datasets and 2 real-world datasets have been car-
ried out to demonstrate the effectiveness of our proposal.

The rest of this paper is organized as follows. Section II
discusses related work. Section III formulates the PMOL
problem. Section IV scrutinizes the building blocks of the
proposed approach. Section V reports experimental results. We
conclude the work in Section VI.

II. RELATED WORK

Our work is closely related to multi-outlook learning,
feature reconstruction methods, and feature selection mecha-
nisms. This section discusses the relationships and differences
with the existing literature.

Multi-Outlook Learning is also known as multi-view learn-
ing, which aims to improve the learning performance in an
outlook of interest by leveraging knowledge from multiple
auxiliary outlooks. Prior works [2]–[6] envision a consensus
pattern matrix that is extracted from the multiple data matrices
of disparate outlooks. These methods require full information
of all outlooks, which cannot be satisfied in our setting.
The method proposed by [8] lifts such a requirement by
allowing missing outlooks. However, it imposes two new
assumptions: i) there exists at least one outlook that has
complete information of all data instances; and ii) a mapping
function between the existing and missing outlooks is known
in a priori. Unfortunately, both of the new assumptions do not
hold in our PMOL problem, and hence [8] cannot be adapted
into our scenario. Recent work by [9] further lifts these two
assumptions and considers a similar setting as we do. However,
it focuses on clustering instead of supervised learning, and
therefore it has different technical challenges and solutions.

Feature Reconstruction. As GORR entails learning a re-
constructive mapping among outlooks by exploiting feature
relatedness, our work is also related to the feature space
reconstruction approaches. Specifically, [10]–[12] assume that
the most informative subset of features can recover the whole
feature space with minimal recovery errors. Therefore, the
capability of features to approximate original data is devised as
a novel criterion for unsupervised feature selection. Moreover,
[13], [14] propose to learn sparse representations of data
streams via reconstructing original features from extracted
latent features. However, to our best knowledge, none of them

explicitly consider the dynamic nature of outlooks and use
feature reconstruction method during the learning process.

Feature Selection. To get rid of the redundant information
encoded in several outlooks, the feature selection technique
is exploited. We refer readers to [15] for a comprehensive
literature review on this topic. Roughly, existing feature se-
lection studies can be categorized into wrapper, filter, and
embedded methods. In particular, wrapper methods search for
a subset of features in a brute-force or strategical fashion
and then leverage a predefined learning algorithm to gauge
the quality of the selected feature subset. The whole process
iterates until a desirable learning performance is obtained. On
the other hand, filter methods [16] design various statistical
or information-theory based evidence to assess feature im-
portance given a specific label of interest. Nevertheless, both
wrapper and filter methods suffer from incomplete information
in our partial multi-outlook setting, and hence are not effective.
In our approach, we embed the feature selection into the
model learning by using Group Lasso [17], [18], inheriting the
merits of wrapper and filter methods and meanwhile enjoying
a complete feature information via outlook reconstruction.

III. PRELIMINARIES

We begin by summarizing the notational conventions used
in this paper. Bold uppercase and lowercase characters are
used for matrices (e.g., A) and vectors (e.g., a), respectively.
Script typeface is used for sets/spaces (e.g., A). For any matrix
A ∈ Rm×n, Ai,j denotes its (i, j)th entry, and for any vector
a = [a1, a2, . . . , an]> ∈ Rn, ai denotes its ith element. ‖ · ‖1
and ‖ ·‖2 denote the `1-, `2-norm, respectively. The Euclidean
inner product of two vectors is denoted by 〈·, ·〉.

A. Learning Task Formulation

Suppose we have in total n data instances {(xj , yj) | j =
1 . . . n}nj=1 and m outlooks {Xi}mi=1, where Xi = Rdi denotes
the ith outlook. Without loss of generality, we consider that the
outlooks are mutually disjoint, i.e., Xp 6= Xq for any p 6= q,
representing different feature spaces (sets). Let Y be the label
space, i.e., Y ∈ {1, . . . , C} for classification and Y ∈ R for
regression.

Denoted by (xj , yj) ∈ X1 × . . . × Xk × Y the jth training
instance that is represented in k outlooks, where 1 ≤ k < m
and k varies in different data instances. The goal of GORR
is to find an optimal hypothesis h, such that the empirical
risk ε = 1

n

∑n
j=1 `

(
yj , h(xj)

)
is minimized, where ` is a

predefined loss function such as cross entropy, square loss,
etc.

B. Generative Outlook Reproducing

Let R := X1∪ . . .∪Xm ∈ Rd1+...+dk+...+dm be an outlook
repository that is a union set of all m outlooks. For each given
training instance, a mapping φ : Rd1+...+dk 7→ R is learned to
generate its feature representations in the unobserved m − k
outlooks from the observed k outlooks. Learning φ entails
the initialization and training of a generative graphical model
[19]–[22]. Denoted by G the graph in which vertices are
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the features in R. The weight of an edge in G encodes a
relatedness coefficient between a pair of features. For a vertex
v, a vector containing the weights of its all out-edges is
denoted as θv . The graph G thus can be represented by a
matrix Θ = [θ1, . . . , θ|R|]

> ∈ R|R|×|R|.
We define rj := [xj , x̃j ]

> ∈ R as the desired representation
of the jth training instance in the outlook repository, where
x̃j ∈ Rdk+1+...+dm denotes its missing feature representation
in the unobserved outlooks Xk+1, . . . ,Xm. Training the graph-
ical model is to maximize the following log-likelihood:

Q =
n∑
j=1

logP(rj |xj ,Θ), (1)

where the features in R are approximated independently as

P(rj |xj ,Θ) =
k∏
i=1

P(rj |x(i)
j , θ1, . . . , θdi), (2)

with x
(i)
j being xj’s representation in the ith outlook.

Following the convention in generative modelling, we model
the data generating process in R with a mixture of Gaus-
sians. Specifically, we let each observed outlook contribute a
Gaussian, which makes an intuitive sense since (i) the missing
outlooks contribute zero information for approximating rj ; and
(ii) the level of information of different outlooks are not equal
(i.e., some outlooks are more informative than others). For
simplicity, we define Φ(i) := [θ1, . . . , θdi ]

> ∈ Rdi×|U|. The
distribution density function in Eq. (2) is then as:

P(rj |x(i)
j ,Φ(i)) ∝ exp

(
− δi

2
(rj−E(rj))

>Σ−1(rj−E(rj))
)
,

(3)
where E(rj) is approximated based on φ given Φ(i) and x

(i)
j .

Let Σ be a semi-positive definite covariance matrix. Denoted
by δi the impact of ith Gaussian contributed by the ith outlook,∑m
i=1 δi = 1.

IV. THE PROPOSED APPROACH

In this section, we present the building blocks of our
proposed approach for solving PMOL problem and discuss
the basic ideas behind its design. Section IV-A scrutinizes why
and how shall we leverage the label information in the outlook
repository construction process. Section IV-B elaborates on our
solution to avoid the high-dimensionality of the constructed
outlook repository. We unify our solution into an optimization
function and propose an algorithm to solve it in Section IV-C.

A. Constructing Outlook Repository Under Supervision

Outlook repository construction (ORC) becomes challeng-
ing in our PMOL problem. Directly adapting the outlook
reproducing method introduced in Section III-B suffers from
information-insufficiency. Specifically, there can exist a size-
able amount of instances that are only observed in very few
(in an extreme case, only one) outlook(s) in practice. As a
result, the missing outlooks of those instances are unlikely
to be correctly recovered given such limited information.
During the learning procedure, there could appear arbitrarily
many possible rj’s that perfectly match xj on the observable

outlooks. Searching the optimal rj among all these options
requires external information.

In this work, we leverage the plentiful supervision informa-
tion provided by the class labels to guide the construction of
the outlook repository. We aim to obtain rj that can help the
learner make fewer prediction errors than the original xj –
in a nutshell, the recovered outlooks, if helpful, should offer
extra discriminant power in prediction.

To this end, we design the objective function for the outlook
repository construction as below. First, the log-likelihood
maximization function is reformulated by joining Eq. (1) and
Eq. (2) as:

maxQ =
n∑
j=1

k∑
i=1

logP(rj |x(i)
j ,Φ(i)). (4)

Without loss of generality, we follow the spirit of [20], [21] to
consider a linear approximator, namely E(rj) =

∑di
s=1 xsΦ

(i)

and Φ(i) < 0 for all i. Then, we insert Eq. (3) into Eq. (4) and
obtain:

maxQ =
n∑
j=1

k∑
i=1

−δi‖rj −
di∑
s=1

xsΦ
(i)‖2. (5)

To simplify the further derivation, we define an indicator
matrix diag(δ) that represents the impact of ith Gaussian w.r.t.
each feature in each outlook. The (i, s)th entry of diag(δ) is
defined as follows:

diag(δ)i,s =

{
δi, if sth feature of x(i)

j exists
0, otherwise,

satisfying that diag(δ)Θ> = [δ1Φ(1), . . . , δkΦ(k)]> ∈
R|R|×(d1+...+dk). Hence, since

∑m
i=1 δi = 1, the tightest

relaxation of Eq. (5) is:

min

n∑
j=1

‖rj −
k∑
i=1

δiΦ
(i)>x

(i)
j ‖

2

= min

n∑
j=1

‖rj − diag(δ)Θ>xj‖2. (6)

Surprisingly, by observing Eq. (6), our desired mapping
φ can be approximated as: φ(xj) = diag(δ)Θ>xj . Now,
we define an orthogonal projection operator Π(·) such that
Π(rj) := xj . In other words, Π(·) selects the observable
outlooks from R. Moreover, we define a linear learning model
w ∈ R|R| that makes predictions based on φ(xj). The final
objective function of the outlook repository construction is
defined by the following min-max game:

min
φ

n∑
j=1

Lorc = ‖xj −Π(φ(xj))‖2, (7)

min
w

max
φ

n∑
j=1

Lsup = `
(
yj ,Π(w)>xj

)
− `
(
yj ,w

>φ(xj)
)
.

(8)

Physical Meaning. To facilitate the understanding of the
remainder of this work, we here briefly explain the meaning
and the intuition behind the design of Eq. (7) and Eq. (8). First,
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Eq. (7) encourages the consistency of the feature values of the
outlooks, before and after the outlook repository construction.
Specifically, if the observed outlooks remain unchanged after
construction, we accept that the missing outlooks are correctly
recovered. A similar idea is adopted in compressed sensing
[23] – a matrix with missing values is completed correctly
if its visible entries are accurately approximated. Second,
Eq. (8) enforces the recovered missing outlooks to be helpful
for the learner. The first and second terms in Eq. (8) denote
the prediction losses suffered by making predictions on the
observed outlooks and on the outlook repository, respectively.
On the one hand, we search for the optimal w that minimizes
the prediction losses. On the other hand, we enforce φ to
maximize the the difference between these two terms – the
larger the difference, the more helpful the recovery outlooks
in making a prediction. Eq. (7) and Eq. (8) can be jointly
optimized by adapting the regularization method, i.e., either of
which can be deemed as a regularizer and go into the other’s
main objective with a negative tradeoff parameter. We shall
see this in Section IV-C.

B. Optimization with Outlook Selection

A notable difficulty arises after the outlook repository con-
struction: Even though the learner enjoys complete information
provided by the outlook repository, its learning performance
can be deteriorated by the irrelevant and redundant features
that exist across outlooks, a phenomenon known as curse
of dimensionality. Revisit the student data example. Since
we can handily collect over-abundant information from the
students’ demographic data, academic records, mental health,
alcohol/drug abuse history, family environment, and so forth,
storing all data and scanning them multiple times while
training leads to storage and computation overheads. It is thus
desirable to know which outlooks are more important, such
that we can stop collecting data from other outlooks if those
important outlooks are capable to offer enough discriminant
power. To do this, we propose to adapt Group Lasso [17], [18]
to realize the outlook selection idea, with details below.

Denoted by wXi
the weight coefficients of the features in

the ith outlook, i.e., w = [wX1 , . . . ,wXm ]>. Mathematically,
Group Lasso first uses an `2-norm regularization term for
each wXi

, then it performs an `1-norm regularization for
all previous `2-norm terms. Intuitively, Group Lasso tends to
select or not select features that are from different outlooks as
a whole. The penalty function of Group Lasso is formulated
as follows:

Ω(w) =
m∑
i=1

δi‖wXi
‖2. (9)

Note, in Eq. (9), we employ δi as a prior to the significance
of the ith outlook, which makes a physical sense. A large δi
means that the corresponding ith outlook plays an important
role in recovering other outlooks. If this is the case, Eq. (9)
encourages this kind of important outlooks to be selected
during the learning process.

Algorithm 1: The GORR algorithm
Input :
1: PMOL training set D = {(xj , yj)|j = 1, 2, . . . , n};
2: The tuning parameters α, λ, and c;
3: Maximal number of iterations maxIter;

1 Initialize ORC parameters φ = {δi,Φ(i)}mi=1;
2 Initialize classifier w;
3 iter ← 1 ;
4 repeat
5 iter ← iter + 1 ;
6 for j = 1, . . . , n do
7 Initialize a varied step η ← c

√
1/(iter ∗ n+ j);

8 if iter mod 2 = 0 then
9 Optimize w with fixed φ from the last iteration:

w← w − η∇wF

10 else
11 Optimize φ with fixed w from the last iteration:

φ← φ+ η∇φF

12 until convergence or iter exceeds maxIter;
13 return classifier w and trained ORC parameters φ

C. Unified Objective Function and Algorithm

By considering (7), (8), and (9) together, our solution to
PMOL problem finally reduces to the unified bi-objective
function as below:

min
w

max
φ

1

n

n∑
j=1

F = Lsup − αLorc + λΩ(w), (10)

with α and λ being two positive tradeoff parameters.
To solve Eq. (10), we adapt the Blockwise Gradient Descent

(BGD) solver [24], [25]. Following the main steps of BGD,
we (i) divide Eq. (10) into two optimization subproblems that
are w.r.t. w and φ, respectively; and (ii) optimize Eq. (10) by
alternating between the two subproblems, optimizing over one
while keeping the other one fixed.

We summarize the main steps of our GORR approach in
Algorithm 1. The subproblems are optimized in a stochastic
fashion, and we set the learning rate η as a varied step, namely,
η ∝

√
1/#iterations, which is commonly used in many

other gradient-based optimization methods [26]. Intuitively, a
small optimization step size leads to a meticulously probing
of minimum but requires more iterations for converging.
Especially, in our optimization problem, which is non-convex
and has many local minima, using a small learning rate
may be trapped by the saddle points and incurs inefficient
optimization. On the other hand, a large learning rate usually
causes overly radical updates, yielding a divergent solution.
Thus, we chose a varied learning step, which has been proven
by [27] to more effectively lead to convergence.
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V. EXPERIMENTS

In this section, we begin by introducing the data sets used in
this study (Section V-A), followed by the evaluation protocol
(Section V-B), and end with presenting the experimental
results (Section V-C).

A. Data Sets

We perform the experiments on 10 data sets consisting
of 6 synthetic data sets and 4 real-world data sets. Table I
summarizes the statistics of the studied data sets.

Synthetic Data are prepared by following the same idea in
[20], [28]. We choose 6 UCI data sets [29] that spanned a
broad range of domains, including image, text, etc., whose
scales vary from 502 to 3782 and dimensions vary from 68 to
1449. These data sets only have one outlook (feature space)
at first. We artificially map the original outlook with two
random Gaussian matrices, then we have data represented in
three outlooks (i.e., the original one and two mapped ones).
Thereafter, we randomly remove 50% data examples for each
outlook while ensuring that each data example appears in at
least one outlook.

Linux Kernel Codebase is the first real data set. It comprises
21,193 source code paths from 10 projects written in the C
language, including Linux, libc, etc. Since each project was
built by a separate group, it is reasonable to consider paths
from a single project as data instances form an individual
outlook. Each outlook encompasses 13 features so that there
are 130 features in total. The goal is to predict whether each
path is an error path (or not). Please refer to [30] for more
details.

Louisiana Juvenile Crime Prevention is the second real data
set. This data set was collected through a State-funded project
– Communities that Care Youth Survey (CCYS). In the CCYS
data set, there are 355 features designed and collected through
questionnaires from 8 different prevention areas (i.e., 8 out-
looks). These features assess students’ problematic behaviors
and their exposure to a set of scientifically validated risk and
protective factors (e.g., family, neighborhood, school, peer). In
total, 79,988 different teenagers from 6th, 8th, 10th and 12th
grades are observed in the data set. Since students are not
obligated to finish all the questionnaires, and, in practice, they
only answer a few. These students arbitrarily appear or absent
in those outlooks. By calculation, only 40% data is effective
for further analysis (in synthetic data sets the missing ratio
is 50% as fixed). We divided the entire CCYS data sets into
three subsets, namely CCYS-A, CCYS-S, and CCYS-V, each
of which serves for a particular learning goal. We allow these
data subsets to have overlapped data samples. Specifically, we
aim to predict the student’s academic success, substance abuse,
and violence delinquency in CCYS-A, CCYS-S, and CCYS-V,
respectively. Such analysis helps us reveal interesting patterns
that are critical for the improvement of teenage development.
For example, are teenagers living in disorganized, crime-ridden
neighborhoods more likely involved in crimes and drug abuse
than those living in safe ones? Or, are teenagers being bullied
have a higher probability of drop-out? Through experiments,

TABLE I
CHARACTERISTICS OF THE STUDIED DATA SETS.

Dataset #examples #dim. 1* #dim. 2* #dim. 3* Domain

CAL500 502 68 49 70 audio
wdbc 569 30 60 90 image
medical 978 1, 449 1, 161 1, 620 text
Enron 1, 702 1, 001 974 1, 111 text
yeast 2, 417 103 85 113 biology
Slashdot 3, 782 1, 079 981 1, 220 text

Linux 21, 193 130 (overall in 10 outlooks) C-Program
CCYS-A 47, 293 355 (overall in 8 outlooks) education
CCYS-S 38, 193 355 (overall in 8 outlooks) education
CCYS-V 24, 244 355 (overall in 8 outlooks) education

* The dimensions of the original, the first mapped, and the second
mapped outlooks, respectively.

we shall give answers to this kind of questions as shown in
Section V-C.

B. Evaluation Protocol

Baselines. We compare GORR with two MOL learning algo-
rithms, with details follow.

• MOMAP [4] is the state-of-the-art MOL algorithm. Its
main idea is to learn mappings between pairs of outlooks,
such that the model trained on one outlook can be
applied to other outlooks so as to improve their prediction
performances.

• HDAMA [28] solves the MOL problem differently than
MOMAP does. HDAMA learns a share latent feature
space to summarize the information from all outlooks,
meanwhile preserving the manifold sub-structure of each
outlook.

Note, neither MOMAP nor HDAMA considers the partial
instances. To adapt them to our PMOL problem, we pad zeros
for the missing outlooks.

On the other hand, to validate the helpfulness of the missing
outlook recovery, we also compare GORR with two feature
reconstruction methods.

• NMF [31] stands for Nonnegative Matrix Factorization,
which has become the de facto solution to the matrix
completion due to its successes in recommender systems.

• DLFM [32] is the state-of-the-art latent factor model
that employs a deep-structure for data recovery purposes,
rather than NMF which remains to be a shallow model.

For NMF and DLFM, we first concatenate the data matrices of
different outlooks into one sparse matrix (e.g., the sparseness
of the CCYS data matrix is around 60%). Then, we execute
the two methods to complete the missing outlooks (matrix
entries). To guarantee the fairness of the comparison, we feed
the completed matrix into a linear SVM, since GORR also
uses a linear classifier.

Metrics. We aim to demonstrate the effectiveness of GORR
in both classification and regression tasks. To this end, we
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employ the classification accuracy and the root mean squared
error (RMSE) as the performance metrics.

ACC = 1− 1

|T |

|T |∑
t=1

Jyt 6= ŷtK,

RMSE =

√√√√ 1

|T |

|T |∑
t=1

(yt − ŷt)2,

where T denotes the test data set. The operator J·K takes
a statement as input and returns 1 if the statement is true.
For classification tasks, GORR predicts the label as yt =
sign

(
w>φ(xt)

)
, and for regression yt = w>φ(xt).

Parameters. For our approach, the optimal parameter sets
are grid-searched with respect to the RMSE performance.
Specifically, α and λ are both searched in the range
of {.001, .003, .005, .01, .03, .05, .1, .3, .5}. For the compared
methods, parameters are set as suggested in the corresponding
literature.

C. Experimental Results

This section presents the experimental results, aiming to
answer the following research questions.

Q1 Does our proposed GORR approach outperform the
state-of-the-art methods?

Q2 At what cost can we expect a specific performance
gain in making predictions?

Q3 How effectively can GORR help us analyze real-
world problems?

Comparison of Prediction Performance (Q1)
Table II presents the detailed results of performance com-

parison. GORR shows a significant prediction improvement
over the other algorithms on most data sets. Notably, GORR
simply adopts a linear classifier as the implementation of
the learner. This implies that the performance improvement
can be further expected by utilizing a classifier with higher
learning capability such as SVM or neural networks. Statistical
significance is examined with paired t-test at 95% significance
level. The win/tie/loss counts of our approach versus the
compared methods are summarized in the last row of Table II.

Overall, it is manifested that i) GORR outperforms
MOMAP and HDAMA by wining on most data sets; and ii)
MOMAP and HDAMA are more sensitive to the dimension
change of the data sets than other algorithms. Specifically,
MOMAP and HDAMA achieve 63.0% and 70.0% prediction
accuracies on three data sets with high dimensions (i.e.,
medical, Enron, and Slashdot) in average, respectively. The ac-
curacies on the other seven data sets with lower dimensions are
74.7% and 80.2%. Unsurprisingly, the accuracy performances
degrade in percentages of 18.6% and 14.6%, respectively.
We extrapolate the reasons behind the results as follows.
Since MOMAP and HDAMA pad zeros to the missing data,
among which the zeros may be noisy and convey ambiguous
semantics, the original data distributions are distorted. Such
an undesired effect can be escalated in data sets with high
dimensions – the higher the dimensionality of a data set, the

larger the number of padded zeros. On the contrary, GORR
performs more robustly on both high and low-dimensional data
sets by achieving 80.3% and 85.7% accuracies, respectively,
where only a 6.7% performance degradation is suffered. This
finding validates the effectiveness of the outlook repository
construction.

NMF and DLFM perform closely on most data sets. In
particular, NMF and DLFM achieve 79.1% and 78.9% average
accuracies, respectively, both of which outperform MOMAP
and HDAMA yet underperform GORR (84.1%). These results
are likely to be related to the machinery possessed by NMF
and DLFM that can reproduce (recover) the missing outlooks
(data). Such a machinery makes them robust to the varying
dimension across data sets. This finding further strengthens
the necessity and advantage of handling the missing outlooks
intelligently rather than simply padding zeros. However, NMF
and DLFM split the data recovery and supervised learning
into two separate procedures, failing to respect the plentiful
label information during the outlook repository construction
process. Contrarily, GORR unifies the supervised learning
and the outlook repository construction into one optimization
objective, and thus shows significant superiority.

Comparison of Runtime Performance (Q2)
A summary of the runtime performance for GORR and the

compared methods is reported in Table III. For NMF and
DLFM, their runtimes include both the outlook repository
constructing and classifier training processes.

Based on the runtime performance comparison results, we
make the following observations. First, MOMAP and HDAMA
enjoy shorter runtimes on average (228.4 seconds and 219.8
seconds, respectively). Comparing with these two methods,
the slowdowns of GORR are within a factor of 1.4 over all
data sets. Given that GORR performs significantly better than
MOMAP and HDAMA in terms of accuracy, the trade-off on
efficiency is acceptable.

Second, the runtimes of GORR (300.4 seconds) are tightly
bounded with NMF (324.4 seconds) and much better than
DLFM (946.9 seconds). This discrepancy could be attributed
to the deep structure of DLFM, in which matrix factorizations
are executed in a layer-after-layer fashion. The larger number
of learnable parameters makes DLFM difficult to converge in
a short period of time. Thereby, though DLFM achieves the
closest prediction performance with our GORR, its obvious
training time overhead makes it impractical to solve real tasks
with tens or hundreds of thousands of data points. On the other
hand, NMF enjoys a shallow matrix factorization model and
ties our GORR in terms of runtime. Unfortunately, with only
one exemption on the wdbc data set, GORR overall outper-
forms NMF in terms of prediction accuracy. Furthermore, it is
worth pointing out that both NMF and DLFM require the data
sets to be available beforehand, then the learning is performed
in a batch mode. GORR allows data instances to arrive in a
stochastic fashion, granting it a higher degree of extensibleness
and scalability in real applications. For example, GORR can
learn from streaming data while NMF and DLFM need to
be re-trained multiple times given incrementally more data.
Hence, GORR is more effective and efficient in practice.
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TABLE II
COMPARISON OF GORR WITH BASELINES UNDER TWO EVALUATION METRICES (MEAN ACCURACY ± STANDARD DEVIATION). ↑ AND ↓ INDICATE “THE
LARGER THE BETTER” AND “THE SMALLER THE BETTER”, RESPECTIVELY. THE BEST PERFORMANCES ARE BOLD. THE BLACK DOT • INDICATES GORR
HAS A STATISTICALLY SIGNIFICANT BETTER PERFORMANCE THAN THE COMPARED ALGORITHMS (HYPOTHESIS SUPPORTED BY PAIRED T-TESTS AT 95%

SIGNIFICANCE LEVEL).

Dataset Metric MOMAP HDAMA NMF DLFM GORR

CAL500 Accuracy ↑ .773± .001 • .836± .000 • .765± .004 • .802± .000 .881± .004
RMSE ↓ .667± .002 • .417± .000 .562± .001 • .404± .001 .398± .002

wdbc Accuracy ↑ .834± .001 • .856± .001 • .939± .002 .893± .001 .927± .000
RMSE ↓ .463± .000 • .352± .000 • .180± .001 .293± .003 • .138± .000

medical Accuracy ↑ .623± .002 • .678± .002 • .739± .000 • .746± .003 • .806± .002
RMSE ↓ .814± .000 • .463± .000 .628± .003 • .510± .001 • .407± .000

Enron Accuracy ↑ .646± .000 • .768± .017 .819± .002 .787± .005 .845± .001
RMSE ↓ .686± .000 • .315± .000 .421± .002 • .403± .012 • .308± .002

yeast Accuracy ↑ .768± .000 • .807± .000 • .812± .001 .794± .001 • .853± .001
RMSE ↓ .694± .000 • .515± .000 • .419± .004 .421± .004 .375± .000

Slashdot Accuracy ↑ .621± .000 • .653± .000 • .684± .010 • .726± .004 .758± .003
RMSE ↓ .886± .000 • .542± .000 • .662± .009 • .633± .003 • .352± .077

Linux Accuracy ↑ .628± .003 • .745± .001 • .802± .006 • .833± .001 .854± .009
RMSE ↓ .721± .000 • .423± .003 .597± .003 • .442± .000 .403± .004

CCYS-A Accuracy ↑ .841± .001 .889± .000 .834± .003 .796± .000 .866± .002
RMSE ↓ .574± .000 • .318± .000 • .377± .001 • .212± .002 • .303± .001

CCYS-S Accuracy ↑ .685± .000 • .758± .000 • .742± .002 • .764± .001 • .811± .001
RMSE ↓ .706± .000 • .389± .000 .506± .001 • .647± .003 • .350± .000

CCYS-V Accuracy ↑ .701± .001 • .725± .001 • .778± .003 .746± .001 • .809± .000
RMSE ↓ .705± .000 • .514± .000 • .689± .003 • .527± .001 • .436± .006

GORR: Accuracy ↑ 9 / 1 / 0 8 / 1 / 1 7 / 2 / 1 6 / 4 / 0 —
w/t/l RMSE ↓ 10 / 0 / 0 5 / 5 / 0 9 / 1 / 0 7 / 3 / 0 —

TABLE III
COMPARISON OF RUNTIME PERFORMANCE IN THE TRAINING PHASE (IN

SECONDS). THE VALUES ARE OBTAINED FROM A 10-FOLD
CROSS-VALIDATION.

Dataset MOMAP HDAMA NMF DLFM GORR

CAL500 129.75 115.72 282.69 782.69 171.27
wdbc 105.38 111.23 60.74 262.45 160.17
medical 185.99 181.09 155.13 713.91 275.26
Enron 239.52 225.83 242.92 775.28 316.16
yeast 145.11 162.52 188.67 586.02 203.15
Slashdot 240.27 298.13 516.30 1275.26 365.21
Linux 148.12 140.32 136.50 517.43 213.29
CCYS-A 473.40 495.25 837.90 2127.18 643.83
CCYS-S 459.24 320.00 573.67 1374.30 363.96
CCYS-V 156.95 147.62 249.76 1054.80 291.91

Effectiveness of Outlook Selection Mechanism (Q3)
The usefulness of GORR in analyzing real problems

presents in twofold. First, GORR recovers the missing out-
looks - critical to have a global view of the data set without
suffering from missing data. This improvement makes many
statistical and data mining tools possible, such as hypothesis
tests and decision trees. However, the data incompleteness can
also be remediated by several off-the-shelf methods such as
Compressed Sensing and Collaborative Filtering. Therefore,
we did not pursue further depth in this fold.

Second, and more importantly, as a by-product of GORR’s

learning process, the impact factors of the outlooks (i.e., δi) are
good indicators of the importance of a particular outlook over
others. This advantage helps us to reveal interesting patterns
for a better understanding of real-world problems. We used the
CCYS data set as an example to illustrate the effectiveness of
the outlook selection mechanism. More details can be found
in our technical report [33].

Among 8 outlooks of the CCYS data set, we identify two
outlooks that have significant impacts on making predictions,
with their corresponding factors are 0.35 and 0.41 (signifi-
cantly higher than those of other outlooks). The first outlook
profiles the teenagers’ basic information such as address,
demographics, etc. This outlook has the least missing data
(98.2% data density). The second outlook describes alcohol
abuse and prescription drug misuse conditions, which has
the highest missing rate (14.1% data density). The result is
surprisingly consistent with our previous work [1], [34], [35],
showing that (i) Teenagers living in disorganized blocks have
higher frequencies in antisocial behaviors with a factor of
1.25; (ii) Adolescent abstainer is 5.6% less for mental health
treatment request and 7.5% lower on the depressive level; and
(iii) Teenagers who have alcohol abuse and prescription drugs
misuse problem are 85% more likely to dropout before the
12-th grade.

While other data completion methods might recover the
missing data in the second outlook above, they cannot suggest
the importance of this outlook in making predictions. Our
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GORR approach, contrarily, can simultaneously recover the
missing data and indicates more significant outlooks, is thus
more useful and helpful in analyzing real-world problems.

VI. CONCLUSION

In this paper, we explored a novel partial multi-outlook
learning (PMOL) problem, where data abound in multiple
outlooks, yet each outlook suffers from incomplete instance in-
formation. Our key insight is to construct an outlook repository
by leveraging the feature relatedness across outlooks. A learner
is trained based on the feature representations of the outlook
repository, which, on the one hand, enjoys completed feature
information, and on the other hand, exploits the plentiful
supervised information so as to ensure the helpfulness of
the recovered missing outlooks. We showed that our learning
problem finally boils down to and can be solved by a unified
optimization problem. Experimental results demonstrated the
effectiveness and efficiency of our proposal.

In the future, we plan to address the generalizability issue
of this work, which might be subject to certain limitations.
For instance, the data samples collected from real tasks are
usually unlabeled. Human annotation is in general expensive,
time-consuming, and error-prone. As a result, further studies
need to be carried out in order to investigate how to address
the missing outlooks in an unsupervised manner and how to
learn an accurate predictive model with scarce labels.
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