
High-Level Classification for Multi-Label Learning
Vinı́cius H. Resende and Murillo G. Carneiro

Faculty of Computing
Federal University of Uberlândia

Uberlândia, Brazil
{viniciusresende, mgcarneiro}@ufu.br

Abstract—Multi-label learning (MLL) addresses the problem
of learning from data items which can be associated with multiple
labels simultaneously. As MLL techniques are usually derived
of single-label ones, they also share common drawbacks. For
example, most MLL techniques perform a low-level classification,
i.e., they consider only the physical features of the input data (e.g.,
distance, distribution, etc) in the classification process, having
troubles to detect semantic relationships among the data items,
like the formation pattern for example. Recent studies have shown
that learning systems based on complex networks have the ability
to consider not only the physical features of the data, but also
structural and topological features extracted from the network
connection patterns, which is known as high-level classification.
In this paper, we investigate a MLL framework which combines
both low-level and high-level techniques in order to improve the
predictive performance of existing MLL techniques. Experiments
conducted on artificial and real-world data sets highlighted the
salient features of the MLL framework and also attested its good
predictive performance in comparison with widely used MLL
techniques, indicating that our framework may considerable
improve their predictive performance.

Index Terms—Multi-Label Learning, Complex Networks,
High-Level Classification, Machine Learning.

I. INTRODUCTION

In many real-world problems, the association of an object
with a unique word or label is not enough. For example,
a gene can have several functional classes [1]; a newspaper
can cover different topics; a song can cause different types
of emotion [2]; and an image may have multiple objects in
your content [3]. In this sense, the multi-label learning (MLL)
differs from the multi-class one by assuming that each object
can be associated with multiple labels simultaneously.

Nowadays multi-label learning has attracted a lot of atten-
tion mostly due to its fast increasing number of applications,
and also its challenging characteristics, like the exponential
number of label combinations. In the literature, the MLL
algorithms are usually divided in two major groups: problem
transformation and algorithm adaptation [4]. In the former
are algorithms that handles the MLL problem by transforming
it into a set of binary classification problems, e.g., Binary
Relevance (BR) [5], Classifier Chain (CC) [6] and Label
Powerset (LP) [7]. In the latter are the algorithms adapted
from known single-label techniques in order to treat the MLL
task directly, e.g., Multi-Label k-Nearest Neighbors (MLkNN)
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[8], Backpropagation for Multi-Label Learning (BP-MLL) [9]
and Ranking Support Vector Machines (Rank-SVM) [1].

BR and CC are among the most popular MLL algorithms.
Both transform a multi-label problem into a set of binary
classification problems, but BR assumes independence among
such binary problems while CC models them as a chain,
where subsequent binary classifiers in the chain are built
upon the predictions of the preceding ones. Different from
BR and CC, LP transforms the MLL problem into a multi-
class one, which represents all possible label combinations. In
common, BR, CC and LP require a base classifier to deal
with the transformed problem, being that any conventional
classification technique, such as Naive Bayes (NB), Random
Forest (RF) and Support Vector Machine (SVM), can be
adopted. Regarding the adapted algorithms, MLkNN is one
of the most popular. It consists of an adaptation of the well-
known k-nearest neighbors classifier in order to handle the
MLL task, and also takes into account Bayesian statistics to
select the labels to be assigned. Another relevant algorithm of
this algorithm adaptation group is the BP-MLL, which is an
adaptation of neural networks for multi-label learning.

As most of the MLL techniques are essentially derived
of the single-label ones, they share common advantages, but
also common drawbacks. For example, recent studies [10]–
[12] have shown that traditional classification techniques have
troubles to detect the semantic relationship among the data
items by considering only the physical features (e.g., distance,
similarity, distribution, etc.) of the input data in the classifi-
cation process. Furthermore, other study [13] pointed out that
the same drawback occurs in MLL techniques. This situation
is illustrated by Figure 1, which denotes a misleading case
for most of the MLL techniques that are unable to correctly
classify the test item (marked as a red/3 in the figure)
as belonging to both classes (green/D). Instead of it, such
methods are much more likely to classify the test item into
the class 1 (black/4).

To overcome such a drawback, complex networks properties
and measures have been incorporated in the design of efficient
learning techniques, in which the salient feature is the ability
to consider not only the physical features of the data but also
the topological ones, which is called high-level classification
(HL). Successful examples of HL techniques include the clas-
sification via pattern conformation [10], [11] and via charac-
terization of importance [12], [14]. The former classifies a test
item into the network component (class) in which its insertion
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Fig. 1: An illustrative multi-label problem with clear pattern
formation. Black/4 markers denote data items of the class 1;
blue/◦ ones denote data items of the class 2; green/D ones
indicate data items of the both classes; and the red/3 marker
represents a test data item, which consists of a misleading
case for traditional multi-label techniques, which are unable
to correctly detect the pattern formation of the input data.

causes the lowest variation of the complex network measures,
while the latter derives the Google PageRank measure to
classify a test item into the network component in which it
receives more importance. In common, both techniques have
two major steps: the construction of a network (graph) from
the vector-based data, and the explotation of such a network
by taking into account complex network concepts.

In this paper, we investigate the high-level classification
in the MLL context. In a few words, we propose a MLL
framework based on [15], which is responsible to combine
the associations produced by a low-level technique (LL) with
those produced by a HL one. The LL term can be any of the
existing MLL techniques. The HL one is given by a classifier
via pattern conformation, which is composed by a set of com-
plex network measures. Such a framework is a refinement of
that one previously published in [13]. Here we analyze a set of
graph construction methods into our HL technique, consider a
much more sophisticated experimental setup which simulates a
real scenario for model evaluation and parameter selection, and
perform statistical tests in order to support our analyses and
discussions. In addition, several experiments were conducted
against widely used MLL techniques on artificial and real-
world data sets. In summary, it is statistically attested that our
HL technique can improve the predictive performance of MLL
ones in terms of accuracy and F1 metrics.

The remainder of this work is organized as follows. Section

II presents our multi-label high-level framework (MLL-HL)
with a detailed description about the graph construction and
the network measures analysis. Sections III and IV discuss
respectively the results obtained on artificial and real-world
data sets, and Section V concludes the paper.

II. MODEL DESCRIPTION

As in single-label learning, we can divide the MLL prob-
lem in two steps: training and test. In the training phase,
the algorithm receives a set of training instances X =
{(x1,y1), . . . , (xn,yn)}, where each data item is formed by
a tuple (xi,yi), with xi = {x1, . . . , xd} representing a d-
dimensional vector of features and yi = {y(1)i , . . . , y

(L)
i } the

output domain of possible labels L = {1, . . . , L}, where a
given class label l is said assigned to xi if y(l)i = 1 or
not if y(l)i = 0. The objective here is to learn a multi-label
classifier function f : X → 2L. In the test phase, this multi-
label function f(·) is adopted to predict the labels of new test
items (x, ?), such that f(x) ⊆ L.

The MLL-HL framework is responsible by combining the
associations produced by low-level and high-level classifiers.
Given a test data item x, its probability to belong to a class
label l can be defined by:

M(l)
x = λH(l)

x + (1− λ)C(l)x (1)

where M(l)
x is the value generated by the combination of the

probabilities given by a traditional MLL classifier, denoted as
C(l)x , and by a high-level classifier, denoted as H(l)

x . The λ ∈
[0, 1] corresponds to a linear combination of both classifiers,
in which high values prioritize the structural properties and
low values the physical ones.

After M is calculated, the final output of the multi-label
high-level framework is given by:

y(l)x =

{
1 if M(l)

x ≥ τ ,
0 otherwise,

which means that a test item x receives a label l if the
combination between LL and HL associations results in a
probability greater than a threshold τ .

As the LL associations can be produced by any traditional
MLL technique, we focus the remainder of this section on
explaining the HL associations, which are generated by ana-
lyzing the pattern conformation of a given test item regarding
to each network component (class). The HL technique can be
divided in training and test phases. In the training one, the
major step is the graph construction from which the network
measures are calculated. In the test phase, the major step is
the pattern conformation analysis, which verifies if a test item
is in compliance with the pattern of each network class by
analyzing the variation of the network measures.

A. Graph Construction

In data classification, most of the data sets are available
in the feature-vector format. However, in order to exploit
spatial, structural and topological relationships among the
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input data, a network that represents efficiently such data must
be built. In MLL context, an interesting example is [16], which
proposes a method to build a graph via clique generation in
order to capture label correlations. In this paper we propose
four graph construction methods for the MLL task, which
are derived from supervised graph construction methods [17],
such as k-nearest neighbors (kNN) graph, selective k-nearest
neighbors (S-kNN) graph and the ε-radius neighborhood (εN).
In addition, we have also considered the degree k-nearest
neighbors (D-kNN) graph, which has already been proposed
for the MLL task in [13].

In the graph construction phase of our HL technique, an
undirected graph G(l) is constructed from X for each class
label l ∈ L, i.e., g(X , l) → G(l). Let A(l) be the adjacency
matrix of G(l) and suppose a given data item xi ∈ l, i.e.,
y
(l)
i = 1, the five graph construction methods analyzed in this

work can be formally defined as follows.
1) kNN: Let kNN(xi) be the k-nearest neighbors of xi,

A(l) is then defined as:

A
(l)
ij =

{
1, if xi ∈ kNN(xj) and y(l)i = y

(l)
j ,

0, otherwise.

2) kNN+εN: : Let D be a distance matrix where Dij is the
distance between xi and xj , A(l) then can be obtained by:

A
(l)
ij =


1, if xi ∈ kNN(xj) and y(l)i = y

(l)
j ,

1, if Dij ≤ ε and y(l)i = y
(l)
j ,

0 otherwise.

3) S-kNN: : Let S-kNN(xi,l) be the k-nearest neighbors of
xi that belong to l ∈ L, A(l) then can be obtained as follows:

A
(l)
ij =

{
1, if xi ∈ S-kNN(xj , l),
0, otherwise.

4) S-kNN+εN: : Consider the previously defined S-kNN(.)
and the matrix distance D, A(l) is then defined by:

A
(l)
ij =


1, if xi ∈ S-kNN(xj , l),
1, if Dij ≤ ε and y(l)i = y

(l)
j ,

0 otherwise.

5) D-kNN: : Let vi be the node associated to the data item
xi in the graph, the adjacency matrix is given by:

A
(l)
ij =


1, if xi ∈ kNN(xj) and y(l)i = y

(l)
j and∑

l∈L outdegree(vi ∈ V (l)) < k

0, otherwise.

Figure 2 shows as example the application of the five
graph construction methods on an artificial data set with two
class labels. The red color circles denotes objects labeled as
class 1, blue color circles as class 2 and black color ones as
simultaneously both classes 1 and 2. In the figure, we show
exclusively the graphs constructed for the class 1, i.e., G(1).
One can see that there are considerable differences among the
methods. For example, εN permits to represent dense regions,

S-kNN permits to connect distant points, and D-kNN generates
less connections than others. We believe that such a diversity
of characteristics make one or other graph construction method
more adequate, depending on the problem.

After the construction process, the network measures can
then be applied in order to characterize each generated graph
(class label). In this study we use three different network mea-
sures, namely clustering coefficient, assortativity and average
degree, which are presented in the following.
• Clustering coefficient quantifies how much the vertices

tend to group together. Basically, it measures how close
each vertex of the graph is to form a clique. CC can be
obtained by:

CC
(l)
i =

|e(l)us|
k
(l)
i (k

(l)
i − 1)

, (2)

in which |e(l)us| represents the number of connections
shared by adjacent neighbors of the vertex i, and ki the
degree of the vertex i. Let V(l) be the number of vertices
in the graph G(l), the average clustering coefficient of the
graph can be obtained by:

CC(l) =
1

V(l)

V(l)∑
i=1

CC
(l)
i . (3)

• Assortativity quantifies how much the vertices tend to
connect with others with similar degree. The measure
assumes values between [−1, 1], so that positive values
indicate that pairs of directly connected vertices are more
likely to behave in the same way, whereas negative values
indicate a higher probability of connected vertices having
different behaviors [18]. Let E(l) be the number of edges
in the graph G(l) and i(l)u , k

(l)
u the degrees of the vertices

i and k which compose an edge u, the assortativity can
be calculated by:

r(l) =

1
E(l)

∑
u
i
(l)
u k

(l)
u − [ 1

E(l)

∑
u

1
2 (i

(l)
u + k

(l)
u )]2

1
E(l)

∑
u

1
2 (i

2(l)
u + k

2(l)
u )− [ 1

E(l)

∑
u

1
2 (i

(l)
u + k

(l)
u )]2

(4)
• Average Degree: This measure simply quantify the aver-

age number of connections in the graph.

k(l) =
1

V(l)

V(l)∑
i=1

k
(l)
i (5)

B. High-Level Classification

In the test phase, the HL classifier calculates the variation
of the network measures in order to classify a given test item
into the class labels in which its insertion causes small (or
even none) changes. Formally, let u denote a given network
measure, and let m(l) and m′(l) be the result of applying u for
a given graph G(l) respectively before and after the insertion
of a test item x, the variation of the network measure u can
be defined as:
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(a) kNN graph (b) kNN+εN graph (c) S-kNN graph (d) S-kNN+εN graph (e) D-kNN graph

Fig. 2: Comparative analysis of the five graph construction methods considered for our high-level technique in this study.

∆G(l)
x (u) =

|m(l) −m′(l)|∑
q∈L |m(q) −m′(q)|

. (6)

Basically, if the insertion of the test item causes high variation
of the complex network measures in that graph, then it is
probably not compliant with the class pattern represented by
such a network (class). Otherwise, in the case of such a
variation is low (or even does not exist), the test item probably
belongs to that class. Notice that u can be any of the network
measures defined before (clustering coefficient, assortativity or
average degree), with m denoting the results obtained by the
selected measure.

There are also a special case in the calculation of the
network measures that need to be treated individually. Taking
the assortativity measure, for example, it may happen that
the test item does not connect to any vertex in some of the
graphs. Therefore, its variation would be zero and supposedly
would be perfectly in compliance with such a network class.
However, this should be exactly the opposite situation. Thus,
to handle such special cases we define the measure variation
value as the worst possible, i.e., the maximum difference
between the measure ranges, indicating that the test item
caused the highest variation. Thus, the value of CC(l) is set
to 1 and CC ′(l) to 0 for the clustering coefficient; r(l) is set
to 1 and r′(l) to 0 for the assortativity; and for the average
degree is defined as k(l) = max(k′(l) - min(k′(l)i ), max(k′(l)i ) -
k′(l)).

After the variations of the network measures are calculated,
we proceed with the convex linear combination of such results
as follows:

f (l)x (u) = ∆G(l)
x (u) p(l), (7)

where p(l) is the proportion of items with label l, a strategy
to deal with imbalanced data sets.

At the end of our HL technique, the final probability of
a test item x be associated with a class l is given by the
linear combination of the network measures variations, which
is defined by:

H(l)
x =

Z∑
u=1

δ(u)[1− f (l)x (u)] , (8)

with Z denoting the number of network measures adopted
and δ ∈

∑Z
u=1 δ(u) = 1 the weights for the variation results

provided by each network measure.

III. RESULTS ON ARTIFICIAL DATA

In this section we present some experiments with the toy
data set presented in Fig. 1. Such experiments aim at providing
important insights about the salient features of our high-level
technique, about the limitations of existing MLL algorithms
and also about how both techniques can be combined in order
to improve their results.

In the following experiments, we consider BR, CC and
MLkNN low-level techniques. For sake of clarity, BR and
CC are evaluated with different base algorithms, namely SVM
and RF, respectively. The parameters of the algorithms were
defined as follows: for MLkNN the value of k was set to
10, for SVM, C = 210 and kernel = rbf; for Random Forest
classifier, the number of trees was set to 100; for the high-
level technique, the values of δ was set as 1

3 for each of the
complex network measures and the graph construction method
was the S-kNN, with k = 10. The algorithms were trained with
the entire data set, with the exception of the test item.

Given the test item presented in Fig. 1, Tab. I shows the
combined probabilities given by the MLL framework. One
can see that when λ = 0 (i.e., only the low-level classifier
is considered) none of the algorithms identified the formation
pattern related to class 2, giving almost zero probability to the
association of the test item to such a class. This is because
LL algorithms considers only the physical features of the data.
As the number of “class 1” objects around the test instance
is much higher than the number of “class 2” objects, this
influences directly in their classification.

TABLE I: Classifiers probability obtained by our MLL-HL
framework for the test item presented in the illustrative data
set of Fig. 1. C1 corresponds to the probability given for class
1 and C2 for class 2.

.

LL Alg. λ = 0 λ = 0.30 λ = 0.65
C1 C2 C1 C2 C1 C2

BR (SVM) 1.000 0.057 0.770 0.270 0.502 0.518
CC (RF) 1.000 0.030 0.770 0.251 0.502 0.508
MLkNN 0.999 0.136 0.770 0.325 0.502 0.546
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Otherwise, one can see in Tab. I that with λ = 0.65 and τ =
0.5, the high-level term combined with any other algorithm
would classify the object correctly, i.e., simultaneously in both
class 1 and 2. Proceeding with the analysis, one can see that the
higher the λ, the lower the probability of class 1 and the greater
of class 2. This can be explained by the HL classifier bias,
which also analyzes the structural and topological properties
of the data instead of considering only the physical ones. Thus,
it gives a higher probability to the classes in which the test
item is in high compliance with their patterns.

IV. RESULTS ON REAL-WORLD DATA

In this section we present the results obtained by our MLL-
HL framework in the four real-world data sets described in
Table II. The selection was made to encompass diversity on
a range of metrics, such as domain and number of instances,
features and labels. Birds is a data set of audio recording from
birds species [19]. Emotions aims at modeling music feelings
given the timbre and the rhythm of a music [2]. Scene contains
thousands of images in which their content must be classified
[3]. Yeast is a biological data set related to gene expression
and phylogenetic profiles [1].

TABLE II: Meta-description of the real-world data sets in
terms of the number of instances (#Inst.), features (#Feat.),
labels (#Lab.), training (#Train) and test (#Test) data, and the
cardinality (#Car.) and density (#Den.) estimations.

Name (Domain) #Inst. #Feat. #Lab. #Train #Test Car. Den.

Birds (Audio) 645 258 19 322 323 1.01 0.05
Emotions (Music) 593 72 6 391 202 1.87 0.31
Scene (Image) 2407 294 6 1211 1196 1.07 0.18
Yeast (Biology) 2417 103 14 1500 917 4.24 0.30

For sake of comparisons, we evaluate the proposed tech-
nique with three widely adopted multi-label techniques: BR,
CC and MLkNN. By transforming a multi-label problem into
binary ones, BR and CC requires a base classifier to deal with
such problems. In this work, three base classifiers have been
evaluated: Naive Bayes (NB) which is a simple and widely
used technique in multi-label learning; and Random Forest
(RF) and Support Vector Machine (SVM), which are state-of-
the-art classification techniques for many domains.

In order to provide a fair comparison, we considered a
wide range of parameters for the techniques. For BR and
CC, the number of trees in RF is selected over the set
{24, 26, 28, 210}; the kernel function in SVM can be {linear,
rbf}, with the penalty parameter being selected over the set
{2−5, 2−3, . . . , 23}; and in NB, the likelihood is assumed to
be Gaussian. For MLkNN, the number of neighbors is selected
over the set {5, 10, . . . , 30}.

Regarding our high-level technique, in the graph construc-
tion phase we have selected parameters k in kNN-based graphs
and ε in εN graph respectively over the sets {2, 3, . . . , 10}
and ∈ {0.1, 0.2, . . . , 0.5} · d̄, in which d̄ is the average
distance between all pairs of samples. For the classification

phase, we have λ and τ . The former is selected over the set
{0.1,0.2,. . . ,1.0}, in which λ = 0.7, for example, means a
contribution of 70% of the high-level term in the final predic-
tion. The latter is selected over the set {0.5,0.6,. . . ,0.9} and
indicates the threshold which a final prediction must achieve in
order to get that label class. Three complex network measures
were considered in our high-level technique: assortativity,
clustering coefficient and average degree. The contribution of
each one of them were respectively defined as 0.4, 0.4 and
0.2.

It is worthwhile to mention that as the data sets were already
divided in training and test sets, we select all parameters by
running a grid search method on a 5-fold cross-validation
exclusively on the training set. In the following, we evaluate
the predictive performance of the techniques over three multi-
label metrics: accuracy, subset accuracy and F1-weighted. For
sake of clarity, the accuracy score used here is the complement
of the hamming loss metric [4].

A. Accuracy Evaluation

Table III presents the accuracy results of the multi-label
techniques under comparison. In the table, “LL Alg.” denotes
the low-level algorithms considered (BR, CC and MLkNN);
“LL Base” shows the base classifier equipped with the problem
transformation technique; and “HL Graph” indicates what
graph construction method has been adopted to perform the
high-level classification. Notice that the symbol “-” has differ-
ent meanings in the table: in “LL Base” it means that MLkNN
does not require a base classifier; and in “HL Graph” it means
that the classification have been performed exclusively by
a low-level technique (i.e., no high-level term). Taking into
account the low-level algorithms and the base classifiers, the
best local results in the table are underlined and the best global
results are boldfaced. For the Birds data set, the best results
were achieved by BR/CC with RF as base classifier combined
with the HL classification provided from the S-kNN graph. For
the Emotions data set, CC(SVM) achieved the best results after
being combined with the HL classification provided from both
kNN and kNN+εN graphs. For the Scene data set, BR(SVM)
provided the best results when combined with HL(kNN+εN)
or HL(S-kNN+εN). In the Yeast data set, the best result was
achieved out of our framework by CC(SVM).

In order to analyze statistically the effectiveness of our
multi-label high-level framework, we selected the Friedman
test as it permits to compare multiple techniques over multiple
data sets [20]. Given the accuracy results presented in Table
III, we want to know if there is any evidence that the
predictive performance of the low-level classifiers is different
when combined or not with the high-level ones. Thus, the
null hypothesis say that they are statistically equivalent. After
calculating the Friedman test under the significance level α
at 0.05, the null hypothesis is rejected, i.e., at least one of
the methods differs from the rest. The Nemenyi posthoc test
is then applied considering again the significance level α at
0.05. The test indicates that the accuracy results obtained
by the low-level techniques in combination with the high-
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TABLE III: Comparative performance among widely used ML
techniques and our high-level classification in terms of ML
Accuracy. “LL. Alg.” denotes the low-level algorithms, “LL.
Base” the base classifiers, “HL. Graph” the graph construction
in the high-level framework. Best local results are underlined
and best global results are boldfaced.

LL LL HL Datasets

Alg. Base Graph Birds Emotions Scene Yeast

BR NB - 95.2 71.3 75.4 70.0
BR NB kNN 95.2 77.0 88.2 74.6
BR NB kNN+εN 95.1 75.7 88.5 74.6
BR NB S-kNN 95.1 76.6 87.9 74.3
BR NB S-kNN+εN 95.1 77.0 87.9 74.3
BR NB D-kNN 95.2 76.2 88.2 74.8

CC NB - 95.2 72.8 79.0 68.4
CC NB kNN 95.7 77.4 87.7 73.5
CC NB kNN+εN 95.1 76.4 87.8 73.5
CC NB S-kNN 95.1 77.1 87.6 73.5
CC NB S-kNN+εN 95.1 77.3 87.7 73.7
CC NB D-kNN 95.2 77.3 87.7 73.4

BR RF - 95.7 77.9 90.9 80.7
BR RF kNN 95.8 77.4 91.7 80.9
BR RF kNN+εN 96.0 78.5 91.5 80.9
BR RF S-kNN 96.1 78.2 91.6 80.9
BR RF S-kNN+εN 96.0 78.9 91.5 80.7
BR RF D-kNN 96.2 78.6 91.4 81.0

CC RF - 95.6 78.0 91.1 80.6
CC RF kNN 95.8 79.0 91.8 80.7
CC RF kNN +εN 95.8 78.4 91.6 81.0
CC RF S-kNN 96.1 78.5 91.7 80.8
CC RF S-kNN+εN 96.1 78.5 91.6 80.6
CC RF D-kNN 96.1 78.1 91.2 80.9

BR SVM - 95.7 79.5 91.9 80.8
BR SVM kNN 95.6 80.1 91.9 81.3
BR SVM kNN+εN 95.5 80.4 92.0 81.1
BR SVM S-kNN 95.6 80.0 91.9 81.1
BR SVM S-kNN+εN 95.6 80.0 92.0 81.1
BR SVM D-kNN 95.6 80.0 91.9 81.3

CC SVM - 95.7 80.4 91.3 81.4
CC SVM kNN 95.6 80.6 91.8 80.8
CC SVM kNN+εN 95.5 80.6 91.8 80.8
CC SVM S-kNN 95.6 80.4 91.8 81.1
CC SVM S-kNN+εN 95.6 80.4 91.8 81.1
CC SVM D-kNN 95.6 79.9 91.8 81.1

MLkNN - - 94.9 78.3 90.4 79.5
MLkNN - kNN 95.0 78.0 90.7 79.0
MLkNN - kNN+εN 95.1 78.1 91.0 79.1
MLkNN - S-kNN 94.9 77.9 90.7 78.8
MLkNN - S-kNN+εN 94.9 77.9 90.7 78.9
MLkNN - D-kNN 95.0 78.0 90.7 78.7

level ones provided from both kNN and kNN+εN graphs
outperform the accuracy results obtained exclusively by the
low-level techniques. The critical difference diagram found by
the Nemenyi post-hoc test is shown by Fig. 3.

B. Subset Accuracy Evaluation

Now we move on to analyze the predictive performance of
the techniques in terms of the subset accuracy metric. Table IV
presents the results obtained for both low-level and high-level
classifications. One can observe that the results here are very

Fig. 3: Critical difference diagram obtained from the Nemenyi
post-hoc test over the accuracy results presented in Table III.

smaller than those presented in Table III as this metric only
considers a test data item correctly classified if the algorithm
predicts correctly all of your label classes. For the Birds data
set, the best result was provided by CC(RF) combined with
the HL classification taken from the S-kNN graph. For the
Emotions data set, again CC(SVM) obtained the best results
after the combination with the HL classification provided
from both kNN and kNN+εN graphs. For the Scene data
set, CC(SVM) provided the best results after being combined
with HL(kNN+εN). In the Yeast data set, the best result was
provided exclusively by the low-level technique CC(SVM).

The Friedman test has been adopted here to provide the
statistical analysis of the results showed by Table IV. Again,
the null hypothesis states that the subset accuracy results
obtained exclusively by the low-level techniques are equivalent
to those obtained by such techniques when combined with
our high-level techniques. Under the significance level α at
0.05, the test failed to reject the null hypothesis, which means
that for the significance level considered both techniques
(combined or not) are equivalent.

C. F1-weighted Evaluation

Table V presents the predictive results obtained by the tech-
niques under comparison in terms of F1-weighted measure.
The results here do not follow a pattern in relatation to the
results of accuracy or subset accuracy. For example, the F1

results in the Birds data set are worse than those of subset
accuracy, although the F1 results in Emotions and Yeast data
sets are better than those of subsect accuracy. This may be
explained by looking at the density of such data sets: Birds
has very low density, which means there are very few labels by
instance. Otherwise, Emotions and Scene have higher density,
which improves the F1 but makes much more difficult to
achieve a high subset accuracy.

Regarding the overall performance in Table V, the best
result for the Birds data set was achieved by CC(RF) combined
with the HL classification provided from the D-kNN graph.
For the Emotions data set, BR(SVM) achieved the best perfor-
mance when combined with the HL(kNN+εN). For the Scene
data set, CC(RF) provided the best results when combined with
HL(kNN). In the Yeast data set, the best result was achieved by
combining the high-level classification provided by HL(kNN)
with the low-level classification provided by BR(RF).

In order to analyze statistically the results showed in Table
V, we adopted again the Friedman test. The null hypothesis

978-1-7281-6926-2/20/$31.00 ©2020 IEEE



TABLE IV: Comparative performance among widely used
ML techniques and our high-level classification in terms
of ML Subset Accuracy. “LL. Alg.” denotes the low-level
algorithms, “LL. Base” the base classifiers, “HL. Graph” the
graph construction in the high-level framework. Best local
results are underlined and best global results are boldfaced.

LL LL HL Datasets

Alg. Base Graph Birds Emotions Scene Yeast

BR NB - 47.4 18.8 17.1 10.5
BR NB kNN 47.7 21.8 50.7 11.2
BR NB kNN+εN 46.7 18.8 51.8 11.7
BR NB S-kNN 47.1 22.8 48.8 11.9
BR NB S-kNN+εN 47.1 23.3 48.8 11.9
BR NB D-kNN 47.7 21.3 50.7 11.2

CC NB - 47.4 19.8 28.3 9.2
CC NB kNN 47.7 21.8 44.0 11.2
CC NB kNN+εN 46.7 18.8 43.1 11.0
CC NB S-kNN 47.1 22.8 44.6 10.5
CC NB S-kNN+εN 47.1 23.3 45.1 10.5
CC NB D-kNN 47.7 22.8 44.0 11.3

BR RF - 50.2 24.8 53.1 16.6
BR RF kNN 48.9 24.3 60.5 18.9
BR RF kNN+εN 52.9 27.7 61.0 18.9
BR RF S-kNN 51.7 25.2 60.2 20.1
BR RF S-kNN+εN 51.4 29.7 60.2 18.9
BR RF D-kNN 51.7 28.2 59.3 19.5

CC RF - 49.2 27.7 55.1 21.6
CC RF kNN 48.3 31.2 62.4 20.2
CC RF kNN +εN 49.5 28.7 61.5 21.7
CC RF S-kNN 53.3 28.7 61.7 20.3
CC RF S-kNN+εN 52.0 26.7 60.5 19.7
CC RF D-kNN 51.7 29.7 60.6 20.9

BR SVM - 50.8 28.2 62.6 20.0
BR SVM kNN 49.5 33.7 63.5 21.9
BR SVM kNN+εN 51.1 33.2 63.0 20.8
BR SVM S-kNN 50.2 33.7 63.4 21.0
BR SVM S-kNN+εN 50.2 33.7 63.4 21.0
BR SVM D-kNN 49.8 33.2 63.5 21.7

CC SVM - 50.8 30.7 62.9 23.0
CC SVM kNN 49.5 34.7 63.7 21.4
CC SVM kNN+εN 51.1 34.7 64.0 21.4
CC SVM S-kNN 50.2 34.2 63.7 22.0
CC SVM S-kNN+εN 50.2 34.2 63.9 22.0
CC SVM D-kNN 49.8 32.2 63.7 21.9

MLkNN - - 47.4 24.3 62.0 19.2
MLkNN - kNN 46.7 25.7 61.5 16.7
MLkNN - kNN+εN 47.7 26.2 60.2 16.6
MLkNN - S-kNN 44.9 25.2 61.9 17.0
MLkNN - S-kNN+εN 44.9 25.2 61.9 16.4
MLkNN - D-kNN 46.4 26.2 61.5 16.9

states that the F1 results obtained exclusively by the low-
level techniques are equivalent to those obtained by combining
such techniques with our high-level techniques. Under the
significance level α at 0.05, the null hypothesis is rejected. The
Nemenyi posthoc test is then applied. The critical difference
diagram is shown by Fig. 4 and indicates that the F1 results
obtained by the high-level techniques outperform the F1 results
obtained exclusively by the low-level techniques, regardless
of the graph construction method adopted by the high-level
technique.

TABLE V: Comparative performance among widely used ML
techniques and our high-level classification in terms of ML F1-
weighted. “LL. Alg.” denotes the low-level algorithms, ”LL.
Base” the base classifiers, “HL. Graph” the graph construction
in the high-level framework. Best local results are underlined
and best global results are boldfaced.

LL LL HL Datasets

Alg. Base Graph Birds Emotions Scene Yeast

BR NB - 13.0 62.1 56.2 57.8
BR NB kNN 27.9 63.6 66.8 56.5
BR NB kNN+εN 24.6 60.8 66.7 56.5
BR NB S-kNN 21.7 63.4 66.6 55.4
BR NB S-kNN+εN 21.7 64.2 66.6 55.4
BR NB D-kNN 27.9 61.9 66.8 56.9

CC NB - 13.0 62.5 51.7 56.8
CC NB kNN 21.7 64.1 61.3 56.1
CC NB kNN+εN 24.6 60.0 60.1 54.4
CC NB S-kNN 21.7 63.8 61.2 56.1
CC NB S-kNN+εN 21.7 64.1 61.3 56.1
CC NB D-kNN 27.9 63.2 60.8 54.7

BR RF - 25.5 59.0 67.4 55.4
BR RF kNN 49.7 60.6 75.3 73.7
BR RF kNN+εN 55.2 66.4 74.9 73.4
BR RF S-kNN 53.4 65.1 74.8 73.5
BR RF S-kNN+εN 52.9 66.9 74.0 73.1
BR RF D-kNN 55.9 65.7 74.1 73.8

CC RF - 24.4 59.6 68.3 56.7
CC RF kNN 49.7 65.6 76.3 73.0
CC RF kNN +εN 52.5 65.8 75.3 73.6
CC RF S-kNN 53.5 64.2 75.6 73.1
CC RF S-kNN+εN 53.6 64.1 73.8 72.8
CC RF D-kNN 56.1 65.9 74.4 73.2

BR SVM - 35.9 65.4 74.7 60.2
BR SVM kNN 45.2 68.3 75.9 73.2
BR SVM kNN+εN 47.7 69.5 75.9 72.8
BR SVM S-kNN 47.3 67.6 75.9 72.8
BR SVM S-kNN+εN 47.3 67.3 76.0 72.8
BR SVM D-kNN 46.3 68.1 75.9 73.2

CC SVM - 35.9 65.6 74.0 59.2
CC SVM kNN 45.0 69.3 76.0 70.5
CC SVM kNN+εN 47.7 69.3 76.0 70.5
CC SVM S-kNN 47.2 68.7 75.9 71.3
CC SVM S-kNN+εN 47.2 68.7 75.9 71.3
CC SVM D-kNN 46.0 68.2 76.0 71.3

MLkNN - - 12.6 60.4 72.7 58.2
MLkNN - kNN 20.5 64.2 72.1 66.5
MLkNN - kNN+εN 27.1 64.4 72.2 66.3
MLkNN - S-kNN 31.6 63.3 72.5 66.0
MLkNN - S-kNN+εN 31.6 63.4 72.5 65.9
MLkNN - D-kNN 27.6 64.1 72.1 66.0

Fig. 4: Critical difference diagram related to the F1-weighted
results presented in Table V.
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D. Discussion

In this section, we evaluated the contribution of our high-
level technique in relation to traditional multi-label ones. The
experiments were performed on real-world data sets and their
results were analyzed in terms of three multi-label metrics:
accuracy, subset accuracy and F1-weighted. For every metric,
a statistical test was calculated over the results to support our
discussion. Such tests revealed, with a confidence level at 95%,
that the classification provided by the combination between
high-level and traditional techniques outperform that provided
exclusively by traditional techniques when considering accu-
racy and F1 metrics. This is an exciting result, especially if we
consider that the traditional techniques had their parameters
rigorously tuned. Thus, even an small improvement is very
difficult to achieve. However, differently from the existing
multi-label techniques, ours is able to consider not only the
physical attributes, but also the topological structure of the
data, which may explain such results.

Another point is that despite the high-level technique has
a considerable number of parameters (k, ε, λ and τ ), the
selection of such parameters, which took into account only
the training data, is uncomplicated. In addition, the predictive
performance of such a technique could also be improved by
selecting other complex network measures and also by tuning
their weights, which have not been considered in this paper.

V. CONCLUSION

The framework presented in this work is a new kind of
multi-label technique able to consider both physical and topo-
logical properties of the input data through of the combination
between low-level and high-level associations. In the low-level
classification, which is focused on the physical features of
the data, the prediction probabilities of any traditional MLL
technique can be adopted. In the high-level classification,
which analyzes structural and topological features of the
data, the prediction probabilities are generated by a set of
complex networks measures, which is responsible to verify the
compliance of a given test item with the patterns associated
to each network (class label).

The HL classifier is composed by two major steps: graph
construction and network measures analysis. In the graph
construction step, our investigation contributed with the design
of four MLL graph construction methods. In the network
measures analysis step, our main contribution was related to
the experimental setup, which evidenced a favorable scenario
for model evaluation and parameter selection. In addition,
experiments conducted on artificial and real-world data sets
highlighted the salient features of our MLL-HL framework.
Moreover, statistical tests attested its good predictive perfor-
mance in comparison with traditional MLL techniques like
BR, CC and MLkNN, indicating that our framework may
improve their predictive performance.

In a future work, we expect to consider more data sets
and also evaluate other complex network measures. We also
intend to investigate MLL techniques based on other concepts

derived from complex networks, such as characterization of
importance [12] or ease of access [21].
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