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Abstract—In the last few years, a huge progress has been
made to achieve image-to-image translation by mapping images
from a source domain to a target domain. We exploit the recent
progress made in this field to tackle another issue, namely time
series translation. This work targets time series translation i.e.
maps time series data from a source domain to a target domain.
We present our new algorithm DR-TiST, a modified version of
DRIT [1], that enables time series translation. We apply DR-
TiST to a real word use case where we transfer the time series
behavior of a ventilation system to the environmental conditions
of a different ventilation system and introduce new evaluation
metrics to evaluate its performance. The performance of DR-
TiST is compared to CycleGAN-VC [14], a special form of an
image-to-image translation algorithm used for voice conversion.
We demonstrate that the time series generated by DR-TiST are
more realistic than the ones generated by CycleGAN-VC.

Index Terms—Time Series, Deep Learning, Image-to-Image-
Translation, DRIT, Generative Adversarial Networks

I. INTRODUCTION

Rooms are equipped with two different ventilation sys-
tems from different manufacturers. Each ventilation system
starts cooling whenever the room temperature raises above a
temperature threshold ¢,,,, and stops when the temperature
drops below a minimal temperature t,,;,. The first room is
small and consequently cools down and warms up faster.
Hence, the corresponding ventilation system is frequently
turned on and off. The second room is bigger. In this case,
the ventilation system needs more time to cool down the
temperature and the room will not warm up rapidly. The
ventilation system of this room will represent slower on/off
cycles. The performance of these ventilation systems is only
comparable if they are running in the same environment and
under the same conditions.

Now assume that we want to use time series data from
normal operation to build a condition monitoring system. A
straightforward approach is to build individual monitoring
systems for each specific machine and environment. It is how-
ever often desirable to build only one generalized condition
monitoring system that can be applied to any machine in any
environment. This approach often leads to better model quality
because the model can be based on larger amounts of data
from different machines and different operating conditions;
and it avoids the effort to manage many individualized models
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(deployment, maintenance, etc.). For building such generalized
models, however, it is necessary to translate time series data
between different machines and different environments. For
this purpose, this paper proposes a new method called DR-
TiST, and compares its performance with CycleGAN-VC.

Recently, the field of image-to-image translation is making
rapid progress. In fact, a lot of work has been proposed that
aims to determine a mapping function between two visual
domains. Some of them [6] require paired-data during the
training process to transform a specific image domain to
a target domain. Others achieve image-to-image translation
without coupled data. By way of example, CycleGAN [4]
involves two discriminators and two generators to perform
image-to-image translation and relies on a cycle consistency
constraint to ensure cyclic reconstruction of the images. Latest
works such as UNIT [3] propose a more complex structure that
involves coupled GANs. Furthermore, DRIT proposes a new
structure that aims to capture the attribute and content specific
features of the image.

In this paper we exploit the recent progress in image-to-
image translation to perform time series translation i.e. to map
time series from one domain to another domain for example
for different machines in different environments. Our work
contributes as follows:

o We introduce a new method to translate time series from
an initial domain A to a target domain B by adapting
an existing image-to-image translation algorithm, namely
DRIT [1], to time series data.

e Test DR-TiST on a real use case using simulated data
where we transfer the behavior of a first machine to the
environmental domain of a second machine.

o Evaluate the performance of our algorithm using visual
inspection and two new evaluation methods designed for
the introduced use case and time series data.

e Compare the performance of our algorithm to
CycleGAN-VC [14] a modified version of CycleGAN
[4] designed for voice conversion and consequently able
to process sequential data.

II. RELATED WORK

Generative Adversarial Networks (GANs) In the last few
years, GANs have shown remarkable results in generating



realistic images [8], [12]. GANs involve two neural networks,
the generator and the discriminator which try to generate new
data so that their distribution is the same as the one of the
real data. Some authors exploited this technique to generate
sequential data such as in C-RNN-GAN [9], RGAN [10] or
SeqGAN [18]. Instead of reproducing the distribution of the
real data, our work targets another problem, namely time series
translation. Our main goal is to transfer a time series of a given
machine in a given environment to the domain of a different
machine in a different environment.

Image-to-Image Translation Several works have been pre-
sented to perform image-to-image-translation with the purpose
of learning the mapping function between two different visual
domains. Isola et al. [7] used in their method, Pix2pix,
conditional GAN to translate images to a target domain. In
this case, paired-data are required during the training process.
This technique was later extended by Wang et al. in CycleGAN
[4] that relies on a cycle consistency loss to deal with unpaired
images. Liu et al. presented unsupervised image-to-image
translation networks (UNIT) [3] which are based on coupled
GANSs that map to a common latent space used as a cycle-
consistency constraint. Huang et al. introduced a multimodal
version of UNIT, MUNIT [17], that enables a diverse output
generation for a source image by decomposing the latent
space into a domain-invariant content space and a style space.
In contrast to MUNIT [17], BicycleGAN [6] requires paired
data during the training process. This technique consists of a
Conditional Variational AutoEncoder GAN (cVAE-GAN) and
a Conditional Latent Regressor GAN (cLR-GAN) to guarantee
a one-to-one mapping between each input image and the
corresponding output. DiscoGAN [5] learns to distinguish
between the domain and the style of the image by observing
the relationships between various visual fields. To enable a
multimodal image-to-image translation, DRIT [1], [2] tries to
capture the relationship between two different visual domains
by dividing each image into a content and attribute. In fact,
a disentangled representation is applied to the latent space
representation. The content consists of the common informa-
tion between both visual domains whereas the attribute space
preserves the domain-specific information. DRIT [1] involves
two content encoders, two attribute encoders, two generators,
two domain discriminators and a content discriminator. An
input image from a domain X is projected by the attribute
encoder and by the content encoder into the domain specific
content space. The content and attribute vectors determined
by the encoders are later used by the generator to translate
images in the domain &X'. A domain discriminator learns to
distinguish between the real images from domain X and
the images generated by the generator. Finally, a content
discriminator is involved to differentiate between the learned
content representations of both domains. We refer to [1] for a
detailed description of the algorithm. These approaches were
mainly designed for images and can not be directly applied
to time series data. This is mainly due to the sequential
structure of this type of data. To this end, we introduce DR-
TiST a modified version of DRIT [1]. CycleGAN-VC [14]
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proposes a modified version of CycleGAN that combines
gated CNNs with an identity-mapping loss to focus on non-
parallel voice-conversion. The previously discussed translation
and generation techniques are summarized in Table I.

Image Generation Time Series Generation
A A GAN [8] C-RNN-GAN [9]
DCGAN [12] SeqGAN [18]
A — B and CycleGAN [4] UNIT [3] CycleGAN-VC [14]
B— A MUNIT [17] DRIT [1], [2] DR-TiST

TABLE I: Comparison of different GAN generation methods
and translation techniques for images and time-oriented data

III. ALGORITHM DESCRIPTION

In this paper, we propose a new algorithm called DR-TiST
that achieves time series translation thanks to the disentangled
representation proposed by DRIT. Each time series is divided
into a functional behavior highlighting the properties of the
time series and a context describing the environmental setup.
For example, a time series depicting the behavior of an engine
over time can be divided into a functional behavior depicting
its behavior in the on/off states and its operating mode i.e.
times at which it is off or on. Based on the extracted functional
behavior and operating mode, it is possible to translate the
functional behavior of this time series to other operating modes
or to simulate the behavior of other engines in its operating
mode. The encoders, generators and discriminators of DRIT
were originally designed with a 2-dimensional convolutional
neural network (CNN) in order to process images. This neural
network structure is not suitable for time series data due
to their sequential structure. To adapt DRIT to time series
data we make two major modifications: apply the gated CNN
structure and replace the two-dimensional CNN with the one-
dimensional CNN that take the temporal relationship between
the data points into consideration. Gated temporal convolutions
were originally introduced by Dauphin et al. [13] and achieve
state-of-the-art results in language- and speech modeling. In
contrast to recurrent networks where the output of a layer
is computed with the recurrent function h; = f (hj—1,w;—1),
gated CNN can be employed in a parallel manner. This allows
a faster computation. Gated CNN utilizes a Gated Linear Units
(GLUs) as an activation function. The output of a layer [ + 1,
H;. 1, is computed based on the output of the layer H; and
the model parameters W, V', b and c as follows:

Hy=H -W+bo(H -V +c). (D

where ® is the element-wise product and o is the sigmoid
function. Fig. 1 shows the gated CNN structure.

The gated structure is tested on the different components
of DRIT. Tests show that the best results are obtained when
it is only applied on the generator. Thus, the proposed DR-
TiST structure applies gated CNN on the residual blocks of
the generator. As a last modification, we integrated instance
normalization [19], a well-known method for improving the
quality of images during the generation process and replace
the deconvolution blocks used the generator with a pixel



Fig. 1: Tllustration of the gated CNN structure. The output of
the layer H(X) for an input X is computed by multiplying
element-wise X -V +cand o (X - W +b) where X -V + ¢
and X - W + b are the resulting vectors of the convolution on
the input X and the sigmoid function is applied on X - W +b.

shuffler [20]. The resulting residual blocks used in DR-TiST
are illustrated in Fig. 2. The discriminators and the encoders
remain unchanged.

Instance
Norm
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s
=

Fig. 2: Tllustration of the residual block used in the generator
of DR-TiST. Conv denotes a convolution, instance norm
denotes instance normalization and GLU denotes the activation
function.

IV. USE CASE
A. Use Case Description

In this use case, we are taking into consideration two
ventilation systems, system 1 and system 2, placed in two
different rooms which constitute the environmental setup. The
first room, room A, is huge and has a cold environment
contrary to the second one, room B, which is warmer and
smaller. The variation of the temperature is different from
one room to another. In fact, due to the size of room A its
temperature takes time to raise and fall. Hence, its ventilation
system will not be frequently switching on and off. This leads
to slow on/off cycles i.e. times at which the machine switches
its operating mode. In room B on the other hand, the on/off
cycles are changing faster because the temperature raises
and falls quickly. Generally condition monitoring systems
are designed for individual ventilation systems and operating
conditions leading to a very specific solution for exactly
one setup. When Al based condition monitoring systems are
designed using only the available data of both machines in
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their particular environment, very single models will arise.
There is a strong interest to design condition monitoring
systems, that generalize, hence can be applied to any machine
in any environment. In reality the amount of data is hard
to collect and it is only feasible if they are available. We
work around this problem by generating a more heterogeneous
training data set, consisting of “mixed” time series data, where
system 1 controls room B and system 2 room A, which are a
non-realistic conditions.

B. Use Case Simulation

To the best of our knowledge, this is the first study with
the goal of aligning time series. Thus, the evaluation of DR-
TiST on a real sensor dataset where the behavior may be
unexpected will be complicated. To be able to exactly evaluate
the performance of DR-TiST we design a synthetic dataset
where the success or failure of translating the behavior of one
system into the operating mode of another system is obvious
and quantifiable. To this end, we simulate the behavior of
two different engines of two different ventilation systems,
engine 1 and engine 2. The engines are turned on and off
in different time slots and are operating differently i.e. engine
1 is frequently turned on and off while engine 2 shows a more
stable behavior.

Following discussions with domain experts we decided to
model the machines’ behavior using the standard exponential
behavior. Hence, the machine’s behavior in the on and off

states is computed as follows:
t —
E )) +tn @
i

tT°>+n 3)
-

where 7 and MRS characterize the engines and n ~
N (0,0.01) is a Gaussian noise.

Engine 1, driving the ventilation system in room A, is
running with a low Maximal Rotational Speed (M RS) equal
to 1. Whereas a more efficient engine 2 is placed in the hotter
environment, room B. Its M RS is equal to 1.5. Moreover, we
assume that engine 1 is older and therefore slower in reaching
the M RS value or the minimal value when it is started or
stopped. Thus, it has a larger value of 7 = 5, compared to the
newer engine 2 with a value of 7 = 2. Table II summarizes the
characteristics of engine 1 and 2 used in our experiments. The
initially collected data depicts the properties of engine 1 and 2
in the conditions of room A i.e. slow on/off cycles and room
B i.e. fast on/off cycles respectively. We consider the task of
generating the functional behavior of engine 1, characterized
by MRS = 1 and 7 = 5, in the operating mode of engine
2 characterized by fast on/off cycles and vice versa. Fig. 4
illustrates the expected time series translation scheme.

Yon(t) = MRS - (1 — exp <_

Yor£(t) = exp <—

C. Experimental Setup

Given initial data depicting the properties and the operating
mode of engine 1 and engine 2, our main goal is to make
sure that DR-TiST is able to generate new data that depicts
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Fig. 3: Tllustration of the generator’s architecture used in DR-TiST.

Engine 1 | Engine 2
MRS[Hz] 1 1.5
7[min] 5 2

TABLE II: Characteristics of machine 1 and machine 2 in the
on and off states

n1 | ope
Test1 | 20 20
Test2 | 30 | 40
Test3 | 35 45
Test4 | 40 | 50

TABLE III: Mean of the Bernoulli distribution of the on/off
times in the different experiments

the behavior of engine 1 with the on/off cycles of engine
2 and vice versa. To this end, we conduct four different
tests where we change the distribution of the on/off times
for each engine. The mean of the Bernoulli distribution is
varied for the different tests. Table III illustrates the mean
of the on/off times for the different tests where p; and po
denote the mean of the Bernoulli distribution for the on/off
times of engine 1 and engine 2 respectively. For test 1, the
same Bernoulli distribution is used for engine 1 and engine
2 i.e. g1 = po = 20. In contrast to test 1, 1 and po are in
the other tests different. The initial data are computed based
on the equations 2 and 3, the characteristics of the machines
presented in Table II and the on/off cycles sampled from the
Bernoulli distribution. In the training phase we use 1000 time
series for each engine with 508 data points. Additionally,
in order to assess the impact of the amount of data on the
performance of the framework we repeat test 2 with different
number of data points per time series, namely 208 and 416.
We evaluate the performance of DR-TiST by generating 100
time series in the test phase. We expect that DR-TiST is
able to generate new time series of engine 1 in the time
domain of engine 2 and vice versa. Finally, we compare
the performance of DR-TiST to CycleGAN-VC, a modified
version of CycleGAN designed for voice conversion purposes.
As CycleGAN-VC is computationally expensive, we reduce
the length of the data points per time series to 208 and rerun
test 2 and 3.

D. Evaluation Methods

In our experiments we evaluate the performance of DR-
TiST with three different methods: visual inspection and two
additional metrics that rely on ground truth data.
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Visual inspection The evaluation of GANs and image-to-
image translation techniques is still an open research problem.
Current evaluation methods involve humans and rely on a
visual inspection to assess the quality of the generated data
[21]. Various work [7], [15], [16] rely on user studies to
evaluate the realism of the generated images. Inspired by
previous works as an initial check, we perform a visual
investigation to assess how realistic a time series appears to
a domain expert and we visually inspect the quality of the
generated time series. Beyond visual inspection, we evaluate
the performance of DR-TiST with two additional methods that
assess the quality of the generated time series by comparing
them to ground truth data.

Error in on/off time prediction Our main goal is to
simulate the behavior of a first machine with the on/off times
of a second machine i.e. we want to transfer the behavior of
a machine to the time domain of a second one. During the
simulation of the behavior of each engine we save its on/off
times, these will correspond to the expected on/off time for
the other engine. The expected behavior for each machine Y
is then computed based on its expected on/off times and on
the equations 2 and 3. The root mean square error (RMSE)
between Y and the time series generated by DR-TiST, namely
Y can be calculated as follows:

- N2
RMSE = N-Z(Yi—YZ) ()

i=1

where IV denotes the number of data points per time series.

Moreover, we compute the mean of the point-wise differ-
ence between the expected and obtained time series Y and
Y:

Y | Yi—Yi|
SN ©
i=1 ?

V. EXPERIMENTS

Engine 2 Generated | Engine 1 Generated

D2cyc D2pr Dlcyc D2pr
Test 2 0.41 0.36 0.31 0.2
Test 3 1.77 0.43 1.66 0.35

TABLE IV: D values for generating time series of engine 1
and engine 2 by CycleGAN-VC and DR-TiST for test 2,3 and
4. D¢y, and Dppg denote the values of D for the time series
of CycleGAN-VC and DR-TiST respectively.
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Fig. 5: Comparison of the time series of engine 2 generated with the operating mode of engine 1 in T'est 3 where
w1 = 35 and ps = 45. Time series generated by CycleGAN-VC, depicted in red, has a completely different behavior than the
expected time series, depicted in green. The time series produced by DR-TiST, depicted in blue, is more realistic.

Engine 2 Generated Engine 1 Generated

RMSE2cyc | RMSE2pr | RMSEley. | RMSElpr
Test 2 0.565 0.51 0.25 0.18
Test 3 1.37 0.59 0.86 0.28

TABLE V: RMSE values for generating time series of engine 1
and engine 2 by CycleGAN-VC and DR-TiST for test 2,3 and
4. RMSE.,.and RMSEpr denote the values of RM SE for
the time series of CycleGAN-VC and DR-TiST respectively.

Fig. 6 and Fig. 7 illustrate the time series generated by the
DR-TiST for engine 2 and engine 1 respectively. We see in Fig.
6 the recorded time series of engine 1 depicted in blue. The
time series produced by DR-TiST, depicted in orange, have the
functional behavior of engine 2 and the same on/off cycles
as the ones of engine 1. Fig. 7 demonstrates the originally
recorded time series of engine 2, in blue, i.e. with a maximal
value of 1.5 and the corresponding time series generated, in
orange, by the algorithm with the same on/off times and a
different functional behavior. For the different examples, we
clearly see that the trained model was able to simulate the
behavior of engine 1 with the on/off times of engine 2 and
vice versa. This corresponds to the desired behavior. Since we
want to show that this is not only an exemplary time series,
for each test, we compute our quantifiable metrics on a set of
100 generated time series. Table VI summarizes the results of
RMSFE and D values respectively when generating time se-
ries of engine 1 and engine 2 in the different experiments. The
obtained results demonstrate that test 1 has the lowest RM SE
and D values i.e. Depg1 = 0.0652 and RM SEc, 42 = 0.26. It
is to notice that in test 1 1 = po. In test 2, RMSFE,41 and
RMSE,,4 are higher when DR-TiST is trained with 208 data
points instead of 416 data points. Hence, the amount of data
has an impact on the results. Test 3 and test 4 are characterized
by higher RMSE and D values. By way of example, Dey, g2
is equal to 0.5 and 0.16 for test 3 and test 4 respectively.

Examples of time series generated by CycleGAN-VC and
DR-TiST in test 2 and 3 are presented in Fig. 8 and 5 re-
spectively. The point-wise differences between the time series
generated by CycleGAN-VC and the expected time series
are higher than the one generated with DR-TiST. Moreover,
the time series of DR-TiST are more realistic and fit better
to the target time domain than the time series generated by
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CycleGAN-VC. Fig. 5 shows that for test 3 the time series
of CycleGAN-VC present a completely wrong on/off cycles.
Table V and IV show the RMSE and D values of DR-
TiST compared to CycleGAN-VC. In test 2 and 3 DR-TiST
outperforms CycleGAN-VC. The D and RMSE values of
DR-TiST are for both experiments lower than the one of
CycleGAN-VCi.e. in test 4 D2.,. = 1.77 and D2pp = 0.43.
It is to notice that DR-TiST is faster and more efficient than
CycleGAN-VC in terms of time and computation.

Dengl DengQ RMSEeng2 RMSEengl
Test 1 0.066 0.1693 0.053 0.266
Test 2400 | 0202 | 036 0.18 0.51
Test 214416 0.11 0.21 0.1105 0.347
Test 3 0.309 0.5 0.66 0.26
Test 4 0.13 0.164 0.122 0.29

TABLE VI: Computed D and RM SE values for the different
tests. Depg1 and Deyga, RMSE.pg2 and RMSE,,4 denote
the computed D and RMSE values during the test phase
when generating time of engine 1 and engine 2 respectively.

VI. CONCLUSION

This work tackles a special problem, namely time series
translation by decomposing them into a functional behavior
and an operating mode. The presented framework applies
the gated CNN structure on DRIT an algorithm originally
designed for image-to-image translation purposes. The utility
of the proposed method is tested on a real world use case
where we transfer the behavior of a ventilation system op-
erating in a small room with slow on/off cycles to another
environment characterized by a faster on/off cycles. We con-
duct four different tests where we vary the on/off times of the
ventilation systems. Results show that we were able to transfer
the behavior of a system to the time domain of the other
system and that DR-TiST outperforms CycleGAN-VC both
in quality of the generated time series as well as in runtime.
The evaluation of translation techniques and GANs remains a
challenge and relies in most of the cases on a human judge.
In the future, we plan to investigate new evaluation methods
that are more suitable for time series data. Moreover, we plan
to consider other domain adaptation algorithms and appply it
to real data.
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Fig. 6: Examples of time series of engine 2 in operating mode of engine 1 generated in test 4 where y; = 40 and
o = 50. The originally recorded time series of engine 1 are depicted in blue. DR-TiST was able to map the functional
behavior of engine 2, characterized by a higher amplitude, in the time domain of engine 1. The resulting time series are
depicted in orange.
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Fig. 7: Examples of time series of engine 1 in operating mode of engine 2 generated in test 4 where p; = 40 and s = 50.
The originally recorded time series of engine 2 are depicted in blue. DR-TiST was able to map the functional behavior of
engine 1, characterized by a lower amplitude, in the time domain of engine 2. The resulting time series are depicted in orange.
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Fig. 8: Comparison of time series of engine 2 generated with the operating mode of engine 1 in test 2 where 11 = 30
and po = 40. Time series generated by CycleGAN-VC are depicted in red while the time series produced by DR-TiST are
depicted in blue. The target time series representing the behavior of engine 2 in the operating mode of a selected engine 1 are
depicted in green.
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