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Abstract—Circuit identification and classification is an impor-
tant field of research in Electronic Design Automation (EDA).
This paper provides a novel framework for circuit classification
based on a Continuous Restricted Boltzmann Machine and
Logistic Regression. An undirected graph representation of a
circuit CNF instance is created and employed to perform CNF-
signatures’ search, thereof we classify it. A library with CNF-
signatures of thousands of logic gates and functional blocks was
pre-generated by our framework. These signatures are searched
in the original CNF instance graph via traditional subgraph
isomorphism algorithm and the results are applied as inputs for
the Boltzmann Machine. Finally, a Logistic Regression classifier
can determine to which class of the circuit each instance belongs.
Our implementation is capable to correctly identify several circuit
classes such as adders, multipliers and dividers with accuracy
over 92%.

Index Terms—circuit classification, restricted Boltzmann ma-
chines, subgraph isomorphism, neural networks

I. INTRODUCTION

Seeing that structural recognizing and recovering of logical
and arithmetic circuits became a prolific research area [1]–
[5], given the current impossibility to recover all structural
information or completely recognize circuits, there are dif-
ferent levels of recovery that answer to different questions.
Certain applications benefit from knowing the connections and
the gates of the circuit; whereas others view these data as not
relevant, weighing the complex functional block as the desired
information.

Considering scenarios in which applications are based on
circuits, generic SAT solvers have been extended in order
to be employed explicitly on derived from circuits CNF
(Conjunctive Normal Form) input [6]. In order to propel SAT
solvers’ performance, circuit structural recovering became
broadly applied.

Among the main techniques that utilize the circuit structure
are 1) parallel simulation of a small number of random inputs,
2) detection of correlation between the signals using hash and
3) a guide for SAT solvers to refute the equivalence of related
signals and thus help you generate more concise and efficient
conflict clauses. When using the information of the circuit

structure, the authors assume that the information present in
it was lost during the conversion to a CNF-SAT [6] instance.

Some CNF formulas can contain a large number of clauses
derived from circuits, although they did not originate from
circuits. An example of this type of formula is property verifi-
cation, in which the circuit part describes the hardware and the
non-circuit part represents more general properties, such as "at
most m of n signals can be low". In addition, several circuits
can appear in the form of mathematical properties, without the
knowledge of the designer who performed the coding.

Despite the fact that many SAT instances are not derived
from circuits, other factors such as the involvement of unori-
ented ports (XOR, for example) make it difficult to recover
the circuit present in the formula. Even in these cases, Roy
et al. [7] show that parts of CNF formulas compatible with
the circuit structure can be found and this recognition of
circuit parts facilitates SAT solvers, regardless of whether the
reconstructed circuits are unique or not.

Due to their efficiency in solving SAT problems, SAT
solvers have become a standard tool in many applications.
Even though this class of problems is NP, the solvers have
proved to be efficient in solving practical problems, with
acceptable time periods.

A. Motivation

Most SAT solvers expect their input as CNF, more precisely
in CNF-DIMACS [8]. Whenever dealing with electronic cir-
cuits, it is possible to code the circuit in CNF under linear
time using the Tseitin [9] transformation, which is the most
used coding. Although simple and efficient, this transformation
flattens the circuit, destroying its topology, causing the logic
gates and their connections to be lost and an equivalent circuit
composed of a large AND with ORs and inverters connected
to it is used instead. The lost information of the circuit
structure can be useful for SAT solvers that benefit from this
information.

The structural recovering task, from the CNF-encoded cir-
cuit, may seem unnecessary inasmuch as the SAT solver could
make use of the original circuit information from which the
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CNF was produced. In an ideal scenario, this is the most
efficient process; however, the original circuit may not always
be available. In regards to the extraction of information being
useful due to the absence of the original circuit, two distinct
scenarios occur: 1) the CNF is not generated from a circuit,
such as planning and scheduling or routing in FPGAs; 2) the
CNF is generated from a circuit but it is not available, as is
the case with most of the benchmarks used in SAT solver
competitions.

Nonetheless, any type of extra information related to the
circuit structure within the formula, regardless of whether the
source of the circuit is an electronic circuit, increases the
solvers’ performance that had access to said information.

B. Our contribution

Our work presents a circuit recognition framework based on
the identification of functional blocks using subgraph isomor-
phism and a Continuous Restricted Boltzmann Machine and
Logistic Regression Classifier for processing this information.
Among the main contributions are 1) the use of isomorphism
in the subgraphs for detecting complex blocks present in
circuits, not only simple logic gates, 2) the possibility of de-
termining the circuit size based on the number of occurrences
of each block, and 3) the creation of a flexible tool that allows
the user to define which function blocks they want to detect
without source code changes. To the best of our knowledge,
this is the first attempt to detect complex functional blocks
using graph isomorphism combined with neural networks.

C. Organization

This paper is organized as follows: Section II presents a
brief summary of the related work in structural recovering
of circuits and the consequent performance gains where this
information was used; in addition to our contribution asso-
ciated with the aforementioned work. The following section
provides the reader with a theoretical foundation that should
allow a better understanding of our framework. In section IV
we demonstrate our decisions and implementation details for
the framework and in section V we supply the experiments
carried and their results. The final section ends the document
with our conclusions and possible directions for future work.

II. RELATED WORK

Under the previous section, we noticed that, in general,
information loss is inevitable when coding a circuit in CNF.
Hence, we could state that, due to this consideration, there was
not much effort in extracting the circuit structure from CNF.

The earliest works in structural recovering accessible were
extraction of equivalences between literary [1] and simple
AND and OR gates [10]. Roy et al. were the first to explicitly
extract the logic gates from CNF [7]. They coined the concept
of CNF-Signature, which, succinctly, is the CNF encoding of
a logic gate. This signature is transformed into a graph and
subgraph isomorphism algorithms were used to find matches
of those signatures in the circuit’s graph. Clearly, the focus of
their work was in finding basic logic gates (AND, OR, NAND,

NOR, XOR, XNOR and inverter), at the cost of imposing
strong restrictions on the occurrences of XOR/XNOR gates
during the extraction process.

Later work by Zhaohui Fu and Sharad Malik [11] is based
on a library of logic gates that describes target patterns to be
extracted. Using this library ensures a more flexible approach,
but less efficient than specifics pattern matching. Another
contribution of this work is that, according to the authors, they
not only extract logic gates but also guarantee to extract the
largest acyclic circuit possible through the use of SAT solvers.

More recently, Harald Seltner [12] defended his master’s
thesis over a strong theoretical foundation in Zhaohui Fu’s
work. As his main result, the cnf2aig tool was developed; the
tool reconstructs the circuit from the CNF and generates, as
output, and-inverter graphs (AIG) [13]. The author guarantees
that the reconstructed circuit is as close to its original as
possible concerning the gates that the tool’s algorithms can
detect.

Structural information is very useful in other types of
problems that are not related to the SAT. An example of this
is the work of Chakraborty [5] whose identification of certain
multiplier structures and the addition of special assertions to
the input formula allowed the solution of several formulas
faster; considering they would usually timeout, despite Sa-
tisfiability Modulo Theories (SMT) solvers being known as
inefficient in formulas with bit vectors in multipliers.

Previously presented works, use exact algorithms to obtain
information about the circuit structure. The main drawback of
the exact algorithm’s approach is that performance is degraded
as the circuit gets bigger and new functional blocks are coded.
To overcome this difficulty and still yield the results quickly,
the state-of-the-art works in structural recovery use some level
of the neural network in the process. Dai and Brayton [14]
use the Convolutional Neural Network (CNN) in a new form
of circuit representation to perform classification, as well
as function detection and location. Similarly, Fayyazi et al.
[15] use CNNs and another form of circuit representation to
perform structural recovering. Both use gate-level-netlist as
input to carry out their experiments.

Silva et al. [16] have circuits at a lower level of abstraction,
since they are encoded in CNF. They propose to transform
the circuit encoded in CNF into an equivalent image so that
CNN can perform and learn the patterns of the circuits in order
to classify it. The performance limitation of this approach is
that images recognition by CNNs is very associated with the
Euclidean proximity of the modules, which implies that they
have to be locally near to be well recognized.

Despite their excellent performance in several areas, the
major challenge for using CNN to recover circuits’ structures
is how to properly represent the circuit in order to aid CNN’s
learning process.

Our work shows an improvement in relation to the above-
mentioned works because, in addition to detecting the logic
gates, it also allows the detection of complex functional blocks
such as adders and multipliers. The key advantage of the
detection of these large blocks is that is possible to infer the
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z = not(x) ≡
(
¬x ∨ ¬z

)
∧
(
x ∨ z

)
z = and(x1, ..., xn) ≡

[∧n
i=1 (xi∨¬z)

]
∧
(∨n

i=1 ¬xi∨z
)

z = or(x1, ..., xn) ≡
[∧n

i=1 (¬xi ∨ z)
]
∧
(∨n

i=1 xi ∨ ¬z
)

z = nand(x1, ..., xn) ≡
[∧n

i=1 (xi∨z)
]
∧
(∨n

i=1 ¬xi∨¬z
)

z = nor(x1, ..., xn) ≡
[∧n

i=1 (¬xi∨¬z)
]
∧
(∨n

i=1 xi∨z
)

Fig. 1: Tseitin transformation for some logic gates.

direction of numerous signals and logic gates since they are
easily detected as the inputs and outputs of the blocks. None
was done by the previous works.

III. A BOLTZMANN MACHINE AND LOGISTIC
REGRESSION FRAMEWORK FOR CIRCUIT CLASSIFICATION

Our framework is composed of three main components:
a subgraph isomorphism search algorithm to find CNF-
signatures, Continuous Restricted Boltzmann Machine neural
network, and a Logistic Regression Classifier. Prior to giving
details about these components, it is imperative to explain how
combinational circuits are encoded in CNF.

A. Encoding Circuits in CNF

Combinational circuits encoding in CNF-DIMACS is very
direct and made in linear time [9]. As any combinational
circuit can be described as a sum-of-products (Disjunctive
Normal Form - DNF) or a product-of-sums (Conjunctive
Normal Form - CNF), it is always possible to write it using
the three basic Boolean operators: OR (∨), AND (∧) and NOT
(¬). A Boolean variable can only assume the values TRUE
or FALSE. In a CNF formula, a clause is a disjunction of a
number of variables, where they can be negated or not. An
expression in CNF is, therefore, a conjunction of one or more
clauses. As seen in section I, the most common input format
for SAT solvers is exactly a formula expressed in CNF.

According to the Tseitin transformation, the most employed
method when performing logical gate encoding, as previously
stated, each of the gate’s inputs, as well as its outputs, is
represented by a variable. A logic gate with three inputs and
one output will be encoded as an expression containing four
variables, where the number and the formation of the clauses
will depend on the function being encoded.

Fig.1 presents the encoding for the logic gates NOT, AND,
OR, NAND and NOR in CNF formulas. XOR and XNOR
gates can also be easily coded, but their expressions involve
2n clauses, where n is the number of inputs of the gate.

In summary, the encoding of a circuit to CNF consists of
expressing the characteristic functions of each logic gate in
the form of CNF. Each logic gate has a unique characteristic
function, but it can be expressed in many CNF formulas.

Consequently, we can take into consideration that a CNF-
Signature for a logic gate is a CNF formula that represents
the characteristic function of the alluded gate.

While a logic gate can have several CNF-Signatures, a given
CNF-Signature identifies no more than one logic gate.

B. Graph Isomorphism and CNF Signatures

Finding out all the occurrences of a given CNF-Signature in
a circuit instance, we can reduce our problem to the problem
of recognizing isomorphism in subgraphs [7]. The subgraph
isomorphism problem is known as NP-complete for graphs in
general, yet there are several practical algorithms with good
performance [17], [18].

Every CNF formula can be represented by a directed
bipartite graph without any loss of information.

Taking a bipartite graph BG = (Vc, Vv, Eg), where Vc

corresponds to the set of vertices that represent the clauses,
Vv to the set of vertices of the variables and Eg to the set
of ordered pairs (Va, Vb) indicating the edge that leaves the
vertex Va and enters the vertex Vb, in order that (Va, Vb) ∈
((Vc, Vv) or (Vv, Vc)).

An edge is created between two vertices whenever a variable
is associated with a clause, its direction indicates whether that
variable appears in the negated form. As an illustration, we
have mapped the CNF formula of the 2-AND logic gate in a
directed bipartite graph.

c = and(a, b) : (¬a ∨ ¬b ∨ c) ∧ (a ∨ ¬c) ∧ (b ∨ ¬c)

Assuming the clauses exactly in the order in which they
appear, numbered from one to three. Whenever a variable
appears in the clause, it is called a literal, whether in its
negated form or not. A literal is numbered according to the
number of variables, so in a formula with three variables,
suppose a, b and c, they would be represented as 1, 2 and
3. Thus, the formula for the 2-AND gate presented could be
written with the three clauses:

-1 -2 3
1 -3
2 -3

This formula can be represented by the graph in Fig.2a.
Whenever the literal appears in the negated form, its di-

rection is (Va, Vb) ∈ (Vc, Vv), and whenever it appears in the
non-negated form, its direction becomes (Va, Vb) ∈ (Vv, Vc).

The original formula can be restored regardless of the
order of the variables and without losses in relation to its
characteristic function.

The execution of efficient subgraph isomorphism algorithms
requires transforming the directed bipartite graph into an
undirected graph, which preserves the existing information.
Wherefore, be UDG = (Vc, Vv+, Vv−, Eg), where Vc as in BG,
Vv+ corresponds to the vertices of non-negated literals and
Vv− to the vertices of negated literals. Thus, each directed
edge Vg of BG becomes an undirected edge Vg of UDG as
follows:
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(a) Directed Graph (b) Undirected Graph (c) Final Undirected Graph

Fig. 2: Graphs of 2-AND Gate

• If the edge links a clause to a variable it means that
the variable appeared in the negated form, then the new
edge links the clause vertex to the corresponding variable
vertex in Ve−.

• Otherwise, the variable appeared in the non-negated form,
therefore the variable vertex is linked to a clause vertex;
subsequently, the new edge links the clause vertex to the
corresponding variable vertex in Ve+.

Applying the described procedure, we can transform the
graph in Fig.2a into the graph in Fig.2b without any informa-
tion loss.

The formula continues being recovered from the undirected
graph, as initially stated. The down side to this operation,
however, is that it becomes impossible to correctly execute
the isomorphism algorithm, because the graph presented is
disconnected; one part formed by the vertices (1, Cl. 2, -
3, Cl. 3) and the other by the vertices (Cl. 1, - 1, -2, 3).
Even though we can recover the clauses, it is impossible to
establish a relation between the two graphs, and, as a result, it
is impossible to recognize a CNF-Signature through a graph.
This relationship can be established, nonetheless, by creating
an edge between the vertices that correspond to the same
variable, making the two vertices related to the same variable,
as shown in the Fig.2c.

By doing so, the graph correctly represents its original
formula, whereas allowing the execution of the subgraph iso-
morphism algorithms. The final graph has a number of vertices
equal to (number_of_clauses + 2 × number_of_variables)
and the number of edges is equal to (number_of_variables
+ number_of_literals).

C. Graph representation of CNFs-signatures

Although a logic gate has multiple CNF-Signatures, all
the graphs formed from them are isomorphic among them-
selves, which is to say that the identification of a subgraph,
corresponding to a signature in a graph, also allows the
identification of a characteristc function. Examples of the basic
logic gates are shown in Fig.3 with their respective CNF-
Signatures and graphs.

To that end, the ability to identify characteristic functions
is important for it allows the identification of logic gates
through subraph isomorphism algorithms. Once the subgraph
is identified, it represents solely a characteristic function.

In circuits, a connection between logic gates is made using
wires, connecting a logic gate’s output to another logic gate’s

Fig. 3: Basic logic gates and their respective operations, CNF-
Signatures and graphs

input. In the CNF, each logic gate is encoded in a set of
clauses, and a clause belongs to a single logic gate. For this
reason, the connection between two logic gates can only be
made by a variable that represents at the same time a gate’s
output and another gate’s input.

Consider the following circuit, composed by two logic
gates: d = AND(a,b); c = NOT(d).

Taking Fig.3 as a reference, we can transform the two logic
gates into the following set of clauses:
d = and(a, b) : (¬a ∨ ¬b ∨ d) , (a ∨ ¬d) and (b ∨ ¬d)
c = not(d) : (¬c ∨ ¬d) and (c ∨ d)
Since two ports are connected by wires and can be repre-

sented by variables, two subgraphs, thus, will be connected by
a vertex representing a variable, never a clause. Consequently,
it is necessary to distinguish between vertices of clauses and
vertices of variables. Moreover, as two vertices represent the
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Fig. 4: Representation of an RBM with five visible units and
three hidden units

same variable, it is also necessary to distinguish between their
non-negated and negated forms. For this, the isomorphism
algorithm is applied to a labeled graph, with three different
labels: clause, positive literal, negative literal.

This process allows for building signatures of any size,
representing any functional block, the basis of this work.

D. Continuous Restricted Boltzmann Machine

A Boltzmann Machine (BM) is a generative stochastic neu-
ral network and it was one of the first neural networks capable
of learning internal representations, in addition to being able
to represent and solve difficult combinatorial problems.

A BM specialization is known as Restricted Boltzmann
Machines (RBM) [19] that corresponds to a neural network in
the form of a bipartite graph, that is, two layers only. The first
layer contains the visible units and corresponds to the network
input; the second layer contains the hidden units and also holds
the restriction denying intra-layer bonding. The purpose of this
connectivity constraint is to facilitate inference and learning.

A representation of an RBM is illustrated in Fig.4. The
visible nodes represent the binary input and the hidden nodes
represent the value and the associated probability distribution.

Restricted Boltzmann Machines are trained to maximize the
product of probabilities to a determined training set. Whenever
the input represents binary characteristics, RBMs are powerful
tools.

A Continuous Restricted Boltzmann Machine (CRBM) is
a variation of RBM that accepts continuous values as input
instead of only binaries, which allows it handling many
different data; for instance, word-count vectors, images, and
heartbeat medical data, and in our case, circuits.

E. Logistic Regression Classifier

Logistic regression is a statistical model that uses a logistic
function to model a binary dependent variable. When applied
in Neural Networks, it is usually applied in classification tasks.

Therefore, we used it as the last component of our frame-
work to finish the classification work initiated by the CRBM.

IV. FRAMEWORK IMPLEMENTATION

In this section, we will provide the decisions and imple-
mentation details of our framework. As stated previously, our
framework is composed of three main components: a sub-
graph isomorphism search algorithm to find CNF signatures,

a Continuous Restricted Boltzmann Machine, and a Logistic
Regression Classifier.

A. CNF-Signature Detection
In order to detect CNF-Signatures present in circuits, we

implemented a tool that makes use of the Boost library [20].
The mentioned library brings an implementation of VFLib [17]
that has several efficient graph isomorphism algorithms.

As presented in Section III, our tool receives a circuit
described in CNF-DIMACS [8] as input and builds an undi-
rected labeled graph that corresponds to the circuit received.
Similarly, each file with the CNF-Signature that should be
checked is also loaded in the tool, which also builds its
graph. Once the graph and all the desired signatures are
loaded, the tool performs a search on the circuit’s graph
looking for occurrences of the signature using the subgraph
isomorphism algorithms. The vertices are marked, at each
occurrence found, so that they can be disregarded in case they
might be found again as the signature is being detected. After
all the occurrences of a signature have been found, the vertices
are cleared and a new signature will be evaluated.

At the end of this process, the number of occurrences of
each CNF-Signature found in the evaluated circuit is provided
as an output. The information collected from the circuit
signatures is used as an input to the neural network, the next
step in the circuit recognition process.

B. GBRBM and Logistic Regression Classifier
For the construction of our Neural Network, we set up a

pipeline composed of a Gaussian-Bernoulli Restricted Boltz-
mann Machine (GBRBM) and a Logistic Regression Classifier.

The visible layer of the GBRBM expects the data to be in a
range [0, 1], for this reason, the values of each CNF-Signature
are scaled so that they are always within the expected range.
Each CNF-Signature corresponds to a characteristic of the
circuit, which can be 0 when the signature is not present in the
evaluated circuit. The values between ]0,1] correspond to the
number of times that signature was detected in the evaluated
circuit in relation to the occurrence of that signature in all
other circuits.

The hidden layer of GBRBM corresponds to each of the
types of existing circuits, which in our work are 20 (see section
V). A second GBRBM similar to the first one is created,
differing only in the number of units in the hidden layer, in
this second being the five classes (see section V) of circuits.

GBRBM is trained to learn the features of the circuit and
provide these features to a Logistic Regression Classifier,
whose job is to classify the circuit and determine to which
type/class this circuit belongs.

The neural network was implemented using Python 3.6,
TensorFlow [21] and scikit-learn [22]. TensorFlow was chosen
due to the increase in its use and simplified configuration to
use the GPU; scikit-learn is a high-level API with a lot of
functions for data analysis and many resources to build neural
networks. A NVIDIA TITAN V was chosen in order to run
our tests and all experiments were executed on the GPU under
11GB of memory usage.
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TABLE I: Summary of circuits and the respective number of
different CNF-Signatures

Circuit Class N. Circuits N. CNF-Sig.

Ripple Carry Adder

Adder

1,022 5
Ripple Carry Adder/Subtractor 1,022 5
Carry-Lookahead Adder 198 402
Carry-Skip Adder 1,022 13
Carry-Select Adder 1,022 22
Carry-Save Adder 1,022 6
Carry-Lookahead Block Adder 1,022 17

Dadda Tree Multiplier
Multiplier

126 514
Array Multiplier 254 6
Carry-Save Multiplier 254 7

Non-Restoring Cellular Array Divider
Divider

254 7
Restoring Celular Array Divider 254 10
Carry-Lookahead Array Divider 162 492

Decoder

Basic

18 20
Encoder 18 20
Multiplexer 18 20
Demultiplexer 18 20
Parity Circuit 510 3
Magnitude Comparator 510 515

Arithmetic Logic Unit ALU 126 77

Total 8,852 1,517*

V. EXPERIMENTS AND RESULTS

To perform our experiments, we used benchmark circuits
generated by the Bencgen tool [23]. According to the tool’s au-
thors, it is possible to generate more than one million circuits
among 24 different projects. This tool was chosen because
it provides a significant number of circuits, nonetheless the
circuits can also be provided in different formats (Bench [24],
Verilog [25] and CNF [8]). The current experiment selected
circuits generated in two formats: CNF for the detection
of CNF-Signatures and the consequent Boltzmann Machine
input, and Verilog for the construction of our CNF-Signatures
library, since in Verilog the circuits are generated by modules
instances.

The first part of our experiments consisted of extracting
the Verilog modules present in the generated circuits. For
each different module identified, a file was created with the
corresponding CNF-Signature, as described in Section III-C.
Table I shows the number of different modules identified per
type of circuit. It is possible to verify that some modules are
composed of few different CNF-Signatures, in general, basic
logic gates or small modules such as half-adders or full-adders.
However, some types of circuits have considerable amounts of
different CNF-Signatures, such as the Magnitude Comparator,
whose analysis allowed us to verify that they are basic logic
gates with different amounts of inputs. The results of the first
part of the experiment allowed us to create a library with 1,517
different CNF-Signatures. The sum of all CNF-Signatures for
each type of circuit has a higher value than that, since most
modules share several CNF-Signatures.

The next step was detecting the quantity of each CNF-
Signature present in each circuit. To perform this task, the
CNF-Signatures recognition tool described in Section IV-A

TABLE II: Sample of CNF-Signatures’ number detected in
Non-Restoring Cellular Array Divider from 3 to 12 bits

Circuit nBits Class NOT_1 AND_2 BUFF_1 XOR_2 OR_2 CFullAdder CBlock

31 3 Divider 2 19 2 27 9 9 9

31 4 Divider 2 33 3 48 16 16 16

31 5 Divider 2 51 4 75 25 25 25

31 6 Divider 2 73 5 108 36 36 36

31 7 Divider 2 99 6 147 49 49 49

31 8 Divider 2 129 7 192 64 64 64

31 9 Divider 2 163 8 243 81 81 81

31 10 Divider 2 201 9 300 100 100 100

31 11 Divider 2 243 10 363 121 121 121

31 12 Divider 2 289 11 432 144 144 144

TABLE III: Summary of circuits’ classes employed in our
experiments and their average accuracy

Circuit Class N. Circ. Acc./Circ. Acc./Grp.

Ripple Carry Adder

Adder

1,022 0.72

0.95

Ripple Carry Adder/Subtractor 1,022 0.69
Carry-Lookahead Adder 198 0.83
Carry-Skip Adder 1,022 0.96
Carry-Select Adder 1,022 0.95
Carry-Save Adder 1,022 0.80
Carry-Lookahead Block Adder 1,022 0.92

Dadda Tree Multiplier
Multiplier

126 0.78
0.92Array Multiplier 254 0.82

Carry-Save Multiplier 254 0.70

Non-Restoring Cellular Array Divider
Divider

254 0.80
0.95Restoring Celular Array Divider 254 0.72

Carry-Lookahead Array Divider 162 0.92

Decoder

Basic

18 0.78

0.88

Encoder 18 0.79
Multiplexer 18 0.55
Demultiplexer 18 0.62
Parity Circuit 510 0.82
Magnitude Comparator 510 0.74

Arithmetic Logic Unit ALU 126 0.75 0.93

Total 8,852
Avg.A 0.783 Avg.A 0.926
Avg.W 0.821 Avg.W 0.939

was performed with all 1,517 signatures on all 8,852 circuits;
producing a matrix of dimensions 8,852 x 1,517. Each cell in
the resulting matrix corresponds to the number of instances
in which each CNF-Signature was identified on that circuit.
Table II shows a sample of a matrix with only ten circuits and
seven CNF-Signatures. The first three columns were inserted
here only for readability purposes.

Finally, we provide as input to our Neural Network the result
of circuit processing. Each CNF-Signature corresponds to a
feature that the circuit might present, and the normalization of
the value identifies how many of each signature the circuit
presents. The presence or absence of each CNF signature
allows identifying how much the circuit corresponds to a type
of circuit. In our tests, all 8,852 circuits, of 20 different types,
generated by the Bencgen tool were used. Circuits were di-
vided in the proportion of 60%/40% for training/testing. Table
III shows the results of the experiments on the identification
of each type and the class to which it belongs.

Regarding the results provided, we can affirm that the neural
network presented is highly precise when the identification
corresponds to the class to which the circuit belongs, with an
arithmetic average of 92.6 % and a weighted average of 93.9
% relative to its classification accuracy. This precision is due
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to the fact that the classes of circuits are quite distinct from
each other, mainly regarding the types of functional blocks
and consequent CNF-Signatures.

Analyzing each type of circuit individually, we identified
two types of circuits that presented more difficulties for the
neural network, whose performance was bellow our expecta-
tion: Multiplexer and Demultiplexer. After deconstructing the
steps the neural network took, as well as the input data of these
types of circuits, we verified that both look indistinguishable
between themselves considering the amount of each CNF-
Signatures which each of these circuits present; in other
words, the neural network will identify a Multiplexer and
a Demultiplexer, with the same number of bits, as equals.
Distinction between both circuits is related to the connection
of its components, an aspect that is not emphasized in this
work.

Continuing the individual analysis of each type of circuit,
we also verify that some circuits present higher rates of
precision. The Carry-Skip Adder, Carry-Select Adder, Carry-
Lookahead Block Adder and Carry-Lookahead Array Divider
circuits had rates of 96%, 95%, 92% and 92%, respectively.
The evaluation of the intermediate steps revealed this is due
to the presence of CNF-Signatures that are only available on
these circuits. The Carry-Lookahead Array Divider circuit, for
instance, is the only circuit type that has CLABlock’s CNF-
Signature, as well as the Carry-Lookahead Block Adder that
has CLAGenerator’s CNF-Signature. In case the identification
process was executed through an exact method, there would
not be any doubts regarding these results, but the presence of
other variables the neural network takes into account, which
end up helping in the identification of the less singular classes,
we have the ocasional decrease in the accuracy of the above
mentioned classes.

In general, the accuracy of the neural network in the
classification of circuits is quite high, with an arithmetic
average of 78.3% and a weighted average of 82.1%. The
results achieved showed that the pre-processing of the CNF
file for the extraction of CNF-Signatures allowed an RBM to
be used where, in principle, it could not, since the CNF files do
not have any structure or information that allow categorization
by RBMs.

Associated with the information obtained by the neural
network, in most cases, it is possible to determine the size
of the detected circuit. This happens because each circuit has
an equation of number of occurrences of functional blocks
associated with the number of bits in it. Illustrating how the
circuit size is determined, let us consider the Non-Restoring
Cellular Array Divider circuit; the graph in in Fig.5 demon-
strates the occurrence curves of each CNF-Signature by the
number of bits.

Once the type of circuit is detected, it is possible to
determine its size through its functions. In the case of the Non-
Restoring Cellular Array Divider, OR2(nBits) = nBits2, as
well as XOR2(nBits) = 3×nBits2. The problem with using
formulas directly is that the number of combinations and the
number of formulas make the exact search exhaustive, in a

Fig. 5: Occurrences of CNF-Signature per bits in a Non-
Restoring Cellular Array Divider

few cases impossible without adding a degree of uncertainty,
as different encodings can generate different values for each
CNF-Signature; which makes combinatorial analysis difficult,
a task indicated to RBM.

The results showed that our contribution to the feature
extraction process for further classification consists of a new
structural recovery method, which allows the determination of
the type of circuit and its size.

VI. CONCLUSION

In this paper, we aimed at presenting a novel framework
for circuit classification on a Continuous Restricted Boltzmann
Machine and Logistic Regression. Our framework is composed
of three main components. The first is an algorithm for
subgraph isomorphism search of CNF-signatures of logic gates
and functional blocks in a graph of a circuit specified in CNF;
the result of this operation provides input data to a Continuous
Restricted Boltzmann Machine, our second main component,
which outputs valuable information to a Logistic Regression
Classifier, the last main component of our framework. The
latter, in succession, is capable of accurately classifying (over
92%) several circuit classes, in addition to providing its size
for arithmetic circuits.

Our results display the benefits for circuit classification
of combining the extracted information from a CNF-encoded
circuit applied in conjunction with neural networks; in spite of
that, the same information could also be employed to generate
new circuits using complex functional blocks, which points to
a potential new research subject. In conclusion, we intend to
continue working to improve our circuit classification frame-
work, as well as propose, in future research, the automation
of the recognition processes of circuit size.
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