
LSHWE: Improving Similarity-Based Word
Embedding with Locality Sensitive Hashing for

Cyberbullying Detection
Zehua Zhao∗, Min Gao∗, Fengji Luo†, Yi Zhang∗ and Qingyu Xiong∗

∗School of Big Data and Software Engineering
Chongqing University, Chongqing, China

zhzhao@cqu.edu.cn, gaomin@cqu.edu.cn, cquzhangyi@cqu.edu.cn, xiong03@cqu.edu.cn
†School of Civil Engineering

The University of Sydney, Sydney, Australia
fengji.luo@sydney.edu.au

Abstract—Word embedding methods use low-dimensional vec-
tors to represent words in the corpus. Such low-dimensional
vectors can capture lexical semantics and greatly improve the
cyberbullying detection performance. However, existing word
embedding methods have a major limitation in cyberbullying
detection task: they cannot represent well on “deliberately
obfuscated words”, which are used by users to replace bullying
words in order to evade detection. These deliberately obfuscated
words are often regarded as “rare words” with a little contextual
information and are removed during preprocessing. In this paper,
we propose a word embedding method called LSHWE to solve
this limitation, which is based on an idea that deliberately
obfuscated words have a high context similarity with their
corresponding bullying words. LSHWE has two steps: firstly,
it generates the nearest neighbor matrix according to the co-
occurrence matrix and the nearest neighbor list obtained by
Locality Sensitive Hashing (LSH); secondly, it uses an LSH-based
autoencoder to learn word representations based on these two
matrices. Especially, the reconstructed nearest neighbor matrix
generated by the LSH-based autoencoder is used to make the
representations of deliberately obfuscated words close to their
corresponding bullying words. In order to improve the algorithm
efficiency, LSHWE uses LSH to generate the nearest neighbor
list and the reconstructed nearest neighbor list. Empirical ex-
periments prove the effectiveness of LSHWE in cyberbullying
detection, particularly on the “deliberately obfuscated words”
problem. Moreover, LSHWE is highly efficient, it can represent
tens of thousands of words in a few minutes on a typical single
machine.

Index Terms—Word Embedding, Locality Sensitive Hashing,
Cyberbullying Detection

I. INTRODUCTION

While the development of the Internet has brought con-
venience to people, it has also brought a series of negative
effects, cyberbullying is one of them. Cyberbullying refers to
a kind of bullying that takes place over digital devices like cell
phones, computers, and tablets. It can be launched through a
variety of media, such as textual messages, online forums,
electronic games, etc. [1].

Compared with traditional bullying, cyberbullying can
spread more widely and rapidly by virtue of the characteristics
of the network. Ditchthelabel and Habbo Hotel [2] surveyed

10,008 teenagers aged 13-22 years old and found cyberbully-
ing had caused serious negative effect on adolescents: 37% of
these teenagers had experienced cyberbullying on a frequent
basis. Therefore, cyberbullying detection has become a hot
topic in recent years, aiming at reducing the negative impact
of cyberbullying on society, especially adolescents.

Cyberbullying detection methods can be divided into two
categories, textual-based detection methods and multimodal-
based detection methods. Textual-based detection methods
only use textual information to detect cyberbullying events.
Most of these methods are based on dictionaries, using
special words (e.g. slangs and emotional keywords) as fea-
tures [3]–[6]. Compared with textual-based detection methods,
multimodal-based detection methods incorporate additional
information (e.g. time and geographical information) to restore
the environment in which the cyberbullying events occur to
improve the detection performance [7]–[10].

However, whether textual-based detection methods or
multimodal-based detection methods, text representation learn-
ing is the core of cyberbullying detection task. Recently,
many studies use word embedding methods to learn text
representations and perform cyberbullying detection based
on that [11]–[13]. Word embeddings are real-valued word
representations able to capture lexical semantics and trained
on natural language corpora [14].

There is one major limitation in existing work. In cy-
berbullying events, users could artificially obfuscate some
bullying words (such as “fxxk” and “fcukk” in Fig. 1) in
order to evade detection. These words are called “deliberately
obfuscated words” [15] and are often regarded as “rare words”
which have a little contextual information. Existing word
embedding methods usually remove these rare words during
preprocessing, but these rare bullying words are the core of
cyberbullying detection task and should not be removed.

Inspired by “ ‘Deliberately obfuscated words’ have a
high context similarity with their corresponding bullying
words”, we design a similarity-based word embedding
method LSHWE (Locality Sensitive Hashing-based Word

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

fxxk fcukk

shit unfortunately

you kiddingbehavior

victim

Fig. 1. Example of Deliberately Obfuscated Words.

Embedding) aiming at solving the “deliberately obfuscated
words” problem in cyberbullying detection task. The represen-
tations of those “deliberately obfuscated words” learnt through
LSHWE could be as close as possible to their corresponding
bullying words’ representations, which can effectively improve
the cyberbullying detection performance. Our contributions
can be summarized as follows:
• To propose a new word embedding method “LSHWE”

that can effectively represent deliberately obfuscated
words in cyberbullying events. The proposed method
uses a Nearest Neighbor Search (NN) method to identify
words which have a high context similarity with the
rare words. Based on this, an autoencoder model is used
to learn words’ representations. Experiments show that
LSHWE can alleviate the “obfuscated bullying words”
problem.

• Locality Sensitive Hashing is used to search the nearest
neighbors for each rare word to improve the algorithm ef-
ficiency. Experiments demonstrate that LSH-based word
embedding method can greatly improve the computa-
tional efficiency of text representation learning, especially
on large-scale datasets.

II. RELATED WORK

This section gives a brief review on the researches related
to this study, which can be generally categorized as below.

A. Text Representation Learning

Text representation learning is the core task in both textual-
based cyberbullying detection methods and multimodal-based
cyberbullying detection methods.

Bag-of-Words (BoW) model is a basic text representation
model that uses a binary vector to represent each text in
a corpus. The vector’s dimension is the size of the corpus;
each element in the vector represents one word. Although
BoW model is easy to implement, it shows limitations on
extracting latent features of the text; moreover, the sparsity of
the binary vectors generated by BoW makes them inefficient
in many applications. N-grams is another widely used text rep-
resentation method [16]. It is a type of probabilistic language
model and can predict the next item through a (n− 1)-order
Markov sequence. N-grams model can effectively represent
the semantic association between words, but with the increase

of n, it will face the “Curse of Dimensionality” problem.
While both BoW and N-gram are learning representation from
unstructured text, there is also attempt learning representation
leveraging both unstructured text and structured data (i.e.,
linked data) [17], [18].

In recent years, many neural network-based word embed-
ding methods [19] have been proposed, providing a new way
for text representation learning. These methods efficiently
calculate the semantic association between words and gen-
erate low-dimensional vectors to represent the words [20].
Word2vec [21] is a typical word embedding method, which
has two models: Continuous Bag-of-Words (CBOW) and Skip-
gram. CBOW learns word representations through predicting
the target word according to its contextual words, while Skip-
gram predicts a known target word’s contextual words. In
2014, Pennington et al. [22] proposed another famous word
embedding method “GloVe”. Different from Word2vec that
only uses the information obtained from a local context win-
dow, GloVe extracts the corpus’s global statistic information
based on the global co-occurrence matrix. Recently, more
and more Transformer-based language models are proposed.
For example, Bert [23] could learn words’ features from
both forward and backward, and experiments show that it
outperforms in many tasks.

Word embedding methods have achieved great performance
in many tasks, such as sequence modelling [24] and metaphor
processing [25]. However, the removal of rare words in pre-
processing procedure makes most of them have a limitation
on solving the “deliberately obfuscated words” problem in
cyberbullying detection task.

B. Nearest Neighbor Search

Nearest neighbor search is to find the items in a dataset
which are similar with the target item. There are two types
of nearest neighbor search methods: Exact Nearest Neighbor
Search (Exact NN) methods and Approximate Nearest Neigh-
bor Search (ANN) methods. Although Exact NN methods can
get an exact search result, they are only suitable for small
datasets with low dimension. For massive datasets with high
dimension, these methods will have an exponential complexity.

To improve the computational efficiency of Exact NN meth-
ods, some researchers proposed the ANN methods. Generally,
ANN methods can be defined as “Given a set S of n points in
a d-dimensional space Rd, construct a data structure which
given any query point q ∈ Rd, reports any point within
distance at most c times the distance from q top, where p
is the point in S closest to q” [26]. One method to construct
such data structure is via oblivious dimension-reduction. It
firstly performs dimension reduction on the ANN’s input
vectors, and then searches for the nearest neighbors in the
dimension reduced vectors. While such dimension reduction
yields data structures with the polynomial space complexity,
it still can hardly to be applied in real-world applications,
in which the solution’s space complexity is desired to have
a linear relationship with the number of input vectors [27].
To achieve this, some researchers proposed another type of

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

ANN method based on randomized space partitions, which
is to project the input vectors into a random subspace while
performs dimension reduction [28].

In this paper, we use a typical randomized space partitions-
based ANN method called “Locality Sensitive Hashing (LSH)”
to search the nearest neighbors for each rare word.

III. LSHWE: IMPROVING SIMILARITY-BASED WORD
EMBEDDING WITH LOCALITY SENSITIVE HASHING

In this section, we give a description of the new word
embedding method that we proposed.

A. Framework of LSHWE

Given a corpus S consisting m short sentences. The corpus’s
size is n, i.e. the total number of words in the m short
sentences. Assuming there are r rare words in the corpus,
where a word is identified to be a rare word if its occurrence
frequency in the corpus is less than a threshold b. LSHWE
maps each word in S to a low-dimensional vector, which could
subsequentially be used in cyberbullying detecting.

!"#$%&

!"'"((%##)*()

+,-#./

0,#) 1"#2 3.&-

!"#$%&'()*+,&'&-*.$,/&+0
4),#)&- 4).567"#

+,-#./

4),#)&-

4).567"# 3.&-

Fig. 2. Step (1) in LSHWE: Generation of Nearest Neighbor Matrix.

LSHWE has two steps: (1) it generates a nearest neighbor
matrix; and (2) it uses an autoencoder model to learn word
representations.

For step (1), as shown in Fig. 2, LSHWE generates a co-
occurrence matrix C ∈ Rn×n and a rare word list R ∈ Rr

according to the given corpus S firstly. Note that Cij represents
the frequency of word i co-occurring with word j, and Ci =∑n

j=1 Cij is the total number of occurrences of word i in
corpus. Secondly, locality sensitive hashing is used to generate
a nearest neighbor list NL ∈ Rr×k based on C and R. Note
that NLij represents the jth neighbor of rare word Ri and k is
a pre-defined parameter represents the top-k nearest neighbors.
Finally, a nearest neighbor matrix N ∈ Rr×k is generated
using the following equation:

Nij = dist(CRi , CNLij), (1)

where dist(a, b) is a distance function.
For step (2), as shown in Fig. 3, an LSH-based autoencoder

model is used to learn each word’s representation. The LSH-
based autoencoder model contains two parts: an encoder and
a decoder. LSHWE uses two two-layer full-connection neural
network as encoder and decoder, respectively. The input of
the encoder is the co-occurrence matrix C and the output
is latent word vectors L ∈ Rn×d, where d is a pre-defined
parameter represents the dimension of word vectors. The input

!"#"$$%&&'($'

)*+&,-

.'*&'/+ .',012"&

)*+&,-

!

!

!

!

!

!

!

!

!

!

!

!

3*+'(+ 4"&5

6'$+"&/

7'$"(/+&%$+'5

.'*&'/+ .',012"&

)*+&,-

7'$"(/+&%$+'5

!"#"$$%&&'($'

)*+&,-!"#$%&' (&#$%&')$#*+,-./&"0,-,1&2*03,"4
7*&'

4"&5 3,/+

7'$"(/+&%$+'5

.'*&'/+ .',012"&

3,/+

Fig. 3. Step2 in LSHWE: Autoencoder-Based Word Representation Learning.

of the decoder is the latent word vectors and the output is a
reconstructed co-occurrence matrix Ĉ ∈ Rn×n.

Different from the traditional autoencoder model, LSHWE
generates a reconstructed nearest neighbor matrix. Firstly, for
the latent word vectors L and rare word list R, locality sensi-
tive hashing is used again to generate a reconstructed nearest
neighbor list N̂L ∈ Rr×k. Then, LSH-based autoencoder
generates a reconstructed nearest neighbor matrix N̂ ∈ Rr×k

according to Eq. 2:

N̂ij =

{
dist(LRi

, L ˆNLij
), if ˆNLij = NLij

−1, otherwise
, (2)

where dist(a, b) is the distance function in Eq. 1.
Finally, a new cost function of autoencoder model is defined

to make the representations of those rare words as close as
possible to the representations of their corresponding words:

min((C − Ĉ)2 + (N − N̂)2). (3)

B. Nearest Neighbor Search Strategy

As shown in Fig. 2 and Fig. 3 , LSHWE uses locality
sensitive hashing twice to generate the nearest neighbor list
and the reconstructed nearest neighbor list, respectively.

Locality sensitive hashing is an approximate nearest neigh-
bor search method, which is based on a simple idea that if
two points are close with each other, then after a “projection”
operation, these two points will remain close with each other. It
has two steps. Firstly, since locality sensitive hashing is based
on randomized space partitions, it uses a family F of hash
functions [29] to perform dimension reduction and divide the
inputs into “buckets” at the same time. Secondly, it searches
the nearest neighbors in the “buckets” that have the target item.

In order to ensure that there is a high probability to have
similar inputs be put into the same “bucket”, the family F
of hash functions needs to meet the following requirements:
Given four parameters r1 > r2 and p1 > p2, a family F
is said to be (r1, r2, p1, p2)-sensitive for a similarity measure
sim(x, y) if Prh∈F [h(x) = h(y)] ≥ p1 when sim(x, y) ≥ r1
and Prh∈F [h(x) = h(y)] ≤ p2 when sim(x, y) ≤ r2 [28].

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

In this paper, we use the random hyperplane technique
[30] to approximate the cosine distance between input vectors.
Previous research found that random hyperplane technique can
gives a family of hash functions F [29].

IV. EXPERIMENTS

In this section, we empirically evaluated LSHWE from three
aspects: effectiveness of LSHWE on cyberbullying detection
task, algorithm efficiency and parameter sensitivity.

A. Experiment Setup

We use three datasets to validate LSHWE, as shown in
Table I. Those datasets are randomly sampled from a Twitter
dataset [31]. The parameter of rare words is set to be 2, i.e.
b = 2.

TABLE I
DETAILED INFORMATION OF THE DATASETS

Dataset1 Dataset2 Dataset3
Number of Tweets 4,000 6,000 8,000

Number of Bullying Tweets 800 1,200 1,600
Size of Corpus 7,928 10,087 11,876

Number of Rare Words 4,775 5,963 6,803
Rare Word Rate 60.23% 59.12% 57.28%

Before learning the representations of each word, we do a
data preprocessing procedure to normalize its content, which
includes the removal of: (a) all non-alphanumeric characters;
(b) Web links; (c) stop words according to the default stop
words corpus in the Natural Language Toolkit (NLTK). Then,
we apply stemming action to reduce the word inflection.

The proposed word embedding method is implemented us-
ing TensorFlow. We use a 5-fold cross-validation for learning
and testing. In each trial, we randomly select 80% of the data
as the training dataset and use the rest as the testing dataset.
Four metrics are used to measure the quality of the results,
i.e. precision, recall, F1 score and running time.

All the experiments are executed on a personal computer
with macOS Mojave, 2.5GHz Intel Core i7, and 16-GB
memory.

B. Effectiveness of LSHWE on Cyberbullying Detection Task

We design an experiment to investigate the effectiveness
of LSHWE in cyberbullying detection task. The methods we
compared are three state-of-the-art word embedding methods:
(a) GloVe [22], which uses a global log-bilinear regression
model to unsupervised word representation learning and can
extract the global statistic information; (b) Word2vec [21],
which has two models: CBOW and Skip-gram, the authors’
note [32] shows that CBOW is faster while Skip-Gram can
achieve better representations for rare words; and (c) SSWE
[33], which encodes sentiment information in the representa-
tion of words to solve the sentiment classification problem.

Fig. 4 compares the cyberbullying detection performance
(i.e. F1 score) with different embedding methods on three
datasets. The architecture of cyberbullying detector is shown
in Fig. 5, we choose Long Short-Term Memory (LSTM) as

!"#$

!"#%

!"#&

!"#'

!"#(

!"#)

!"#*

!"##

!"#+

,-.-/0.$,-.-/0.% ,-.-/0.&

1
$
2
3
4
50

67480 229: 945;%<03 =2>9:

Fig. 4. Effect of Different Word Embedding Methods on Three Datasets.

!"#$%

&'()*

+,-)../"0

&'()*

1*2#2$%

&'()*
&345

1)"6)

&'()*

7$%#$%

&'()*

Fig. 5. The Architecture of Cyberbullying Detector.

the detector and the dropout rate is 0.2. From Fig. 4, we find
that the detection performance of these three datasets shows an
increasing trend. This may be because the detector can capture
more latent features with the increase of the number of tweets,
and those latent features can improve the detection accuracy.

Especially, LSHWE performs the best on all datasets, fol-
lowed by Word2vec, SSWE and GloVe. Besides, with the
increase of the rare word rate, the detection performance gaps
between LSHWE and the other methods become more and
more obvious. This demonstrates that LSHWE can alleviate
“deliberately obfuscated words” problem.

Since Fig. 4 only considers the case when the detector is
LSTM, we design a new experiment to explore the detection
performance of different word embedding methods when using
different detectors. We choose seven detectors that are often
used in cyberbullying detection task, including four machine
learning-based cyberbullying detectors: Support Vector Ma-
chine (SVM), Naive Bayes (NB), Logistic Regression (LR),
and Random Forest (RF); and three deep learning-based
cyberbullying detectors: Long Short-Term Memory (LSTM),
Bidirectional LSTM (BLSTM) and Bidirectional LSTM with
attention (BLSTM att). Note that the architectures of those
three deep learning-based cyberbullying detectors are the same
(as shown in Fig. 5), but it uses BLSMT or BLSTM att instead
of LSTM. Take dataset1 as an example, the results are shown
in Fig. 6.

We find that LSHWE achieves the best detection result
on most of these detectors. Only when using Support Vector
Machine and Random Forest as the detector, the F1 score of
Word2vec is slightly better than that of LSHWE. This further
proves the effectiveness of LSHWE on cyberbullying detection

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

!"#

!"#$

!"%

!"%$

!"&

!"&$

'() *+ ,- -. ,'/) +,'/) +,'/)0122

.
3
'
45
67

895(7 '':; :56<=>74 ,'?:;

Fig. 6. Effect of Different Word Embedding Methods on Different Cyberbullying Detectors.

task.

!

"!!

#!!

$!!

%!!

&!!!

&"!!

&#!!

'!! &!!! &'!! "!!! "'!! (!!!

)
*
+
+
,+
-
.
,/
0
12
03
4
+
5
6

7*/809 4:);90 <495=

>?;3@77<>

A2B<>

Fig. 7. Running Time of Two Similarity-Based Word Embedding Methods
with Different Nearest Neighbor Search Strategy.

C. Efficiency of LSHWE

As we mentioned earlier, the reason for using locality
sensitive hashing to search the nearest neighbors for each rare
word is to improve the algorithm efficiency. So we design an
experiment to verify the efficiency of LSHWE.

Exact NN-based word embedding method (ExactNNWE) is
also a similarity-based word embedding method which has the
same framework with LSHWE, except it uses the exact nearest
neighbor search method to search the nearest neighbors instead
of locality sensitive hashing.

Fig. 7 shows the running time (second) of these two
similarity-based word embedding methods. Cosine Similarity
is used as the distance function in these two word embedding

methods. The dimension of the latent word vector and the
number of nearest neighbors are set to be 25 and 4, respec-
tively. We find the running time of ExactNNWE is far more
than that of LSHWE when increasing the number of rare
words, e.g. when the number of rare words reaches 3000,
LSHWE takes around two minutes to learn word representa-
tions while ExactNNWE takes ten times longer than LSHWE.
This shows that LSHWE is a highly efficient algorithm which
can deal with large-scale datasets.

D. Parameter Sensitivity

Next, we investigate the detection performance with respect
to four parameters: dimension of the latent word vector d,
distance function, number of nearest neighbors k and hash
size. Take dataset1 as an example, the cyberbullying detector
is LSTM.

1) Dimension of the Latent Word Vector d: Fig. 8 reports
the detection performance using latent word vectors with dif-
ferent dimension. The distance function is Cosine Similarity,
the number of nearest neighbors and the hash size are set to
be 4 and 5, respectively.

As shown in Fig. 8, F1 score increases with the increase
of the latent word vector’s dimension and tends to saturate
once the dimension reaches around 20, where the F1 score
has exceeded 0.85. This means the word vectors generated
by LSHWE can achieve a high detection performance with
a low dimension. Since the increase of the dimension of the
input would result in more parameters in the LSTM detector,
which requires more computation time, LSHWE can improve
the detection efficiency to some extent.

2) Distance Function: We choose three distance functions
which are often used to measure the similarity between two
vectors: Euclidean Distance, Cosine Similarity and Manhattan
Distance. Given two vectors A and B with dimension n, these
distance functions can be described as follows:

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

!"#$

!"%

!"%$

!"&

!"&$

!"'

$ (! ($)!)$ *! *$ +! +$ $!

,
(
-
.
/
01

2341563/5 /7 891 :;8158 </0= >1.8/0

Fig. 8. Detection Performance Using Latent Word Vectors with Different
Dimension.

Euclidean Distance =

√∑n

i=1
(Ai −Bi)2, (4)

Cosine Similarity =

∑n
i=1 AiBi√∑n

i=1 A
2
i

√∑n
i=1 B

2
i

, (5)

Manhattan Distance =
∑n

i=1
|Ai −Bi|. (6)

Table II reports the detection performance (i.e. precision,
recall and F1 score) using different latent word vectors which
are generated according to different distance functions. The
dimension of the latent word vector, the number of nearest
neighbors and the hash size are set to be 25, 4 and 5,
respectively.

We observe that Cosine Similarity-based word embed-
ding method achieves the best results, followed by Eu-
clidean Distance-based word embedding method and Manhat-
tan Distance-based word embedding method. However, since
the computational complexity of Cosine Similarity is higher
than the other two distance functions, the running time of
Cosine Similarity-based word embedding method is also a
little bit longer.

TABLE II
DETECTION PERFORMANCE USING DIFFERENT DISTANCE

FUNCTION-BASED WORD VECTORS

Precision Recall F1 Score
Cosine Similarity-Based 0.8605 0.8653 0.8629Word Vectors

Euclidean Distance-Based 0.8562 0.8551 0.8556Word Vectors
Manhattan Distance-Based 0.8506 0.8435 0.8470Word Vectors

!"#$

!"#%

!"#&

!"#'

!"#(

!"#)

!"#*

$ % & ' () * # +

,
$
-
./
01

234510 /6 2170189 21:;<5/08

Fig. 9. Detection Performance Using Different Top-k Neighbors-Based Word
Vectors.

3) Number of Nearest Neighbors: Fig. 9 shows the detec-
tion performance when using different word vectors which
are generated based on different top-k nearest neighbors. The
distance function is Cosine Similarity, the dimension of the
latent word vector and the hash size are set to be 25 and 5,
respectively.

We observe that increasing the number of nearest neighbors
could improve the detection performance at the beginning,
but F1 score wavers and shows a downward trend after the
number of nearest neighbors reaches 5. This is because those
“rare words” only have a little contextual information, so,
the increase of the number of nearest neighbors would result
in more noise, which consequently decreases the detection
accuracy.

4) Hash Size: The first step in Locality Sensitive Hashing
is using hash functions to map an item or items in multidi-
mensional coordinate space to a scalar value. The hash size
determines the number of planes, which is used to encode
the data points. The more planes, the more buckets, the fewer
items in each bucket.

Fig. 10 shows the detection performance when using differ-
ent hash size-based word vectors in cyberbullying detection.
The distance function is Cosine Similarity, the dimension of
the latent word vector and the number of nearest neighbors
are set to be 25 and 4, respectively.

From Fig. 10, we find that the increment of hash size makes
detection performance increase first, but F1 score turns down
when the hash size reaches 8. This is because that at the
beginning, there are few buckets, and in each bucket, it has
a large number of items, so it has some noise data when
searching for the top-k nearest neighbors. With the increase
of hash size, those noise data gradually decreases. When the
hash size beyond a certain threshold, there will have too many
buckets and some buckets have less than k items in it, so we
cannot find the top-k nearest neighbors for some rare words.

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

!"#$%

!"#$&

!"#$#

!"#$'

!"#%

!"#%(

!"#%)

!"#%*

!"#%+

!"#%$

!"#%%

) * + $ % & # ' (!

,
(
-
.
/
01

2345 -671

Fig. 10. Detection Performance Using Different Hash Size-Based Word
Vectors.

Moreover, the fewer items in the buckets, the less time will
be need to spend on searching for the top-k nearest neighbors.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose a similarity-based word embed-
ding method LSHWE to solve the “deliberately obfuscated
words” problem in cyberbullying detection task. LSHWE has
two steps. Firstly, for a given corpus, it generates: (a) a co-
occurrence matrix C; (b) a rare word list R; (c) a nearest
neighbor list NL obtained by locality sensitive hashing; and
(d) a nearest neighbor matrix N . Secondly, an LSH-based au-
toencoder is used to learn the word vectors according to C and
N . The proposed embedding method has two characteristics:
(1) LSHWE can represent well on rare words. LSHWE is
a global similarity-based word embedding method thus the
representations of rare words learnt through LSHWE can be
as close as possible to their corresponding words’ represen-
tations; and (2) LSHWE is a highly efficient algorithm. This
method uses an approximate nearest neighbor search method
to search the top-k nearest neighbors instead of exact nearest
neighbor search methods, which can greatly reduce the running
time.

We design experiments from three aspects: effectiveness of
LSHWE on cyberbullying detection task, algorithm efficiency
and parameter sensitivity. Experiment results demonstrate that
LSHWE can alleviate the “deliberately obfuscated words”
problem and is highly efficient on large-scale datasets.

Our future work will focus on solving the “deliberately
obfuscated words” problem from other perspectives, such as
morphology. Besides, all rare words are considered as the input
of LSHWE, but not all of them are deliberately obfuscated
words. So we will use a method to extract deliberately ob-
fuscated words among these rare words before learning word
vectors in our future work.

ACKNOWLEDGMENT

This work is supported by the Graduate Scientific Research
and Innovation Foundation of Chongqing (No. CYS19028),
the Technological Innovation and Application Program of
Chongqing (Project No. cstc2018jszx-cyzdX0081) and a Small
Project Grant of China Studies Centre, The University of
Sydney, Australia.

REFERENCES

[1] Stopbullying.gov. (2019) What is cyberbullying? [Online]. Available:
https://www.stopbullying.gov/cyberbullying/what-is-it/index.html

[2] Ditchthelabel. (2014) The annual cyberbullying survey. [Online]. Avail-
able: http://www.ditchthelabel.org/downloads/the-annual-cyberbullying-
survey-2013.pdf

[3] S. Tulkens, L. Hilte, E. Lodewyckx, B. Verhoeven, and W. Daelemans,
“A dictionary-based approach to racism detection in dutch social media,”
arXiv preprint arXiv:1608.08738, 2016.

[4] J. Bayzick, A. Kontostathis, and L. Edwards, “Detecting the presence
of cyberbullying using computer software,” in Proceedings of the 3rd
annual ACM web science conference. Evanston, United States: ACM,
2011.

[5] R. Zhao, A. Zhou, and K. Mao, “Automatic detection of cyberbullying on
social networks based on bullying features,” in Proceedings of the 17th
International Conference on Distributed Computing and Networking.
Singapore, Singapore: ACM, 2016.

[6] K. Radoslaw, P. Michal, R. Rafal, and A. Kenji, “Recognizing and con-
verting cockney rhyming slang for cyberbullying and crime detection,”
in Proceedings of Language Sense on Computers IJCAI 2016 Workshop.
New York, United States: IJCAI, 2016.

[7] G. K. Pitsilis, H. Ramampiaro, and H. Langseth, “Detecting of-
fensive language in tweets using deep learning,” arXiv preprint
arXiv:1801.04433, 2018.

[8] V. K. Singh, Q. Huang, and P. K. Atrey, “Cyberbullying detection
using probabilistic socio-textual information fusion,” in Proceedings of
the 2016 IEEE/ACM International Conference on Advances in Social
Networks Analysis and Mining. San Francisco, United States: IEEE,
2016.

[9] M. Dadvar and A. Niamir, “Adopting maxent to identification of bullying
incidents in social networks,” in Proceedings of the 27th International
Workshop on Database and Expert Systems Applications. Porto,
Portugal: IEEE, 2016.

[10] L. Cheng, J. Li, Y. N. Silva, D. L. Hall, and H. Liu, “Xbully:
Cyberbullying detection within a multi-modal context,” in Proceedings
of the 12th ACM International Conference on Web Search and Data
Mining. Melbourne, Australia: ACM, 2019.

[11] B. Gambäck and U. K. Sikdar, “Using convolutional neural networks
to classify hate-speech,” in Proceedings of the 1st workshop on abusive
language online. Vancouver, Canada: ACL Anthology, 2017.

[12] A.-M. Founta, D. Chatzakou, N. Kourtellis, J. Blackburn, A. Vakali, and
I. Leontiadis, “A unified deep learning architecture for abuse detection,”
arXiv preprint arXiv:1802.00385, 2018.

[13] P. Badjatiya, S. Gupta, M. Gupta, and V. Varma, “Deep learning for
hate speech detection in tweets,” in Proceedings of the 26th Interna-
tional Conference on World Wide Web Companion. Perth, Australia:
International World Wide Web Conferences Steering Committee, 2017.

[14] A. Bakarov, “A survey of word embeddings evaluation methods,” arXiv
preprint arXiv:1801.09536, 2018.

[15] C. Nobata, J. Tetreault, A. Thomas, Y. Mehdad, and Y. Chang, “Abusive
language detection in online user content,” in Proceedings of the 25th
international conference on world wide web. Montreal, Canada:
International World Wide Web Conferences Steering Committee, 2016.

[16] A. Schmidt and M. Wiegand, “A survey on hate speech detection using
natural language processing,” in Proceedings of the 5th International
Workshop on Natural Language Processing for Social Media. Valencia,
Spain: ACL Anthology, 2017.

[17] C. Lin, D. Liu, W. Pang, and Z. Wang, “Sherlock: A semi-automatic
framework for quiz generation using a hybrid semantic similarity mea-
sure,” Cognitive computation, vol. 7, no. 6, pp. 667–679, 2015.

[18] D. Liu and C. Lin, “Sherlock: a semi-automatic quiz generation system
using linked data.” in International Semantic Web Conference (Posters
& Demos). Riva del Garda, Italy: Citeseer, 2014.

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

[19] P. Wang, Y. Qian, F. K. Soong, L. He, and H. Zhao, “Word embedding
for recurrent neural network based tts synthesis,” in Proceedings of the
2015 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). South Brisbane, Australia: IEEE, 2015.

[20] S. Wang, W. Zhou, and C. Jiang, “A survey of word embeddings based
on deep learning,” Computing, vol. 102, no. 3, pp. 717–740, 2020.

[21] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” arXiv preprint arXiv:1301.3781,
2013.

[22] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation,” in Proceedings of the 19th Conference on
Empirical Methods in Natural Language Processing. Doha, Qatar:
ACL Anthology, 2014.

[23] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-
training of deep bidirectional transformers for language understanding,”
in Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies. Minneapolis, Minnesota: ACL Anthology, 2019.

[24] R. Li, C. Lin, M. Collinson, X. Li, and G. Chen, “A dual-attention
hierarchical recurrent neural network for dialogue act classification,”
in Proceedings of the 23rd Conference on Computational Natural
Language Learning (CoNLL). Hong Kong: ACL Anthology, 2019.

[25] R. Mao, C. Lin, and F. Guerin, “Word embedding and wordnet based
metaphor identification and interpretation,” in Proceedings of the 56th
Annual Meeting of the Association for Computational Linguistics (Vol-
ume 1: Long Papers). Melbourne, Australia: ACL Anthology, 2018.

[26] M. R. Abbasifard, B. Ghahremani, and H. Naderi, “A survey on
nearest neighbor search methods,” International Journal of Computer
Applications, vol. 95, no. 25, pp. 39–52, 2014.

[27] A. Andoni, P. Indyk, and I. Razenshteyn, “Approximate nearest neighbor
search in high dimensions,” arXiv preprint arXiv:1806.09823, 2018.

[28] P. Indyk and R. Motwani, “Approximate nearest neighbors: towards
removing the curse of dimensionality,” in Proceedings of the 30th annual
ACM symposium on Theory of computing. Dallas, United States: ACM,
1998.

[29] M. S. Charikar, “Similarity estimation techniques from rounding algo-
rithms,” in Proceedings of the 34th annual ACM symposium on Theory
of computing. Montreal, Canada: ACM, 2002.

[30] A. Andoni and P. Indyk, “Near-optimal hashing algorithms for approx-
imate nearest neighbor in high dimensions,” in Proceedings of the 47th
annual IEEE symposium on foundations of computer science. Berkeley,
United States: IEEE, 2006.

[31] Z. Waseem and D. Hovy, “Hateful symbols or hateful people? predictive
features for hate speech detection on twitter,” in Proceedings of the
NAACL student research workshop. San Diego, United States: ACL
Anthology, 2016.

[32] code.google.com. (2013) word2vec. [Online]. Available:
https://code.google.com/archive/p/word2vec/

[33] D. Tang, F. Wei, N. Yang, M. Zhou, T. Liu, and B. Qin, “Learning
sentiment-specific word embedding for twitter sentiment classification,”
in Proceedings of the 52nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers). Baltimore, United
States: ACL Anthology, 2014.

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

