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Abstract—In this paper, we present the results obtained in a
systematic study related to dimensionality reduction on gesture
windowed data. The aim of the study was to analyze the effects
that such reduction causes on the performance of classification
models used to implement the gesture phase segmentation task.
Piecewise Aggregate Approximation was used to implement the
dimensionality reduction and k-Nearest Neighbors was used to
implement the classification models. The results showed that the
dimensionality reduction can improve the classification models’
performance both by decreasing the complexity of their decision
space and by improving the quality of the data.

Index Terms—Gesture Phase Segmentation, Gesture Analysis,
Dimensionality Reduction, Piecewise Aggregate Approximation,
k-Nearest Neighbors

I. INTRODUCTION

Automating the gesture interpretation allows developing
applications with interaction ability close to natural human
interaction [1], [2]. There are initiatives that deal with the ges-
ture recognition in finite vocabulary scenarios of less complex-
ity (human-robot interaction or implementation of interfaces
based on touchscreen resources) or greater complexity (oral
and sign language processing) [3]. Another important scenario
is the understanding of natural gesticulation, in which there
is no previously established finite vocabulary of gestures, but
there is a gestural behavior capable of carrying information.
This type of gesture is studied by the gesture theory.

Gesture theory seeks to understand human gestures and
how they can transmit information. This is not restricted
to manual gestures, although they are the most important
channel for transmitting non-verbal information. According
to D. McNeill [4]: “gesture are not just the arms waving
in the air, but symbols that exhibit meaning in their own
right”. Gestures usually accompany the speech given in oral
language and support both the construction of the speech and
its understanding. Reviews on automatic analysis of manual
gestures and their applicability are found in [5]–[7].

Gesture theory provides frameworks and some level of
formalization that allows you to automate the interpretation of
gestures. One of these frameworks refers to the gesture phases
[8], [9], the focus of interest in this paper. Gesture phases are
a hierarchy of movements that composes or describes human
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gesticulation. This hierarchy divides gestures into segments,
or phases, called preparation, stroke, hold and retraction. To
develop applications capable of using the information in the
gesture phases, it is first necessary to automate the gesture
phase segmentation task. This automation assumes that there is
a speech being uttered by a person and recorded on video. This
video is input to a computer system capable of segmenting it
into sections according to each phase of the gesture.

From the automation standpoint, it is necessary to represent
the gestures so they are interpretable by computers. A way is to
capture the position of the hands during gesticulation, organize
them sequentially into a type of multi-dimensional time series
and submit it to a classification model capable of identifying
which phase each value in that series belongs to. The key
issue in this process is that temporal information needs to
be considered when it comes to gesture analysis. One way
to work with this information is through the data windowing
[10]. However, data windowing can create high dimensional
representations. In addition, information extracted from a
video will contain noise. These two characteristics make it
difficult to create good classification models. Dimensionality
reduction and signal smoothing can help in this scenario.

This paper presents a systematic study on the effect of
applying a dimensionality reduction method (Piecewise Ag-
gregate Approximation) on time series derived from the ap-
plication of the sliding window method on data related to
natural gestures. To evaluate such effects, the gesture phase
segmentation task was solved using the k-Nearest Neighbors
classification algorithm. PAA and k-NN were chosen due to
their low modeling complexities, which allows to minimize
exogenous influences that complex methods could bring.

This paper is organized as follows: Section II presents
basic concepts related to this study; Section III defines the
gesture phases classification problem; Section IV describes the
protocol followed to systematize the experiments and support
the analysis; Section V discusses the results and analyzes the
trends observed; and Section VI summarizes the main findings.

II. THEORETICAL BACKGROUND

A. Gesture Theory

In gesture theory, the gesture phase segmentation task ana-
lyzes the gesture movement hierarchy, allowing to relate it to
discourse units [8]. A framework proposed by A. Kendon [8]
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defines: rest position, a relaxed position without movement;
Gesture Unit (G-unit), the period of time from when hands
leave rest position to the moment they return; and Gesture
Phrase (G-phrase), a component of a G-unit, composed by one
or more gesture phases. The gesture phases are: preparation,
when hands move to the position where the movement will
be performed; pre-stroke hold, a pause between preparation
and stroke; stroke, the movement that conveys meaning to
the gesture; post-stroke hold, a pause between stroke and
retraction; retraction: hands move back to rest position.

To perform automated gesture phase segmentation, it is first
necessary to obtain videos of people gesticulating and label
segments with its corresponding phase. This process is usually
referred as coding. As coding is a subjective task, [9] focus
on proposing a grammar for gesture phase segmentation that
increases inter-coder reliability, helping coders to analyze ges-
ticulation. The main difference between previous framework
and the latter [9] is that the expressive phase can either contain
a stroke that may be surrounded by dependent holds (such as
the framework above), or contain an independent hold that is
an expressive phase with no movement that replaces a stroke.

There are two major issues regarding automated gesture
analysis segmentation [11]: the similarity between holds and
rest positions, when there is almost no movement; and the
difficulty to precise a boundary between transitional phases,
such as preparation or retraction, and rest positions. Due to
this subjectivity, coders may differ on the labeling assigned
to video segments close to the phase transitions (see [11]).
Due to the difficulties raised, the automation of gesture phase
segmentation is commonly performed with the phases: rest
position, preparation, stroke, hold and retraction (see Figure 1).

B. Classification tasks and k-NN algorithm

In the context of this study, the segmentation problem is
solved by modeling the well-known data analysis task called
“classification” [12]. Classification tasks can be modeled as
binary or multiclass classification. The former considers that
only two classes are involved in the problem; the latter con-
siders several classes. To act on this type of task, supervised
learning algorithms are usually applied. We choose the k-
Nearest Neighbors (k-NN) algorithm to carry out this study.
It implements a supervised lazy learning method based on
instances [12]: its training is the storage of a labeled dataset;
the test (or the classification of a new element) is based on
calculating the similarity between the stored data points and
the unlabeled data point for which a label is to be determined;
the k-most similar data points are recovered; the class assigned
to the unlabeled data point is determined by the most frequent
label among those assigned to the data points recovered.

C. Sliding Windows

The gesture phase segmentation problem involves the anal-
ysis of information distributed over time. There are two
alternatives to solve this type of problem: a strategy of analysis
capable of implementing temporal reasoning [13] or a strategy
that embed temporal information into the vector representation

of the data [14]. Following the strategy used in our previous
works, we chose the second option for this study. This option
involves modeling time information through sliding windows.

Sliding windows are commonly used to deal with time series
problems as it brings a temporal aspect to each data [10]. It
consists in representing each data point using features of the
data point itself and features of the previous and/or later data
points (depending on the task to be achieved). For instance,
given a time series T = (t1, ... ti, ... tn), using a sliding window
with size w, ti could be represented using features from (ti-w,
ti-w+1, ... ti), if only previous information must be used.

However, as discussed in [15], it may be difficult to find an
ideal window size, since there is a trade-off between window
size (the larger the window size, the more data it covers) and
recognition performance. In addition, depending on the chosen
window size, the dimensionality of the vector space in which
the data analysis algorithm will act can become large enough
to impact the efficiency of the task resolution.

D. Dimensionality Reduction

The notion of dimensionality is associated with the number
of features used to describe an observation or a data point.
The more features are used, the greater the dimension of
the decision space associated to the classification problem,
the more operations are required to implement the algorithm
that will solve the problem and the stronger is the impact on
processing time. In order to minimize this problem, we choose
to apply the reduction technique called Piecewise Aggregate
Approximation (PAA) [16]. PAA is a simple method in which
the original series of size n is reduced to a series of size
N , following xi = (N/n)

∑(n/N)i
j=(n/N)(i−1)+1 xj , in which each

element xi of the reduced series is given by averaging a subset
of points xj in the original series. The size of the new series
can be defined as a percentage of the size of the original series.

III. PROBLEM DEFINITION: GESTURE PHASES
SEGMENTATION

The representation of gestures in video form is described as
a sequence S = {f1, f2, ..., fN} of RGB image frames. Thus,
to classify the gesture phases, each frame must receive the
label according to the phase in which the hands are in, i.e.,
the classifier must be able to receive fi from S as input, and
classify it according to one of the classes in C = {0, 1} for
binary tests or C = {0, 1, 2, 3, 4} for multiclass classifications.

Binary classification tests consist of determining whether
the hands in a given frame are at rest or in the middle of the
gesture unit. In the multiclass tests, five classes were used:
0 for rest, 1 for preparation, 2 for stroke, 3 for hold, 4 for
retraction. Both post-stroke hold and pre-stroke hold were
considered to be hold, due to difficulties in labeling.

Since each frame is classified according to the desired
classes, the problem of gesture phase segmentation is reduced
to scanning the sequence of frames now labeled, identifying
sequences of frames that have the same label. Then, each
sequence of frames is considered a segment referring to the
gesture phase associated with the label of its frames.
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Fig. 1: Gesture phases examples: hold phases may appear instead of stroke phases

IV. EXPERIMENT PROTOCOL

A. Dataset

Gesture Phase Segmentation Dataset1 is a dataset extracted
from seven videos of people telling stories while gesticulating
[3]. There are three people (A, B, C) telling three different
stories (1, 2, 3). We have selected videos A1 (i.e., person A
telling story 1), A3, B1, B3, C1 and C32.

According to [3] and [17], Microsoft KinectTM Sensor was
used to obtain, for each frame, the coordinates (x, y, z) of
hands and wrists, which were normalized using the position
of head and chest, also obtained by the sensor. The normalized
data were used for calculating speed (scalar quantity) and
velocity (vector quantity) and acceleration of hands and wrists.
Labeling was carried out manually by people analyzing RGB
images of each frame and using the grammar proposed in [9].

Table I shows the distribution of gesture phases among
frames of the selected videos, following the labeling provided
with the data. According to [11], the labeling of gestures
phase is a subjective task, mainly with regards to the transition
frames between phases. Thus, these authors carried out a re-
labeling to this dataset, with the participation of two new
coders, to perform an agreement analysis. For this dataset,
they found low divergence between the labelings, getting
Krippendorff’s Alpha coefficients around 0.8. This threshold
indicates that there is substantial or perfect agreement between
coders [18], meaning that any of the labelings can be used to
train classification models.

TABLE I: Dataset description

Phases A1 A3 B1 B3 C1 C3
Rest 698 662 74 194 286 362
Preparation 163 279 411 469 236 338
Stroke 656 535 287 390 262 389
Hold 39 150 217 201 193 144
Retraction 191 208 84 170 134 215
Total frames 1747 1834 1073 1424 1111 1448

1https://archive.ics.uci.edu/ml/datasets/gesture+phase+segmentation
2Videos referring to person 2 have few frames related to the resting phase,

which hindered the tests related to the G-units. For this reason, the videos
referring to that person were not considered in the experiments reported here.

B. Types of error

Segmenting gestural units implies using binary classifiers
and segmentation of gesture phases implies using multiclass
classifiers. In this work, the performance of the binary clas-
sifiers were evaluated using the classic measure of F-score
[19]. Multiclass classifiers were evaluated using the measure
of accuracy (rate of frames classified correctly).

However, from the point of view of an expert in the
Linguistic field, the errors that occur in the transitions between
phases can be considered less important [3]. Therefore, the
evaluation of segmentation results should include an analysis
of special errors. To accomplish this need, three types of
special errors were calculated based on [3]:

• Irrelevant Transition Error (ITE): it is an error that occurs
at the edge of the transition between two phases. In this
case, the classifier shifts the segmentation by classifying
frames from the current phase as being frames from the
next phase or vice versa. Such errors, as long as they
involve few frames, can be considered irrelevant.

• Serious Transition Error (STE): it is an error that also
occurs at the edge, however the phase indicated by the
classifier is different from the phases involved in the
transition. This is an important error, as it inserts a gesture
phase in a place where it does not exist.

• Internal Error (IE): it is an error that occurs outside the
edge of the transition. This error is important for the same
reason that STE is.

Figure 2 illustrates the special errors: each occurrence of a
geometric symbol means the phase label assigned to a frame
in the video; the transition edge has eight frames, four frames
before and four after the transition between phases.

Fig. 2: Graphical representation for the special errors
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C. Experiment setup

The dataset used allows the combination of different fea-
tures to describe the movements that make up the gestures.
We have divided the possible features into two subsets, which
characterize two experimentation environments:

• Environment #A: features that describe movement tra-
jectories in the real-world bi-dimensional space using
information from the x, y-coordinates of the hands.

• Environment #B: features that characterize the movement
performed in the space-time dimension using the velocity
information imposed on the movement.

Each of the environments was used for the study on the
G-unit segmentation (binary classifier - Experiment #1) and
for the study on the gesture phase segmentation (multiclass
classifier - Experiment #2). For each environment we built
different combinations of features and the following steps:

• Feature selection step: the x, y-coordinates (Environment
#A) and the velocities in {(x, y)} (Environment #B) were
used considering only the right hand, only the left hand
and both hands.

• Windowing step: the frames were grouped in windows of
pre-established sizes (from 1 to 10 frames with 1 for step
size, and 10 to 100 frames with 10 for step size)3. Each
window became a data point labeled with the same label
as the central frame of the window.

• Rearrangement step: the windowed data was reorganized
so that the values of each feature were sequentially placed
inside the window. This rearrangement was necessary to
perform the dimensionality reduction step in each axis of
the original vector space.

• Dimensionality reduction step: PAA was applied to the
series of values formed for each feature within the win-
dow, considering a pre-established reduction rate (70% to
10% with 10 for step size).

• Segmentation step: the classifiers were trained and eval-
uated. The k-NN was performed for k ranging from 2 to
10 with 1 for step size and Euclidean distance.

Figure 3 illustrates the steps performed in each environment.
In this figure, we represent three frames from the original
video, two data points constructed through the windowing
and rearrangement procedures, the dimensionality reduction
for these data points and the gesture phases segmentation
produced using the k-NN classifier (the first frame in the “rest
phase” - above the dotted line - and the second and third
frames in the “preparation phase” - below the dotted line).

Considering the above, the total set of experiments com-
prised 109,440 instances of classification models. Figure 4
summarizes this information. All models were created under
the holdout approach, using 2/3 of a video for training (the
initial frames of the video) and 1/3 of the video frames for
testing (the final frames of the video). This procedure ensured
the presence of all class labels involved in the classification
problem, both in the training fold and in the test fold.

3Using window size 1 means carrying out the experiment without window-
ing, i.e., without considering the vector representation for the time dimension.

All codings were implemented using MATLAB®. The k-
NN logic was implemented with the support of Statistics and
Machine Learning Toolbox. The PAA logic was implemented
with the support of the codes published by [20], [21].

V. RESULTS ANALYSIS

This section contains the synthesis and analysis of the
results obtained with the experiments. It is divided into three
parts: k-NN general performance, analysis of results obtained
in the Experiment #1, analysis of results obtained in the
Experiment #2. In general, the best classification rates were
obtained using the data representation based on information
from both hands. Thus, most of the analysis presented herein
concerns the classifiers obtained with such a representation.

A. General performance analysis of the k-NN algorithm

First, we studied the performance of k-NN to verify whether
it would be robust enough to properly support tests with
dimensionality reduction. Table II shows the results of k-NN
in terms of average F-score for binary classifiers, and average
accuracy for multiclass classifiers. Average results were calcu-
lated taking all values defined for k (cf. Section IV-C). In this
table, the performance of k-NN is shown from different points
of view, for each video and type of classification problem. The
results are presented in terms of: higher and lower averages
(µ), greater standard deviation (σ), and greater coefficient of
variation (c). We argue that k-NN is appropriate to support the
systematic study reported in this paper, since the low values
for σ and cv indicate small variations for the measures F-
score/accuracy, considering different values assigned to k.

B. Experiment #1 - Binary classification

1) Environment #A: Figure 5 presents the average F-score
considering all classifiers obtained for the same window size.
using data from video A1. Each series in this graph concerns
one of the three possibilities of representing a gesture using
hand position information.

The analysis of these series allows us to verify the superior
quality of results obtained when both hands are used to repre-
sent the gesture. The series referring to both hands reveals that
the best classification performance is obtained in the window
with size 10 (F-score = 0.877), with small variations from
sizes 5 and 20. The series referring to the left hand positions
presents greater stability than the one referring to the right,
in windows with small size. However, both lead to similar
performances with large windows, and lower performance than
that obtained using the information from both hands.

Video A3 showed the same behavior, but with a decrease
in terms of the best F-score (0.804). Videos C1 and C3 led to
other behaviors: (a - video C1) best F-scores (≈ 0.70) obtained
in windows of sizes close to 10, with similar performances
for the representation based on both hands and for the repre-
sentation based on the left hand; (b - video C3) best F-scores
(≈ 0.90) obtained in windows of sizes close to 20, with similar
performances for the representation based on both hands and
for the representation based on the right hand.
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Fig. 3: Steps carried out in each environment

TABLE II: k-NN performance: k varying from 1 to 10 in original windows using information from both hands; w. refers to
window size; in the first column p refers to position information and v refers to velocity information

Binary Maximum µ Minimum µ Maximum σ Maximum cv
Video µ σ cv w. µ σ cv w. µ σ cv w. µ σ cv w.
A1p 0.877 0.004 0.004 10 0.662 0.004 0.006 90 0.845 0.045 0.053 1 0.845 0.045 0.053 1
A1v 0.805 0.009 0.012 10 0.581 0.008 0.013 100 0.641 0.025 0.039 50 0.641 0.025 0.039 50
A3p 0.805 0.004 0.005 10 0.753 0.005 0.007 70 0.758 0.042 0.055 1 0.758 0.042 0.055 1
A3v 0.645 0.012 0.018 70 0.506 0.013 0.026 20 0.631 0.021 0.033 80 0.524 0.020 0.038 1
C1p 0.733 0.043 0.059 70 0.403 0.012 0.031 100 0.602 0.094 0.155 4 0.602 0.094 0.155 4
C1v 0.536 0.018 0.033 4 0.309 0.007 0.022 80 0.429 0.034 0.079 1 0.429 0.034 0.079 1
C3p 0.938 0.003 0.003 20 0.680 0.016 0.023 100 0.774 0.080 0.104 3 0.774 0.080 0.104 3
C3v 0.567 0.009 0.015 2 0.224 0.038 0.173 100 0.224 0.039 0.173 100 0.224 0.039 0.173 100
Multiclass Maximum µ Minimum µ Maximum σ Maximum cv
Video µ σ cv w. µ σ cv w. µ σ cv w. µ σ cv w.
A1p 0.718 0.006 0.008 20 0.529 0.002 0.004 100 0.633 0.039 0.062 2 0.599 0.038 0.064 1
A1v 0.634 0.008 0.013 7 0.415 0.006 0.015 90 0.596 0.023 0.038 3 0.458 0.021 0.046 50
A3p 0.633 0.003 0.005 30 0.491 0.005 0.011 100 0.521 0.026 0.050 1 0.521 0.026 0.050 1
A3v 0.542 0.016 0.030 40 0.396 0.026 0.067 1 0.418 0.030 0.072 2 0.418 0.030 0.072 2
C1p 0.539 0.005 0.009 30 0.311 0.030 0.096 3 0.365 0.061 0.166 5 0.365 0.061 0.166 5
C1v 0.454 0.015 0.033 10 0.233 0.047 0.199 70 0.233 0.047 0.199 70 0.233 0.047 0.199 70
C3p 0.570 0.027 0.047 20 0.297 0.034 0.116 1 0.356 0.069 0.194 3 0.356 0.069 0.194 3
C3v 0.367 0.018 0.049 8 0.217 0.014 0.065 100 0.234 0.029 0.125 90 0.234 0.029 0.125 90

Fig. 4: Workflow for the experiments

Fig. 5: Average F-score for each window size built with data
from video A1 and hands’ position information

From this analysis, we conclude the best performance was
obtained in windows of size between 5 and 20 and representa-
tion using both hands, with performance drop for windows of
sizes greater than 40. Video C1 has characteristics that make
its segmentation harder for the classification model.

Figure 6 shows the results of the classification models
performed on data with reduced dimensions through the appli-
cation of PAA. These results refer to the video A1 considering
the representation based on both hands. Each series in this
graph refers to the performance of classification models trained
with the original size windows and their reduced versions. This
graph has four main points of attention:

• the rightmost points in each series refer to classification
models built for windows without dimensionality reduc-
tion (100% of the values in the window are presented as
input for the k-NN algorithm);

• the series label “Both hands - 10”, for instance, indicates
that the representation is based on both hands and the
window has original size 10;

• scenarios with windows with original size 1 or 5 were
not submitted to dimensionality reduction, so the corre-
sponding series have one point to the right of the graph;
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• for the other scenarios, each point in the series, from right
to left, indicates that the original window has undergone
a percentage reduction.

Fig. 6: Average F-score for scenarios with dimensionality
reduction for data from video A1 and hands’ position

In analyzing the graph in Figure 6, we noticed that the
classification models’ performance does not suffer significant
degradation as the dimensionality reduction increases, with the
exception of one case (original window with size 10) in which
a drop in performance occurs at the last level of reduction.
This scenario points out an advantage in the procedure that
carries out windowing and dimensionality reduction over the
procedure that only carries out windowing, when original
windows with size 10 and 20 are considered (the best windows
according to the analysis of Figure 5). As an example, consider
the case of the original window with size 10. The size
reduction in 50% means that the classification model receives
a series with five values as input and achieves an average
performance of 0.878. This performance is equivalent, or
slightly better, than that obtained for the original window with
size 5 (0.864).

Similar behaviors were observed for videos A3, C1 and C3.
The differences refer to: (a - video A3) for original window
with size 10, the classification models reach an average F-score
= 0.822 when only 20% of the original size is being used (a
rate reduction of 80%) against the average F-score = 0.805
for the windows in the original size, and against the average
F-score = 0.793 got with windows whose original size is 5; (b
- video C1) in this case there was a small gradual decrease in
the performance of the classification models. The performance
for windows with size 10 decreased from F-score = 0.705 in
its original size to a F-score = 0.675 in a window with 20%
of its original size (a rate reduction of 80%). The performance
in the window with original size 5 achieved F-score = 0.694.

2) Environment #B: Figure 7 presents the results for video
A1, obtained using the information related to hands velocity.
Again, there is a tendency for better performance on smaller
windows, and loss of performance on larger windows. The best
F-score (0.790) was obtained on window with size 5, using
information from both hands. However, the results obtained
with both hands were superior only in smaller windows. From
the window with size 20, the representation using both hands
information is surpassed by the results obtained with the
representation using only the right hand information.

Fig. 7: Average F-score for each window size built with data
from video A1 and hands’ velocity information

In the analysis of the other videos we observed that: (a
- video A3) the best F-scores (≈ 0.65) were obtained on
windows larger than 30, highlighting the window with size 40
(F-score = 0.653) and information only from the right hand;
(b - videos C1, C3) the best F-scores (≈ 0.57 for video C1;
≈ 0.60 for video C3) were obtained in windows with sizes
close to 10 and using the information only from the right
hand. The results related to information from both hands were
slightly inferior, but they showed the same behavior trend.

The results of the classification models for video A1 after
the dimensionality reduction are shown in Figure 8. The results
obtained on window with size 10 after the dimensionality
reduction in 80% (meaning the use of two values in the
series) achieves an F-score = 0.809, slightly higher than the
F-score achieved with the original window with size 5 (0.786),
showing that PAA reduction over windowing can be more
informative than the simple windowing. In addition, we can
see that the dimensionality reduction led to better F-scores for
all cases shown in the figure. This reinforces the advantage of
using the reduction in the G-units segmentation problem when
the representation based on velocity is applied.

From the results obtained in the other videos, we observed
compliance with what was observed in Figure 8, with regard
to the best size of windows. In video C3, although the perfor-
mance improvement occurred in all cases when comparing the
result of the original window with the results in the respective
reduced versions, there was no gain in relation to the better
performance obtained with the original window with size 5.

Fig. 8: Average F-score for scenarios with dimensionality
reduction for data from video A1 and hands’ velocity
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C. Experiment #2 - Multiclass classification

1) Environment #A: Figure 9 presents the average accuracy
considering all classification models obtained for the same
window size using data from video A1. This graph shows
that the best results were for windows smaller than 30. The
best accuracy (0.718) was obtained in windows with size 20,
using information from both hands.

Fig. 9: Average Accuracy for each window size built with data
from video A1 and both hands’ position information

In terms of accuracy, the results obtained for the other
videos were lower: ≈ 0.63 for video A3 in the windows with
sizes close to 30; ≈ 0.56 for video C1 in the windows with
sizes bigger than 20; and ≈ 0.57 for video C3 in windows with
size 20 with performance drop for all other sizes of windows.
The use of information from both hands or from the right hand
achieves the informed performances.

Figure 10 shows the impact of the dimensionality reduction
on the performance of the multiclass classification models,
using information from both hands for video A1. We observed
again that the performance degradation of the models is very
low, motivating the use of dimensionality reduction. The best
results were obtained for windows with size 10 and 20. Up to
the reduction limit in 80%, such performances suffered slight
degradation as the dimensionality is reduced. This test case
shows that the reduction in dimensionality leads to a series of
only 2 and 4 values that are still capable of maintaining quality
information about the gesture phases. Note that in the series
originally composed by five values (original window with size
5), the rating model achieved accuracy = 0.620. Such value
is much lower than the lowest value (0.681) obtained with
reductions over the original windows with size 20.

Fig. 10: Average Accuracy for scenarios with dimensionality
reduction for data from video A1 and both hands’ position

Still analysing the information in Figure 10, we highlight the
performance of the classification models in the windows that
were originally bigger (bigger than 40). For these windows,
there was an increase in the average accuracy as the series were
reduced. This fact indicates that the dimensionality reduction
is improving the quality of the information, probably reducing
the noise level. For the other videos, the observed behavior
trends are equivalent to what was described for video A1.

For multiclass classification, we can also analyze the effects
of dimensionality reduction considering the special types of
errors. Figure 11 shows the behavior of errors while dimen-
sionality is reduced, along with the behavior of accuracy and
relaxed accuracy4, considering a window with size 10, video
A1 and position of both hands. The behavior shown in this
graph is similar to that observed in the other tests. As a result
of this analysis, we can conclude that the drop in performance
was characterized by internal errors and, therefore, the reduc-
tion in dimensionality impacts accuracy more in terms of this
type of error than in terms of errors at the edge.

Fig. 11: Special errors analysis

2) Environment #B: Figure 12 shows the average perfor-
mance of the multiclass classification models, on the A1
video, using representation based on hands velocity. The best
results were obtained in windows smaller than 20 and the
performance of the classifiers gradually decreases with the
increase in window sizes. The highest accuracy (= 0.631) was
obtained in windows with size 10, with similar performances
with information from both hands or just from the right hand.

Fig. 12: Average Accuracy for each window size built with
data from video A1 and hands’ velocity information

In general, for the other videos, the accuracy value achieved
by the classification models is lower. For videos A3 and C3,

4Here we considered that ITE errors can be seen as correct classifications,
then: Relaxed accuracy = accuracy + irrelevant transition errors.

978-1-7281-6926-2/20/$31.00 ©2020 IEEE



the best accuracy was obtained in windows with size 20.
Only in video C3, the use of information from the right hand
surpassed the use of information from both hands.

Figure 13 presents the average accuracy obtained by the
multiclass classification models in the scenario of dimension-
ality reduction for video A1 and representation based on hands
velocity. The graph shows that the dimensionality reduction
was positive for all windows. For windows with size 10 and
20, the accuracy was 0.631 and 0.606 in the original size, and
0.640 and 0.639 in windows with 90% reduction. In relation
to the other videos, we highlight the significant gain that the
reduction brought to the classification models obtained for the
C1 video in large windows. Figure 14 shows such results.

Fig. 13: Average Accuracy for scenarios with dimensionality
reduction for data from video A1 and both hands’ velocity

Fig. 14: Average Accuracy for scenarios with dimensionality
reduction for data from video C1 and both hands’ velocity

VI. CONCLUSIONS

In this paper, we presented the results of a systematic study
on the effects of dimensionality reduction in the context of
the gesture phase segmentation task. The results pointed out
that a simple method of dimensionality reduction applied to
windowed data can improve the classification models applied
to gesture phases segmentation tasks. For binary classification,
both in terms of position and velocity based representation, we
found that it is possible to reduce the data series represented in
a window by up to 80% of the original window size, without
significant loss of performance. Slight improvements on per-
formance have been seen for larger original size windows. For
multiclass classification with position based representation, we

state the classification models performance remained stable
with the reduction. However, in all videos, there were cases
of drastic drop in performance for small original windows
when the reduction was over 80%. Finally, considering the
velocity based representation, the dimensionality reduction
caused significant improvements in the performance of almost
all classification models carried out over larger original size
windows. Future works may evolve this study by exploring
other classification algorithms to verify whether the impact of
the dimensionality reduction with PAA remains as observed
herein and brings benefits in the face of the related works.
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