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Abstract—Deep convolutional neural networks are good at
accuracy while bad at efficiency. To improve the inference speed,
two directions have been explored in the past, lightweight model
designing and network weight pruning. Lightweight models have
been proposed to improve the speed with good enough accuracy.
It is, however, not trivial if we can further speed up these
“compact” models by weight pruning. In this paper, we present a
technique to gradually prune the depthwise separable convolution
networks, such as MobileNet, for improving the speed of this
kind of “dense” network. When pruning depthwise separable
convolutions, we need to consider more structural constraints to
ensure the speedup of inference. Instead of pruning the model
with the desired ratio in one stage, the proposed multi-stage
gradual pruning approach can stably prune the filters with a
finer pruning ratio. Our method achieves satisfiable speedup
with little accuracy drop for MobileNets. Code is available at
https://github.com/ivclab/Multistage Pruning.

Index Terms—Network Pruning, Lightweight CNN

I. INTRODUCTION

Convolution neural networks (CNNs) have become an effec-
tive and well-developed technique that achieves state-of-the-art
performance on many tasks. However, to gain better accuracy,
the architectures of CNNs tend to be larger or deeper, which
makes the CNN models infeasible to be realized on resource-
limited devices such as home robots and mobile phones.

To overcome this problem, a significant direction in recent
studies is to design new lightweight architectures that con-
sume less floating-point operations. Among these researches,
depthwise separable convolution [1] becomes a promising
design strategy for reducing the model size and complexity
of CNNs, where the standard convolution operation of CNN
is decomposed into a depthwise convolution layer followed by
several 1×1 convolution layers to simplify the CNN structure.
The resulted CNN models such as MobileNetsV1 [1] and Mo-
bileNetV2 [2] have been widely used in real applications. The
depthwise separable convolution structure has also become
a popular choice in recent neural architecture search (NAS)
studies such as Liu et al. [3], Cai et al. [4], and Tan et al. [5].

From another viewpoint, a CNN model often contains much
redundancy among their weights after training [6], [7]. Hence,

a useful strategy to compress CNN models is to remove the su-
perfluous weights or filters of their convolutional kernels [8]–
[11], so that the model size can be reduced and the inference
speed can be increased. Once the unnecessary weights or filters
are pruned, the CNN models can be fine-tuned or distilled [12]
for restoring the performance via re-training.

Although the technique of pruning redundant filters has been
shown highly effective for compressing standard convolution
operations of CNNs, it has not been well applied to depthwise
separable convolutions yet. The reasons could be as follows.
First, depthwise separable convolution is often performed once
per layer. As it is the only operation regarding the spatial
context of the input feature map in the layer, reducing it
would cause considerable performance degradation. Second,
unlike standard convolutional kernels, pruning the depthwise
separable convolution involves more sophisticated constraints
on both the input and output feature maps.

To address these issues, we solve the structural constraint
over the depthwise separable convolutions. Based on the
constraints derived for pruning, we then introduce a method
to remove the redundancy of lightweight structures built up
with depthwise separable convolution layers. Our approach
applies to the tasks with the architectures factorized using
depthwise separable convolutions (such as MobileNets) for
the deployment of embedded devices; this is helpful to earn
extra gains of the inference efficiency of CNN models. The
characteristics are summarized as follows:
• We derive the constraints required on the layer-wised

I/O when deleting filters in a channel-wise group convolution
since depthwise separable operations are realized as group
convolutions [13]–[15].
• A multi-stage gradual pruning approach is introduced to

compact the CNN models and adapt the weights progressively.

II. RELATED WORK

In this section, we first give a review of the depthwise-
separable structure in Section II-A. Then, we survey the
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Standard Conv1 Standard Conv2

Fig. 1. Illustration of the filter pruning of a standard convolution. Suppose that there are 4 filters in Conv1, pruning the third filter will remove the third
channel of output feature maps. After that, the third channel in all filters in the next layer (Conv2) should also be removed.

neural network pruning techniques for eliminating redundant
branches in Section II-B.

A. Deep CNNs with Depthwise Separable Convolutions

The principle of depthwise separable convolution is derived
from Flattened Networks [16] and Factorized Networks [17].
The architecture of Flattened Networks [16] is composed
of flattened convolutions that separate the standard 3D con-
volutional filter into a set of 1D convolutional filters over
channels, along with vertical and horizontal directions. The
flattened convolutions can reduce numerous parameters of a
CNN and enhance its accuracy slightly. Wang et al. [17]
treat the standard 3D convolutional filter as a combination
of 2D spatial convolutional filters inside each channel (intra-
channel convolution) and a linear projection (1 × 1 standard
convolutional layer) applied to all the channels. This combined
with a residual connection is named as a single intra-channel
convolutional layer. It also can compress the CNN models and
enhance the accuracy of CNN slightly.

Inspired by the above researches, Howard et al. [1] sep-
arate the standard convolutional layer into a combination
of one channel-wise group convolutional layer (depthwise
convolution) and one standard convolution layer (pointwise
convolution) with the kernel size of 1 × 1. ReLU [18] and
batch-normalization [19] are applied after each convolution.
To make the CNN model able to be deployed on mobile
devices, they construct a novel structure of a lightweight
network with 13 depthwise separable convolutions, referred to
as MobileNetV1 [1]. It can save 85% of model size with only
1.1% accuracy drops. To further improve the information flow
of MobileNetV1, Sandler et al. [2] expand the feature map
channels by inserting an extra pointwise convolution before
depthwise separable convolution. Combining with shortcut
connections, it forms a novel building block called bottleneck
depth-separable convolution with residuals that can better
avoid information loss than depthwise separable convolution.
By stacking 17 of such blocks, Sandler et al. [2] propose
MobieNetV2 that achieves accuracy improvement as well as
model size reduction. Besides, MobileNetV2 is also applied
as backbones of SSD [20] and DeepLabV3 [21] to speed up
object detection and semantic segmentation tasks.

B. Neural Network Pruning

In the field of deep model compression, filter pruning
becomes one of the most popular directions because the pruned

models can gain acceleration directly using the existing deep
learning frameworks, such as Caffe [22] and PyTorch [23]. In
filter pruning, the main challenge is to recognize unimportant
filters so that removing them will not cause unrecoverable
catastrophic performance drops. Li et al. [9] recognize unim-
portant filters by computing the l1 norm of filters in the
pre-trained large model given. He et al. [8] utilize LASSO
regression-based channel selection to remove the less useful
channels. Li et al. [9] determine the importance of filters using
the scale factors in batch normalization layers. After pruning
the unimportant filters, these methods require retraining to
compensate for the losses of performance. On the other hand,
Ding et al. [11] follow another path to recognize correlated
filters by K-means clustering and propose C-SGD to force
filters in the same cluster to converge to the same values.
Therefore, the redundant filters can be removed without the
need for retraining.

Apart from filter pruning, several works also consider
pruning finer structure like intra-kernel pruning that prunes
spatial locations within convolution filters. Anwar et al. [24]
use evolutionary algorithms to prune intra-kernel structures
that have the least accuracy drops. Yang et al. [25] generate a
series of intra-kernel patterns and prune them with a minimal
absolute summation. Furthermore, unstructured pruning treats
each weight as a pruning candidate and thus becomes the finest
pruning strategy. Under this category, Zhu et al. [10] iteratively
prune a handful of weights and retrain the remaining weights
to recover the performance immediately. Although they can
maintain accuracy while increasing the sparsity, special li-
braries or hardware are required to gain acceleration for the
model inference, which imposes the development overhead in
real applications.

III. METHODOLOGY

The standard convolution of CNN is formulated as follows.
Denote F(i) ∈ Rci+1×ci×k×k as the convolution kernel of the
i-th layer with k as the spatial size of the kernel. This layer
takes an input feature map X(i) ∈ Rci×hi×wi and computes
the output as

Y(i)
c,:,: =

ci∑
j=1

X(i)
j,:,: ∗ F(i)

c,j,:,:, c ∈ {1 · · · ci+1}, (1)

where “∗” denotes the common 2D convolution of size k×k.
Pruning the standard convolution (e.g., removing one kernel)
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Depthwise Conv2 Pointwise Conv2Pointwise Conv1

Fig. 2. Pruning a depthwise separable convolution. Suppose that there are 4 filters in Depthwise Conv2, pruning the third one, as depicted in the red cross,
will remove the third channel of both input and output feature maps due to the parallelism in depthwise convolution. Thus, the corresponding kernels in
Pointwise Conv1 and Depthwise Conv2 are also removed, as shown in double-crosses.

Standard Conv1 ….. Last Conv2 ….. Last Conv3

Fig. 3. Illustration of pruning residual blocks following the strategy in Ding et al. [11]. Supposed that there are 2 filters in Standard Conv1 which is followed
by 2 residual blocks. Let Last Conv2 and Last Conv3 be the last layers of the two residual blocks, respectively. Pruning the second filter in Conv1 will force
the second filter in the Last Conv2 and Last Conv3 to be removed.

only affects the input depth of the next layer. As illustrated in
Figure 1, when a kernel (filter) is deleted, the output depth (that
is equal to the input depth of the next layer) is also decreased,
and thus the kernel depth in the next layer is shortened.

The convolution can be divided into groups in a layer, result-
ing in the operation known as group convolution [13], [15] that
is originally used in AlexNet [26]. Pruning group convolutions
is a structural pruning problem where the pruned parameters
should follow patterns of their positions on the input and
output channels. Therefore, more structural constraints have
to be considered when pruning group convolutions.

A. Depthwise Separable Convolution & MobileNet Architec-
ture

Assume that the input depth (number of channels) is ci
in the i-th layer. Depthwise convolution divides the input as
ci groups with each group containing a single channel. The
output tensor M(i) = DWconv(X(i),D(i)) is given by

M(i)
c,:,: = X(i)

c,:,: ∗ D(i)
c,1,:,:, c ∈ {1 · · · ci}. (2)

In practical frameworks like Pytorch [23], this layer is imple-
mented using grouped convolution by setting the number of
groups equaling to the number of input channels.

MobileNetV1 [1] is proposed to utilize the depthwise con-
volution followed by the standard convolutions of spatial size
1×1 (referred to as pointwise convolutions). Let Stdconv(X,F)
denote the standard convolution of Eq. 1. Supposed that
P(i) ∈ Rci+1×ci×1×1 are ci+1 pointwise kernels applied,
MobileNetV1 then evaluates the output of the layer as follows

Y(i) = Stdconv(M(i),P(i)). (3)

The parameters in the layer are thus (D(i),P(i)), where
D(i) ∈ Rci×1×k×k and P(i) ∈ Rci+1×ci×1×1 are the kernels
of depthwise and pointwise convolution layers, respectively.

To further improve MobileNetV1, Sandler et al. [2] propose
to use a novel building block called bottleneck depth-separable
convolution with residuals. This building block uses a shortcut
connection and inserts an extra pointwise convolution that
expands the input depth by a factor t before the depthwise
convolution. Therefore, it contains three convolutions and
computes the output as

Y(i) = Stdconv(DWconv(Stdconv(X(i),E(i)),D(i)),P(i))+X(i),
(4)

where E(i) ∈ Rtci×ci×1×1, D(i) ∈ Rtci×1×k×k and P(i) ∈
Rci+1×tci×1×1 are the three respective kernels, and thus its
parameters are (E(i),D(i),P(i)).

B. Constrained Filter Pruning

Filter pruning is popular for structural reduction because
it directly produces a thinner network that can easily fit into
existing deep-learning frameworks for acceleration without the
needs of self-defined operations. In the following, we intro-
duce the approach that maintains the structural consistency
when pruning depthwise separable convolutions with shortcut
connections.

1) Depthwise Separable Convolutions: Unlike the case of
standard convolutions, pruning depthwise convolutions influ-
ences both the input and output of a layer. For the i-th depth-
wise separable convolution with parameters (D(i),P(i)), we
denote the index sets of the depthwise and pointwise convolu-
tions as D(i) ⊂ {0, 1, ..., ci−1} and P(i) ⊂ {0, 1, ..., ci+1−1}.
According to Eq. 2, each filter D(i)

c,1,:,: operates on the input
feature map X(i)

c,:,:. Besides, X(i)
c,:,: is generated by the pointwise
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convolution of the (i−1)-th layer with the filter P(i−1)
c,:,:,: . Thus,

we can conclude that the filter pruning pattern of the i-th
depthwise convolution should be the same as that of the (i−1)-
th pointwise convolution (i.e., P(i−1) = D(i)), as illustrated in
Figure 2. After pruning the filters in D(i) and P(i), similar to
the pruning of standard convolutions, the associated kernels in
the next layer (i + 1) have to be removed too. 1

The structural constraints are extended to the depth-
separable convolution blocks in MobileNetV2 [2] with the
parameters (E(i),D(i),P(i)) as defined in Eq. 4. Similarly, we
denote the index sets to be E(i), D(i) and P(i). Because the
input feature maps of the depthwise convolution are from the
extra 1×1 convolution layer, their filter pruning indices should
be the same. In other words, we have E(i) = D(i) for all such
blocks in MobileNetV2 [2].

2) Shortcut Connections: A shortcut connection that sums
the learned residuals and the stem features introduce depen-
dencies between the two layers linked. We call the layer
producing the stem features the pacesetter, and the last layer
of the residual block the follower. To maintain the validity of
the information flow after filter pruning, the pacesetter and the
follower must have the same pruning patterns. Li et al. [9] skip
the pruning of pacesetters and followers and only prune other
internal layers in the residual blocks. Accordingly, the input
and output feature maps remain to have the same number of
channels as the original model, and this limits the amount of
prunable model size. Liu et al. [7] and He et al. [8] insert
a sampler layer before the first internal layer in the residual
block to reduce the channels of input feature maps. Though
they can remove the corresponding kernels in the first internal
layer, the filters of pacesetters and followers are un-pruned,
which still limits the possibility of redundancy removal.

In our approach, to fully boost efficiency, we follow the
strategy in Ding et al. [11] that allows pruning the whole
network without sidestepping these troublesome layers. Start-
ing from the beginning of MobileNetV2 [2], let m be the
layer index of the non-residual block just before a sequence
of n bottleneck depth-separable convolution residual blocks,
as shown in Figure 3. Without loss of generality, we assume
that the m-th layer is a standard convolution layer, which is
usually the case in MobileNetV2 [2]. Each of the following
n residual blocks has a pointwise convolution as its last layer
within the block. The m-th layer produces the stem feature
maps, and thus is called the pacesetter; the following blocks’
pointwise convolutions are then the followers. Therefore, for
all such structures starting with a standard convolution layer
and followed by residual blocks, we can derive the constraints
as shown below:

F(m) = P(m+1) = P(m+2) = ... = P(m+n). (5)

1Particularly, in MobileNetV1 [1], RGB images are converted into 32-
channel feature maps via standard convolutions in the first layer. Thus we
have F(1) = D(2) as the starting point for pruning.

Algorithm 1: Multistage Gradual Pruning

Input: Kernel groups {W1,W2, ...,WG}, final pruning
ratio rf , number of stages S, pruning epochs
Ep and finetune epochs Ef

Output: Filter index sets {I1, I2, ..., IG} after pruning
Data: Training set D

1 for s in 0, 1, ..., S − 1 do
2 Compute the begin pruning ratio rb = s

rf
S and end

pruning ratio re = (s + 1)
rf
S .

3 Determine the number of iterations in a pruning
epoch T = Ep ×#iters per epoch.

4 for t in 0, 1, ..., T − 1 do
5 if t is multiple of ∆t then

// Prune a small amount of the model

6 Determine pruning ratio rt by Eq. 6.
7 Let the set of unpruned weights T = {}.
8 for g in 1, 2, ..., G do
9 For each index i in Ig , compute its

score
∑

W∈Wg AbsSum(Wi,:,:,:).
10 Remove the indices with the smallest

score from Ig until reaching the overall
pruning ratio rt in the g-th group.

11 Add {Wi,:,:,:|∀i ∈ Ig,W ∈Wg} into T.

12 Set all weights to 0.0 except for those in T.

13 Train the weights in T with the t-th batch of D.
// Finetune the model to regain performance

14 Train the weights in T for Ef epochs on D.

C. Gradual Pruning with Multiple Stages

In the above, we have derived the filter pruning constraints
implied by the network structures. In this section, we describe
our pruning approach for MobileNets. Gradual pruning [10] is
a simple but effective technique that iteratively prunes small
portions of weights with low absolute values until the target
sparsity is reached. The original approach of Zhu et al. [10] is
used for unstructured pruning that removes weights without
following a regular network structure. Therefore, no direct
speedup can be attained when implementing the pruned model
to existing deep learning frameworks. In this work, we apply
the gradual pruning principle to filter removing following the
derived constraints. Besides, we extend the principle to multi-
stage gradual pruning. The original gradual pruning approach
is a special case of our approach of a single stage, and our
multi-stage gradual pruning method provides a smoother track
of pruning for handling the depthwise separable structure.

Given a pre-trained model, we first investigate all the filter
pruning constraints and group the kernels having to share the
same pruning patterns. Supposed that we get G groups of
kernels, let Wg be the set containing all kernels in the g-
th group. Because kernels in the g-th group have the same
pruning patterns, they share the same index set Ig . Filter
pruning removes indices from Ig to reduce the network widths
so that inference speedups can be acquired. To prune a portion,
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denoted as rf , of filters from a pre-trained model (pruning ratio
0.0), we split this process into S stages and apply gradual
pruning to each stage.

Gradual pruning aims to prune a little number of weights
every ∆t iterations as the model is trained to maintain the
performance while increasing the pruned ratio. The number of
weights to be removed in each pruning iteration is computed
by a cubic function to interpolate the beginning pruning ratio
and end pruning ratio in a stage. Therefore, the pruning ratio
after every ∆t iterations is

rt = re +(rb−re)(1−
t

n∆t
)3, for t ∈ {0,∆t, ..., n∆t}, (6)

where rb and re are the begin and end pruning ratio, and n
is the number of pruning iterations. In each pruning iteration,
we compute importance scores for all candidate indices in
Ig by summing the absolute values of corresponding filter
elements and remove the ones with smaller scores. We further
denote AbsSum(W) as the summation of absolute values of
all elements in W and illustrate our approach in Algorithm 1.

IV. EXPERIMENTAL RESULTS AND ANALYSES

In this section, we show the experimental results and
analyses to verify our approach.

A. Experimental Settings

To evaluate the performance on pruning lightweight models,
we conduct experiments by applying the proposed multistage
gradual pruning on MobileNetV1 and MobileNetV2 using the
following three benchmarks:
CIFAR10 [27] is a standard benchmark for image classifica-
tion. It contains 60,000 32 × 32 color images labeled with
10 categories of animals and vehicles, and each category has
6,000 images. We split them into 50,000 images as the training
set and 10,000 images as the test set.
SVHN [28] is a benchmark for recognizing digits in natural
scene images. It consists of 99,289 32×32 images, which are
split into 73,257 for training and 26,032 for testing.
ImageNet [29] is a large-scale benchmark for image classi-
fication. It contains 13.3 million color images with 10,000
categories. We following the common protocol to use 12.8
million images for training and 50,000 images for validation.

On CIFAR10 and SVHN datasets, we train baseline mod-
els from scratch for 300 epochs using SGD optimizer with
learning rates 0.1 and 0.01, respectively; for both datasets,
the momentum is 0.9 weight-decay is 10−4, and the learning
rates decay 0.1 every 80 epochs. On ImageNet, we train
MobileNetV1 using SGD for 100 epochs with learning rate
0.1, momentum 0.9, weight-decay 4× 10−5, and the learning
rates decay exponentially with gamma 0.96. The pre-trained
MobileNetV2 is officially provided in Pytorch [23]. In each
pruning stage, we set ∆t to 2000 for ImageNet and 200 for
others. Our evaluation metrics include relative accuracy drops,
reduced FLOPs between the baseline and pruned models. Our
method is implemented on PyTorch [23] and evaluated on an
Nvidia Geforce GTX 1080Ti GPU.

TABLE I
THE PERFORMANCE OF MOBILENETV1 WITH 1/4 OF FILTERS PRUNED ON

CIFAR10, SVHN, AND IMAGENET DATASETS.

MobileNetV1 Baseline Pruned Rel. ↓ % FLOPs ↓ %Top1 Acc. Top1 Acc.

CIFAR10 86.28 86.15 0.15
42.5SVHN 91.53 91.36 0.19

ImageNet 70.69 68.84 2.61

TABLE II
THE PERFORMANCE OF MOBILENETV2 WITH 1/4 OF FILTERS PRUNED ON

CIFAR10, SVHN, AND IMAGENET DATASETS.

MobileNetV2 Baseline Pruned Rel. ↓ % FLOPs ↓ %Top1 Acc. Top1 Acc.

CIFAR10 86.31 85.61 0.81
41.0SVHN 92.25 91.91 0.37

ImageNet 71.88 67.25 6.44

B. Results on CIFAR10 and SVHN

We compress baseline MobileNets on CIFAR10 and SVHN
using 16-stage pruning, i.e. pruning 1/16 of filters in each
stage and report the performance on the models with 1/4
filters pruned, as shown in Table I and Table II. On both
datasets, multistage gradual pruning maintains the accuracy
with less than 1% relative drops. This result indicates that
even in lightweight models, redundant weights still exist and
can be removed with negligible accuracy drops. As for the
computation resources, the FLOPs can be reduced around
42.5% and 41.0% after pruning 1/4 filters from baseline
MobileNetV1 and V2.

Because our method further extends gradual pruning into
multistage gradual pruning, we conduct experiments on how
the number of stages affects the performance. When the
number of stages increases, the pruning ratio in each stage
decreases and thus results in a finer filter pruning procedure.
We compare multistage gradual pruning with 8 and 16 stages,
which prunes 1/8 and 1/16 of filters in one stage, respectively.
In Figure 4, the performance of 8 and 16 stages on CIFAR10
are similar and note that 8-stage pruning already performs
well on maintaining the accuracy when pruning ratio increases.
However, the 16-stage pruning still maintains accuracy better
on around 0.8 of filters pruned than the 8-stage setting. In Fig-
ure 5 (on the SVHN dataset), we find that the 8-stage pruning
suffers from accuracy drops when the pruning ratio increases,
but the 16-stage pruning manages to maintain the performance
significantly better. We attribute this to that it is easier to
recover performance by fine-tuning when performing a finer
pruning procedure. Compared with coarse-grain pruning, fine-
grain pruning produces recoverable accuracy drops but is more
time-consuming because it needs more training epochs. By
adjusting the number of pruning stages, multistage gradual
pruning provides flexibility to trade accuracy maintenance off
for faster pruning.

C. Results on ImageNet

In the above, we have shown that compact models like
MobileNets can be further compressed to gain efficiency
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Fig. 4. The Accuracy of the pruned MobileNets on CIFAR10 dataset with 8 and 16 stages of gradual pruning.
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Fig. 5. The Accuracy of the pruned MobileNets on the SVHN dataset with 8 and 16 stages of gradual pruning.
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Fig. 6. The Accuracy of the pruned MobileNets on ImageNet dataset with 8 and 16 stages of gradual pruning.

TABLE III
THE COMPARISON OF MOBILENETV1 WITH 1.0, 0.75, 0.5 AND 0.25

WIDTH MULTIPLIERS ON IMAGENET BY OUR MULTISTAGE PRUNING AND
TRAINED FROM SCRATCH.

Width Ours Scratch [1] FLOPs ↓ % Params ↓ %Multipliers Acc. Acc.

1.0× 70.69 70.6 - -
0.75× 68.84 68.4 42.44% 38.90%
0.5× 64.15 63.7 73.26% 68.53%
0.25× 51.62 50.6 92.45% 88.89%

improvements. However, CIFAR10 and SVHN are small-
scale datasets. To evaluate the accuracy drops on large-scale
datasets, we perform multistage gradual pruning on ImageNet
for both MobileNetV1 and V2, as shown in Table I and
Table II. MobileNetV1 attains less than 3% relative accuracy
drops while MobileNetV2’s relative accuracy drop is 6.4%.
Both pruned models have less than 60% FLOPs of their non-
pruned counterparts. We also perform 8 and 16 stages of
pruning in this experiment. As shown in Figure 6, on both
pruning settings, MobileNetV1 with around 40% filters pruned
can maintain its accuracy close to the baseline.

As the pruning ratio increases, the accuracy gradually
decreases. In Table III, we show accuracy on various prun-
ing ratios and compare them with the corresponding width

multipliers of MobileNetV1 trained from scratch as reported
in [1]. Models with 0.25, 0.5 and 0.75 of filters pruned are
equivalent to those with 0.75, 0.5 and 0.25 width multipliers,
respectively. As can be seen, MobileNetV1 pruned from
baseline with our approach manages to outperform its trained
from scratch counterpart by around 0.4% to 1.0%. These
results demonstrate that our multistage gradual pruning is still
effective to further compress compact models trained on large-
scale datasets to a certain extent. However, as an improvement
from MobileNetV1, MobileNetV2 struggles to maintain its
accuracy in the early pruning stages. We owe the reason
as follows. Compared with MobileNetV1, MobileNetV2 is a
more compact model attaining higher baseline accuracy with
smaller model size. Thus, it contains less redundant weights,
particularly on large-scale datasets. Nevertheless, for smaller
datasets (such as CIFAR10 and SVHN), MobileNetV2 is still
redundant and our method can help remove them.

Therefore, as can be seen, some models are already too
compact that is hard to be compressed. An issue becomes
interesting is to identify such models so that we can decide to
stop pruning or switch to finer pruning for better accuracy
maintenance. To achieve this goal, we analyze the pruned
models using their weight distributions and discuss the results
in the next section.
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Fig. 7. Illustration of weight distributions on different kernel groups during the 8-stage pruning of MobileNetV2 on CIFAR10. From top to bottom, the first
to the fourth rows of subplots represent models with pruned filter ratios of 0, 1/4, 2/4, 3/4, respectively. The columns of subplots represent 10 out of 25 kernel
groups, and their depths become deeper as the plots locate from left to right columns. Within each subplot, the x-axis represents the absolute weight values
and the y-axis indicates the number of weights of that value.
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Fig. 8. Illustration of weight distributions on different kernel groups during the 8-stage pruning of MobileNetV2 on ImageNet. From top to bottom, the first
to the fourth rows of subplots represent models with pruned filter ratios of 0, 1/4, 2/4, 3/4, respectively. The columns of subplots represent 10 out of 25 kernel
groups, and their depths become deeper as the plots locate from left to right columns. Within each subplot, the x-axis represents the absolute weight values
and the y-axis indicates the number of weights with that value.

D. Results discussion: analysis on pruning weights

When proceeding to a certain pruning ratio, the accuracy of
the pruned models will start decreasing considerably. To take
a closer look at this phenomenon, we provide an insightful
discussion from analyzing the weight distributions in different
pruning stages at different kernel groups for MobileNetV2 on
CIFAR10. In Figure 7, subplots from the first to fourth rows
show the weight distributions of models with 0, 1/4, 2/4, 3/4 of
filters pruned. Subplots from left to right represent the weight
distributions of shallow to deep layers.

As can be seen, at the beginning of MobileNetV2 on
CIFAR10, there exist a portion of weights that are close to
zero, and the performance decreases negligibly because when
pruning these near-zero weights, the performance is easy to
be recovered by fine-tuning. Hence, starting from the weight
distribution shown in the first row of Figure 7, MobileNetV2
still achieves an accuracy of 85.47% that is close to the non-
pruned one, 86.31%, when 25% filters are pruned.

The weight distribution after 25% filters pruned is then
shown in the second row of Figure 7. As can be seen, the
portion of zero weights becomes smaller and pruning such
model results in an accuracy of 83.79% when the pruning ratio
reaches 50%. Then, on the third row, the situation becomes
severer as the pruning proceeds because some kernel groups
have no or less zero weights. Being pruned to the ratio of 75%,
the model drastically degrades to accuracy 74.08% afterward.
Therefore, we conclude that the amount of zero weights in
the kernel groups is related to the performance degradation
of pruning, which provides useful clues to predict whether a
model is compressible using our approach.

Similar phenomenons exhibit in the other experiments.
For further discussion, we investigate the accuracy drops of
MobileNetV2 on ImageNet versus its weight distribution. In
Figure 8, we find that MobileNetV2 has little amount of zero
weights at the beginning, which means that MobileNetV2 is
already a highly compact model on handling the large-scale
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task, ImageNet. This causes the accuracy degradation from
71.88% to 67.25% after pruning only 25% filters. As the
pruning proceeds, we can only prune the weights of larger
absolute values since no zero weights are left. Pruning such
weights introduces accuracy drops that are unrecoverable via
fine-tuning, and results in the accuracy of 42.94% when 75%
filters are pruned. This explains why the performance drops
in early stages when pruning MobileNetV2 on ImageNet.

Observing that the weight distributions can be employed
to predict the performance of pruned models, we can judge
whether the model is apt for pruning in our approach quickly
when providing a new task.

V. CONCLUSIONS AND FUTURE WORK

In this paper, a multistage gradual pruning approach for
depthwise separable convolution networks is introduced. We
show that redundancy of the lightweight models, MobileNets,
can be further exploited in a multi-stage manner for a smooth
model pruning and compression for proper tasks. In our
methods, we prune the filters considering structural constraints
so that the efficiency can be boosted. Our experiments reveal
that we can maintain accuracy better when using finer pruning
ratios and more stages. An analysis of weight distribution
is also given to forecasting the multi-stage gradual pruning
performance in advance. In the future, we plan to investigate
more on the weight distributions for dynamically adjusting the
pruning ratio settings in each stage and kernel groups. Besides,
we will also apply our approach to the depthwise separable
convolution structures found by NAS to improve the inference
efficiency.
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