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Abstract—Understanding the mechanisms enabling children
to learn rapidly word-to-meaning mapping through cross-
situational learning in uncertain conditions is still a matter of
debate. In particular, many models simply look at the word level,
and not at the full sentence comprehension level. We present a
model of language acquisition, applying cross-situational learning
on Recurrent Neural Networks with the Reservoir Computing
paradigm. Using the co-occurrences between words and visual
perceptions, the model learns to ground a complex sentence,
describing a scene involving different objects, into a perceptual
representation space. The model processes sentences describing
scenes it perceives simultaneously via a simulated vision module:
sentences are inputs and simulated vision are target outputs of the
RNN. Evaluations of the model show its capacity to extract the se-
mantics of virtually hundred of thousands possible combinations
of sentences (based on a context-free grammar); remarkably the
model generalises only after a few hundred of partially described
scenes via cross-situational learning. Furthermore, it handles
polysemous and synonymous words, and deals with complex
sentences where word order is crucial for understanding. Finally,
further improvements of the model are discussed in order to
reach proper reinforced and self-supervised learning schemes,
with the goal to enable robots to acquire and ground language
by them-selves (with no oracle supervision).

Index Terms—Recurrent Neural Networks, Reservoir Comput-
ing, Echo State Networks, Language Learning, Cross-situational
Learning, Unsupervised Learning, Language Acquisition.

I. INTRODUCTION

Language unfolds in time. One difficulty when processing
natural language with neural networks architectures is to
manage this unfolding in time. Neural systems have to deal
with the sequence of words if they want to extract precisely
the meaning of sentences (e.g. instead of taking a bag-of-
words approach). They can either use feed-forward networks
and encode time as a spatial property (by unfolding the
whole sentence into one input vector), or use recurrent neural
networks (RNNs) to parse one word at a time. Recently,
RNNs, in particular LSTMs [1] or GRUs [2] and their variants
[3], were successfully trained in a supervised fashion on a
variety of tasks: predict the next element in a sequence,
timeseries classification, sequence to sequence mapping [4].
What is impressive is the rich dynamic latent space that
appears through supervised training. For instance, some units

specialized in detecting the opening and closing of quotes or
brackets: this is obtained “only” by training a LSTM to predict
the next character in a very large corpus [5].

However, acquiring language is not a supervised task: e.g.
before one year of age, children are able to segment words
from speech based on statistical learning mechanisms [6].
Moreover, language acquisition is not only a matter of pro-
cessing or producing streams of sounds, the child has to learn
to map these sounds to multi-modal features and dynamics
of the world: e.g. learning that the sound stream /’æp@l/ is
referring to a green or red fruit (i.e. apple).

Symbolic algorithms have been proposed to explain how
children could learn word-to-meaning mappings [7]. Smith et
al. [8] showed that children quickly learn word-referent map-
pings via cross-situational statistics. The idea is the following:
infants listen to utterances that describe one object, but they do
not know for sure which is the object of focus because many
objects are in their field of view; however, through repeated
presentation of the same object with the same spoken word,
they are able to learn word-referent mapping based on co-
occurrences of the word with the object.

Several models of cross-situational learning have been pro-
posed: some of them used social cues to help the learning
of particular words [9]. Some robotic experiments modelled
the grounding of synonyms in cross-situational learning [10].
Taniguchi et al. [11] propose a virtual robotic framework to
learn to ground words from vision features based of short
sentences void from function words: e.g. “grasp green right
ball”. However, to our knowledge there is no architecture that
tries to model how children could learn to understand directly
from full sentences through cross-situational learning, without
providing specific cues (e.g. social or prosodic).

Previously, we proposed a model called ResPars (for Reser-
voir Parser) to model how the brain processes complex sen-
tences with no prior knowledge on the words. In this study, we
want to demonstrate that this model could go one step further
towards biologically and developmentally plausible learning
schemes. Namely, that it is not necessary to train it with
accurate supervised signals, but based on its capacity to extract
statistics form corpora [12] it could also be trained in cross-
situational learning conditions, i.e. with noisy teacher signal.
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Moreover, the model should have feedback only at the end of
sentences and be trained fully online [13]. Finally, we want to
test its ability to directly output concepts (such as the object,
its color and the position of the object) instead of the thematic
roles of words.

II. METHODS

Python implementation of the presented model is available
on https://github.com/aJuvenn/JuvenHinaut2020 IJCNN

A. Reservoir Computing

Reservoir Computing (RC) is an efficient paradigm to train
RNNs by keeping an important part of weights untrained (i.e.
random). In this study we used Echo State Networks (ESNs)
[14], which are an instance of the RC paradigm [15]. Figure 1
illustrates how an ESN works.

Random weights

Learned weights

Activation through time

Inputs Outputs

Fig. 1. Reservoir Computing. Echo State Networks are an instance of the
Reservoir Computing paradigm using units with continuous states (as opposed
to spiking activity). Coherent outputs are generated from the chaotic internal
activity.

ESN inputs are projected to a random recurrent layer, and
only the output layer (called the “read-out”) is modified by
learning. The random weights of the ESN’s reservoir are scaled
to possess suitable dynamics (e.g. “edge of criticality”). The
objective is to have reservoir states that are linearly separable
and that can be mapped to the output layer using a compu-
tationally cheap linear regression. The units of the recurrent
neural network have a leak rate (α) which corresponds to the
inverse of a time constant. The equations 1 and 2 define the
update of the ESN receiving input xt and producing output
yt.

rt ← (1− α) rt−1 + α tanh(Wrecrt−1 +Winxt) (1)

st ←

 1
xt

rt

 yt ←Woutst (2)

where rt and st are the recurrent layer firing rate and the
network internal state respectively at time t. Win , Wrec and
Wout are the input, the reservoir, and the read-out matrices
respectively.

In the case of an offline learning method such as ridge
regression, the training dataset (xt, zt)t∈[1;d], where zt is
the expected output after reading input xt, must be known
in advance. The output layer Wout is created according to
equation 3 by feeding the network with training inputs.

Wout ← ZS>(SS> + εI)+ (3)

where S =
(
s1 · · · sd

)
is a matrix made of the different

internal states st produced after reading xt during the learning
phase, Z =

(
z1 · · · zd

)
the matrix of their corresponding

expected network outputs, and ε a regularisation term. A+

notation refers to the Moore–Penrose inverse matrix of A.

B. Training reservoir with FORCE learning

In order to update the output weights Wout after each
learning example, an online method called FORCE learning
[16] is used. This method relies on a matrix P which is
saved and updated after each learning step in order to have
a reminder of the previous encountered contexts, allowing to
compute an approximation of a pseudo-inverse matrix. At step
t, if the network produces the output yt after producing an
internal state st, the equations 4 and 5 are used to make the
network learn the expected output zt by incrementing Wout

of δWt.

P0 ←
I

ε
δPt ← −

Pt−1sts
>
t Pt−1

1 + s>t Pt−1st
(4)

Wout
0 ← 0 δWt ← (zt − yt)s

>
t Pt (5)

Matrix Wout update is similar to a gradient descent method,
but using matrix P as an adaptive learning rate, parameterized
with a regularisation term ε. This allows fast and stable
learning, which is useful in case of noisy learning examples.

C. ResPars: The Reservoir Parser Model

ResPars proposes to model how the human brain processes
sentences and is inspired from several studies in neuro-
science [12], [17]. The model is an analogy to a sub-part
of Broca’s area (a region of prefrontal cortex, involved for
instance in syntax processing) and the striatum (a sub-part of
the basal ganglia). It was used also use in cognitive robotics in
applications of Human-Robot Interaction (HRI) [18]–[21]. In
upper left part of Figure 2 we can see that sentences are given
as sequences of words. Then the dynamics of the reservoir are
trained to be associated with the output layer (i.e. the read-out
layer).

The task of previous versions of ResPars was semantic role
labelling, which is equivalent to finding all the correct roles
of the content words of a sentence. In other words, the goal
of ResPars was to learn the mapping of the semantic words
of a sentence (i.e. content words like nouns, verbs, adjectives,
adverbs) onto different slots (the semantic roles: e.g. action,
location) of a basic event structure (e.g. action(object, loca-
tion)). ResPars has been also adapted to work jointly with
IRL [22], a grounded multi-agent robotic framework [23], for
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which outputs were adapted to represent a graph adjacency
matrix which maps content words with their roles and all their
potential links with one another.

D. Towards cross-situational learning

In this study we adapt ResPars model to cross-situational
learning in order to make it work in more realistic conditions
towards language acquisition. The model together with the
learning procedure is schematized in Figure 2: the reservoir
takes a sentence as input and returns as output a perceptual
representation of what the sentence is describing. Output of
the network are visual concepts allowing it to represent one
or several objects with different characteristics (e.g. category,
position, color). These concepts are activated after hearing a
sentence describing a scene: the model is able to provide which
objects are described in the sentence and their characteristics.

The network learns with an efficient online algorithm, using
cross-situational learning. It learns by observing what a vision
module provides him while it hears a sentence describing
totally or partially the scene it is observing. The vision module
output has the same encoding as the network output: a vector
of zeros and ones which describes whether a characteristic
is present or not. The network hears a sentence, and learns
to reproduce, from its final internal state, what the model
sees at the same time. This means that the teacher output
is not exactly what is expected, since the sentence may not
mention everything that is seen. We expect that statistically,
by repeated co-occurrence of the words (embedded in the
sentence flow) together with the perceived concepts, only
the pertinent concept will be kept activated when hearing a
sentence. We hypothesise that given the quick generalisation
ability of reservoirs and the fast learning algorithm used (i.e.
FORCE), we should obtain correct scene perception after few
learning steps implying the same objects.

To compare this model to the previous ResPars one, this one
performs online learning with an efficient FORCE learning
algorithm (instead of Least Mean Squares – LMS – like in
[13]), and does not produce semantic word labels as outputs:
it is directly grounding a sentence into a semantic space. The
learning is only done on the last time step, after having read
the whole sentence.

E. Corpus generation (inputs and teacher signals)

To evaluate the model, a set of sentences associated to a
simulated vision representation was created. Each evaluation
was done by creating randomly a sentence with the grammar
in Figure 3. Half of the time, a sentence was chosen uniformly
among the sentences mentioning one object, for the other
half, a two objects sentence was chosen. Once the sentence
is chosen, a simulated vision precept corresponding to the
sentence is generated, so that the sentence is a complete or
partial description of the perceived scene. Objects described by
the sentence are created, and if the sentence does not describe
one aspect of the object, it is uniformly chosen among the
possible values. In the case of sentences only mentioning one
object, another object is created randomly one half of the time.

"The cup is on the right"
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Fig. 2. ResPars adaptation to cross-situational learning. The network is fed a
sentence describing a scene it perceives. The difference between the network
output and the vision module output is used to update slightly the network
weights. By repeating this step on various situations, only the pertinent
modifications should be kept, and the network would extract the semantic
of the sentences.

OBJ→ glass | cup | bowl | orange
COL→ red | green | blue | orange
POS→ left | right | middle | center
THE→ a | the

THIS→ (this | that)
SENTENCE-1-OBJ→ THIS is THE (COL)? OBJ

| THE OBJ (on the POS)? is COL
| THE (COL)? OBJ is on the POS
| on the POS (there)? is THE (COL)? OBJ

SENTENCE→ SENTENCE-1-OBJ
| SENTENCE-1-OBJ and SENTENCE-1-OBJ

Fig. 3. Grammar used to generate the corpus. The grammar can generates
sentences describing one or two objects. The total number of different
sentences that could be generated is 775280 (= 880 + 8802).

Thus, the created scenes contain one or two objects, and are
associated with a sentence describing at least some aspects of
the scene. The first mentioned object is always the first in the
vector of the vision representation. We will discuss this choice
in the discussion.

F. Input preprocessing before enterring the reservoir

In order to feed the network a sentence, a transformation
of the sentence into a sequence of vectors is done. Sentences
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are split into a list of words, with a BEGIN word and END
word added. Each word is associated with a one-hot encoding
vector, which means that network input is as big as the total
number of encountered words: if a never met word appears,
network input dimension is increased, and new random input
weights are chosen for the word. Thus, a sentence is coded
with the list of the one-encoded vectors corresponding to each
word. Each one of these vectors is fed to the network during
one step time, and only the final state and output layer are
used for the network answering and learning.

G. Extraction of concepts from reservoir outputs

After having the network producing an output while hearing
a sentence, the final step output activity is transformed into
an object describing the sentence content. Network output
dimension constraints the maximum number of objects that
can be described in a scene. Each described object has
several characteristics (category, position and color) which
can be chosen among different concepts (e.g. < left >,
< middle >, < right >) . The concepts associated with the
same characteristic are mutually exclusive: only one at most
is chosen to create the output scene.

To be selected in the created scene, a concept must have its
associated network output activation satisfying three criteria. It
must (i) be the highest among concept outputs from the same
characteristics, (ii) be higher than a threshold To, and also (iii)
be greater than a threshold Ts after the vector of the outputs
from the same characteristics is passed to a softmax function,
parameterized with an inverse temperature β. This allows to
make sure that a selected concept is active enough, and that
every other concepts from the same characteristic have a much
more lower activity.

H. Evaluation and experiments

We performed a general experiment to validate that the
model was able to learn with cross-situational learning. The
performance evaluation is done on sentences not seen during
learning, and parameters used for experiments are provided in
Table I. Since the dataset is too huge, only a number of 1000
test sentences are selected each time (with the same random
process as during learning) to evaluate the performance. Per-
formance evaluation is averaged with 20 different instances of
ESN, learning and being tested with different sentence sets,
randomly chosen each time.

Two metrics, illustrated by Figure 4, are used to evaluate
a network. Network imagined vision is considered valid if
every concept mentioned in the sentence is present, and exact
if they are also the only one present in the imagined scene.
The percentage of sentences from the testing set considered
as not valid or not exact is then used as quantitative error
measurement.

The online FORCE learning method was compared with
the classic ridge regression offline learning, using the same
hyper-parameters in both situations. The network results were
also compared to the expected error of a simple theoretical
model which processes sentences by extracting content words

(name, color, position) and their locations in the sentence
structure. For instance, the sentence “The cup is red” would
be transformed into “x cup x red”. A sentence describing two
objects is split into two different single-object sentences that
are processed separately. During the learning phase, the model
only stores the result of the sentence processing. During the
testing phase, it only returns a correct answer if the sentence
matches one encountered during training. For instance, the
sentence “The cup is red and a bowl is on the left” would
be correctly treated if the model had already stored both
sentences “x cup x red” and “x bowl x x x left”. The equation
6 computes the theoretical error of such a model trained
on ntrain sentences on the grammar from Figure 3 which
generates nobj different object name categories.

errth(nobj, ntrain) =

(
1− 1

85× nobj

)2×ntrain

(6)

85 × nobj comes from the general formula [(ncol + 1) ×
nobj] + [nobj × (1 + npos) × ncol] + [(ncol + 1) × nobj ×
npos] + [npos × 2× (ncol + 1)× nobj], which enumerates the
different possibilities of simple sentences that the grammar
from Figure 3 provides, with ncol and npos both set to 4. In
Subsection III-D we give a qualitative analysis of the behavior
of the model.

“the cup is on the right”
Imagined vision is valid ? is exact ?

(a)

(b)

(c)

Fig. 4. Evaluations of different imagined scenes. (a) is not valid or exact
because the cup is not on the right. (b) is not exact because the sentence does
not mention the cup color.

Hereafter, we describe the experiments performed.
Experiment I: Number of reservoir units. The first exper-

iment studies the influence of the number of neurons in the
recurrent layer (i.e. the reservoir size) on the performance after
a training session of 1000 sentences. Recurrent layers of sizes
going from 10 to 1000 were tested. Results are provided in
Subsection III-A.

Experiment II: Number of training sentences. In a second
experiment, we studied the influence of the training set size on
the performance, which was evaluated from 0 to 1200 training
sentences every 50 sentences, with a reservoir with a 1000
neurons in its recurrent layer. The performance is compared
to the abstract model. Results are provided in Subsection III-B.

Experiment III: Number of objects/concepts. The last ex-
periment was about the model capacity to deal with a lot
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of concepts. The number of different object categories and
name was tested from 4 to 50, after having trained a reservoir
with 1000 recurrent neurons on 1000 sentences. Results are
provided in Subsection III-C.

I. Parameters

Hyperopt Bayesian search was used to find the optimum
hyper-parameter set for the network. The library was given a
cost function and a set of parameters to explore, described
by Figure I, in order to find which ones were minimising
the function. The library also allowed to visualize the effect
of hyper-parameters on cost function, as shown in Figure 5.
The cost function was instantiating a random reservoir with a
recurrent layer size of 300 and an input matrix scaling of 1, and
was evaluating the proportion of exact sentences on a testing
set of size 200 after a training session of 500 sentences. The
small numbers involved allowed to proceed 1000 evaluations
of the cost function.

Hyper parameter Searching range Optimium value
Spectral radius ρ [0.3; 3] 1.1
Leaky integrator α [0; 1] 0.05
Recurrent layer density d [0; 1] 0.85
Regularisation term ε [10−4; 0.8] 3.16× 10−3

Output activation threshold To [0; 1] 0.6
Softmax activation threshold Ts [0; 1] 0.1
Softmax inverse temperature β [0.5; 5] 2.2

TABLE I
RANGE AND OPTIMUM VALUES OF HYPER-PARAMETERS VALUES USED IN

THE HYPEROPT’S BAYESIAN SEARCH FOR THE MODEL SELECTION.

Optimum parameters found in table I were used with a
reservoir of size of 1000 for the different experiments (if not
stated otherwise). A graphical view of the hyper-parameter
search can be seen in Figure 5.

Fig. 5. Hyper-parameter vs. error after 1000 evaluations of different networks.
For two hyper-parameters that we explored, the error for all simulations is
plotted. Each dot corresponds to the error for one reservoir instance.

III. RESULTS

A. Experiment I: Number of reservoir units

Figure 6 shows the influence of the reservoir size (i.e.
number of units in the reservoir) on the test error. Above
500 recurrent units, both error curves stabilize. One can see
that errors from ridge regression learning method and FORCE
learning method are the same.
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Fig. 6. Test error as a function of the number of units in the reservoir. Number
of reservoir units: 1000. Number of objects/concepts: 4.

B. Experiment II: Number of training sentences

Figure 7 shows the influence of the number of sentences in
the training set on the performance on the testing set. After
500 sentences presented, the reservoir shows 5% of error for
valid evaluation and 14.2% of error for exact evaluation. After
1000 sentences presented, the reservoir shows 0.6% of error
for valid evaluation and 6.3% of error for exact evaluation.
The figure shows the equivalence between offline ridge re-
gression and online FORCE learning method. Furthermore,
one can notice the perfect matching of the error curves for the
theoretical model error and the valid representation metric.
This suggests the model is able to extract and remember the
relevant information contained in the sentences it encountered
in order to give back what was its perception at this moment.

C. Experiment III: Increasing of the number of ob-
jects/concepts

Figure 8 shows the influence of the number of possible word
objects in input sentences (respectively the number of concepts
in output) on the testing set error. The error is again exactly
identical between offline ridge regression and online FORCE
learning. Error curves seem to be composed of two “trends”:
at about 33 objects are presented, the increase of the error
accelerates. This could be due to the model reaching a memory
representation limit (due to the limited number of recurrent
units): at such point, the latent space dimension of the reservoir
seems too small to accurately represent/discriminate different
inputs to perform the task. In order to continue on the first
trend, one would need more recurrent units or extended
memory components such as Working Memory units [24].

One can notice the different behaviours of the theoretical
model error and the valid representation metrics. While the
error is the same for a small number of objects (which
corresponds to the curves match in Figure 8), the real model’s
performance gets significantly better when the number of
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Fig. 7. Test error as a function of the number of sentences used for
training. Performance of online and offline learning are equivalent for both
metrics. A theoretical error function, representing an abstract simple model,
is also plotted: one can notice it matches perfectly the curve of the more
compliant metric. Error values are averaged over 20 simulations (with different
random instances of reservoirs). Number of reservoir units: 1000. Number of
objects/concepts: 4. Number of sentences in test set: 1000.

objects is contained between 15 and 40. This suggests the
model have generalization abilities which allow it to performs
better than the theoretical one. Because the simple theoretical
model cannot generalise on unseen sentences, it is unable to
perform well when a lot of combinations are possible.
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Fig. 8. Test error as a function of the number of possible word objects in
sentences (i.e. possible object concepts in output). Performance of online and
offline learning are equivalent for both metrics. A theoretical error function,
representing an abstract simple model, is plotted: the real model performs
significantly better than the theoretical one for a number of object contained
between 15 and 40. Number of reservoir units: 1000. Number of sentence in
training set: 1000.

D. Qualitative analysis

Figure 9 shows the reservoir outputs for a complex sentence
with two objects. All output concepts corresponds exactly to
what is expressed in the sentence, therefore this correspond to
an exact output. In such case, valid and exact errors are both
equal to zero. Moreover, the figure shows the reservoir outputs
for a complex sentence with two objects which includes two
times the same word orange, once as a noun and once as
an adjective. This demonstrates that the reservoir learned the
complex relationships between the contexts in which a word
appears and their corresponding meaning concepts. For all
qualitative figures, we applied a sigmoid function on the
outputs in order to bound the outputs between 0 and 1, and to
keep curves easy to visualize and interpret.

E. Complementary experiment

One can find the predictions done by the network before the
end of the sentence (e.g. see curves of Figure 9) not always
insightful. This is due to the fact that the training (i.e. weight
modification) is performed only at the last time step (i.e. when
[END] is presented) of each sentence.

We obtained more meaningful curves with subsidiary ex-
periments. The learning procedure is slightly changed. After
having trained the network with one sentence, the network is
then trained on each word (of the sentence) presented sepa-
rately. In this way, the network also learns correlations between
words and visual representations. As shown on Figure 10 are
much more meaningful and interpretable. Interestingly, when
training the network with both usual and single-word sen-
tences, outputs of the network provide consistent predictions
during the whole presentation of sentences. The final answer
from the network can be predicted before the sentence is over
given its on-going activations. The output activity of a concept
is activated once a word is pronounced. Performance-wise,
results are a bit less efficient and training phase is more time
consuming.

These curves are similar to the optimum curves obtained
with offline supervised learning and by training over the full
sentence (i.e. continuous learning) [12], [25]. We already ob-
tained similar curves with online learning and end-of-sentence
training with LMS [13] but the prediction curves were less
accurate than in Figure 10. Therefore, it is surprising to obtain
better shaped curves with more noisy learning (i.e. cross-
situational learning) as several teacher outputs concepts do
not correspond to the available concepts in a given sentence.

IV. DISCUSSION

A. General comments

We have presented a model of recurrent network that
learns to map a complex sentence describing one or several
objects (e.g. “An orange cup is on the right and there is
an orange on the left.”) into a visual concept representation
which provides the features of these objects. Training of the
network is performed using a simulated vision module and
cross-situational learning: after a few learning steps, the co-
occurrence between perceived characteristics and the sequence
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Fig. 9. The network is able to understand a sentence with two times the
word orange, once as a noun and once as a adjective. This demonstrate that
the reservoir learned the complex relations between the contexts were a word
appears and their corresponding meaning concepts. This is an exact output,
because all output concepts correspond exactly to what is expressed in the
sentence. Actually, one can see that for most concept categories, the correct
output is changing at the last time step (at the END marker input). This is a
side effect of having the training only at the very end of the sentence. This
randomly generated sentence reminds the one the French poet Paul Eluard
“Earth is blue like an orange” [26].

of words allows to identify which part of the sentences are
associated with the visual information.

This study demonstrates that the proposed model, even if
trained by cross-situational learning, is able to learn complex
relations between the contexts in which a word appears and
their corresponding meaning concepts (e.g. orange as an
adjective or orange as a noun). In other words, it can learn that
a subtitle change in the word order (e.g. a blue orange or an
orange cup) can change the concept that should be activated.
Surprisingly, it is able to perform this complex mapping only
by being trained at the very last time step of the sentence
presentation. Together with the fact that the model is able to
learn in an online fashion and with few hundreds of sentences,
it shows a new kind of capabilities of reservoirs that were not
demonstrated previously to our knowledge.

In this paper, we investigated a case of noisy supervised
learning with a cross-situational learning paradigm. However,
children acquire language by making trials and guesses, e.g.
when producing a sentence, or less perceptibly, when inferring
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Fig. 10. Output curves obtained with a variant algorithm: not only the whole
sentence but also each individual word are learnt in cross-situational learning.
This results in an activity that “wakes up” once the word is fed to the network.
Thus, the network provides a partial understanding during the unfolding of
the sentence.

what could be the meaning of an utterance. In future work, we
will explore how reservoirs could be used to learn language
in a reinforcement learning fashion.

B. Potential improvements of the architecture

More complex experiments could be done to evaluate
limitations and more abilities of the model. Improvement of
sentence complexities could be achieved, and biases between
concepts be introduced in the training set (e.g. “cups are
always orange”). Thus, we could check if the model is able
to infer statistics about object features when they are not
mentioned for instance.

Subsection II-F details how words are encoded, with one-hot
vectors, obliging the model to remember every encountered
word (in order to know which input index it corresponds
to) and also to increase the network input dimension when
new words are presented. This could be avoided by using
a multidimensional hash function, allowing to map a word
with a unitary vector of the same dimension of the input
layer. Thus, in equation (1), Winx, which is equivalent
to Winone-hot(word) in our case, could be replaced by
Winhash(word). The resulting implementation would be in
theory equivalent.
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Fig. 11. (a) Simple sentence with exact comprehension (i.e. all activities
reflect words of the sentence) (b) The word orange is used twice in the
sentence: once as an adjective and once as a noun. Same sentence as Figure 9.
(c) First, both words center and middle are recognized as the same concept
< middle >. Secondly, the model is able to correctly understand the bi-gram
orange orange: i.e. the repetition of the word orange is correctly interpreted.

Furthermore, since the output representation is independent
from the sentence input representation, providing an utterance
as a list of words is arbitrary. It could possibly be replace
by providing an utterance as a list of phonemes (of phones),
thus allowing to have a small input dimension (about 40 in
English) and a more biologically plausible model.

In Subsection II-E we explained that when generating the
training data, the first object mentioned in the input sentence
is always in the first slot of the vision vector target. Thus the
learning could not be purely unsupervised, since the order of
the objects in the sentence must be known to create the output
teacher. In order to remove this bias and have an unsupervised
learning method, a different coding of the simulated vision
scene should be found. A simple solution could consist in
having a slot per position: but this would generate issues
when sentences do not mention a position in the space (e.g.
left/middle/right). Another solution could be the use of an
auto-encoder to compress images into a latent representation,
making the ESN directly outputing the scene features of the
latent representation. Furthermore, the ESN outputs could be
processed through the decoder part of the auto-encoder in
order to obtain a picture of what is understood from the
sentence. Similarly, Generative Adversarial Networks could be
used in such perspective.

Once an unsupervised solution is found, the model could be
plugged to a real vision module in order to test it. Morevoer,
by including the notion of action in the latent representa-
tion, the model could understand sentences containing action
commands. Thus, such model could be implemented into a
self-learning robot, which could infer which command should

be performed by some mechanism based on cross-situational
learning along with reinforcement learning.
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