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Abstract—In reinforcement learning (RL), agents often operate
in partially observed and uncertain environments. Model-based
RL suggests that this is best achieved by learning and exploiting
a probabilistic model of the world. ‘Active inference’ is an
emerging normative framework in cognitive and computational
neuroscience that offers a unifying account of how biological
agents achieve this. On this framework, inference, learning
and action emerge from a single imperative to maximize the
Bayesian evidence for a niched model of the world. However,
implementations of this process have thus far been restricted
to low-dimensional and idealized situations. Here, we present a
working implementation of active inference that applies to high-
dimensional tasks, with proof-of-principle results demonstrating
efficient exploration and an order of magnitude increase in
sample efficiency over strong model-free baselines. Our results
demonstrate the feasibility of applying active inference at scale
and highlight the operational homologies between active inference
and current model-based approaches to RL.

Index Terms—Active inference, model-based reinforcement
learning, generative models, active learning

I. INTRODUCTION

In model-based reinforcement learning (RL), agents first
learn a predictive model of the world, before using this model
to determine actions [1]. Encoding a model of the world
plausibly affords several advantages. For instance, such models
can be used to perform perceptual inference [2], implement
prospective control [3], [4], quantify and resolve uncertainty
[5], and generalize existing knowledge to new tasks and
environments [6]. As such, the use of predictive models has
been touted as a potential solution to the sample inefficiencies
of modern RL algorithms [7], [8].

At the same time, the theoretical framework of active infer-
ence has emerged in cognitive and computational neuroscience
as a unifying account of perception, action, and learning [9],
[10]. Active inference suggests that biological systems learn
a probabilistic model of their habitable environment and that
the states of the system change to maximize the evidence for
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this model [11], [12]. The resulting scheme casts perception,
action and learning as emergent processes of (approximate)
Bayesian inference, thereby offering a potentially unifying
theory of adaptive biological systems. Despite its strong the-
oretical foundations, existing computational implementations
have been restricted to low-dimensional tasks, often with
discrete state spaces and actions [10], [11], [13]–[15]. Here,
we establish a formal connection between active inference and
model-based RL. In doing so, we extend practical implementa-
tions of active inference so that they work effectively at scale,
and we situate model-based RL within the broad theoretical
context offered by active inference.

We present a model of active inference that is applicable
in high-dimensional control tasks with both continuous states
and actions. Our model builds upon previous attempts to
scale active inference [16]–[18], [32] by including an efficient
planning algorithm, as well as the quantification and active
resolution of model uncertainty. Consistent with the active
inference framework, learning and inference are achieved by
maximizing single lower bound on Bayesian model evidence,
and policies are selected to maximize a lower bound on
expected Bayesian model evidence [11]. We demonstrate
that this unified normative scheme enables sample efficient
learning, strong performance on difficult control tasks, and a
principled approach to active exploration. Moreover, we es-
tablish homologies between our active inference based model
and state-of-the-art approaches to model-based RL.

In what follows, we specify the general mathematical for-
mulation of active inference, before describing our implemen-
tation, which is applicable in both partially-observed and fully-
observed environments. We then present preliminary results
in three challenging fully-observed continuous control bench-
marks, leaving the analysis of partially-observed environments
(i.e. pixels) to future work. These results demonstrate that
our algorithm facilitates active exploration over long temporal
horizons and significantly outperforms a strong model-free RL
baseline, in terms of both sample efficiency and performance.

II. ACTIVE INFERENCE

Following previous work [10], [11], we consider active
inference in the context of a partially observed Markov
decision process (POMPD). At each time step t, the true
state of the environment ŝt ∈ Rdŝ evolves according to the
stochastic transition dynamics ŝt ∼ p(ŝt|ŝt−1, at−1), where
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a ∈ Rda denotes an agent’s actions. Agents do not always
have access to the true state of the environment, but might
instead receive observations ot ∈ Rdo , which are generated
according to ot ∼ p(ot|ŝt). As such, agents must operate on
beliefs st ∈ Rds about the true state of the environment ŝt.
In what follows, we denote the true dynamics with upright
letters p(·) and a model of these dynamics (the agent) with
italics p(·).

Active inference proposes that agents implement and update
a generative model of their world p(õ, s̃, π, θ), where the
tilde notation denotes a sequence of variables through time
x̃ = {x0, ..., xT }, π denotes a policy, π = {a0, ..., aT }, and
θ ∈ Θ denotes parameters of the generative model, which are
themselves random variables. Additionally, agents maintain
a recognition distribution q(s̃, π, θ), representing an agent’s
(approximately optimal) beliefs over states s̃, policies π and
model parameters θ.

As new observations are sampled, agents update the param-
eters of their recognition distribution to minimize variational
free energy F :

F(õ) = Eq(s̃,π,θ)[ln q(s̃, π, θ)− ln p(õ, s̃, π, θ)]

≥ − ln p(õ)
(1)

This makes the recognition distribution q(s̃, π, θ) converge
towards an approximation of the (intractable) posterior distri-
bution p(s̃, π, θ|õ), thereby implementing a tractable form of
(approximate) Bayesian inference [19].

Crucially, active inference also proposes that an agent’s
goals and desires are encoded in the generative model as prior
preferences for favourable observations [12], [20], i.e. blood
temperature at 37 degrees. Free energy then provides a proxy
for how surprising (i.e., unlikely) some observations are under
the agent’s model. While minimising (1) provides an estimate
for how surprising some observations are, it cannot reduce this
quantity directly. To achieve this, agents must change their
observations through action. Acting to minimise variational
free energy ensures the minimisation of surprisal − ln p(õ),
or the maximisation of the (Bayesian) model evidence p(õ),
since free energy provides an upper bound on surprisal. Active
inference, therefore, proposes that agent’s select policies in
order to minimize expected free energy G [12], [33], where
the expected free energy for a given policy π at some future
time τ is:

G(π, τ) = Eq(oτ ,sτ ,θ|π)[ln q(sτ , θ|π)− ln p(oτ , sτ , θ|π)] (2)

Expected free energy can be decomposed into extrinsic value,
which quantifies the degree to which expected observations
are congruent with an agent’s prior beliefs, and intrinsic
value, which quantifies the amount of information an agent
expects to gain from enacting some policy [10], [11], [13].
This decomposition affords a natural interpretation: to avoid
being surprised, one should sample unsurprising data, but also
learn about the world to make data less surprising per se.
Selecting policies that minimize (2) will, therefore, ensure that
probable (i.e. favourable, given an agent’s normative priors)

observations are preferentially sampled, while also ensuring
that agents gather information about their environment.

III. MODEL

In cognitive and computational neuroscience, implementa-
tions of active inference agents generally follow one of two ap-
proaches. The first considers the generative model and recogni-
tion distribution to be Gaussian under the Laplace approxima-
tion and prescribes gradient-descent updates that recurrently
minimize free energy with each new observation [20]–[22].
While this approach is purported as biologically plausible and
enjoys empirical support under the guise of predictive coding
[21], [23], it is not clear how, or at least not straightforward,
to extend this implementation to the prospective free energy
minimization discussed in section II. The second approach
employs discrete distributions (e.g., Categorical, Dirichlet)
that are updated via variational message-passing [11]. While
this approach provides an elegant framework for evaluating
expected free energy, it can only be applied in discrete state
and action spaces, meaning it is not directly applicable to the
high-dimensional states and continuous actions considered in
RL benchmarks.

In the current paper, we take an alternative approach and
employ amortized inference [24], which utilizes function
approximators (i.e., neural networks) to parameterize dis-
tributions. Free energy is then minimized with respect to
the parameters of the function approximators, and not the
variational parameters themselves. We detail our generative
model and recognition distribution in section III-A, how
learning and inference are implemented in section III-B, how
policy selection and trajectory sampling are implemented in
section III-C & section III-D, and how to evaluate expected
free energy in section section III-E. Finally, we describe the
implementation details for the fully-observed case in section
III-F.

A. Generative model & recognition distribution

We consider a generative model p(õ, s̃, π, θ) over sequences
of observations õ, hidden states s̃, policies π and parameters
θ:

p(õ, s̃, π, θ) = p(θ)p(π)
T∏
t=1

p(ot|st)p(st|st−1, πt−1, θ)

p(ot|st) = N (ot;µλ, σ
2
λ)

where [µλ, σ
2
λ] = fλ(st)

p(st|st−1, πt−1, θ) = N (st;µθ, σ
2
θ)

where [µθ, σ
2
θ ] = fθ(st−1, πt−1)

p(θ) = N (θ; 0, I)
p(π) = σ(−G(π))

(3)
where we have assumed that s0 is fixed. In (3), we have

parametrized both the likelihood distribution p(ot|st) and
the transition distribution p(st|st−1, πt−1, θ) with function
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approximators. Specifically, the likelihood distribution is de-
scribed by a multivariate Gaussian distribution with a mean
and covariance parameterized by some (potentially non-linear)
function approximator fλ(st), while the prior distribution is
described by a Gaussian with mean and variance parameterized
by some function approximator fθ(st−1, πt−1).

Amortizing the inference procedure offers several benefits.
For instance, the number of parameters remains constant
with respect to the size of the data and inference can be
achieved through a single forward pass of a network. More-
over, while the amount of information encoded about variables
is fixed, the conditional relationship between variables can be
arbitrarily complex. In (3), the parameters of the transition
distribution, θ, are themselves random variables. In the current
context, these parameters are the weights of the neural network
fθ(st−1, πt−1). This approach allows the uncertainty about
these parameters to be quantified and casts learning as a
process of (variational) inference [25]. The prior probability
of θ is given by a standard Gaussian, which acts as a
regularizer during learning. Although we have only considered
distributions over the parameters of the transition distribution
θ, the same scheme could be applied to the parameters of
the likelihood distribution, λ. Finally, the prior probability
of policies is a softmax function of the negative expected
free energy of those policies −G(π) [11]. This formalizes
the notion that policies are a-priori more likely if they are
expected to minimize free energy in the future [12].

To make active inference applicable to the kinds of tasks
considered in RL, we treat reward signals or as observations
in a separate modality. Therefore, we extend the generative
model to include an additional scalar Gaussian over reward ob-
servations p(ort |st) with unit variance and mean fα(st), where
fα(st) is a fully-connected neural network with parameters α.

We consider a recognition distribution q(s̃, π, θ) over se-
quences of hidden states st, policies π and parameters θ:

q(s̃, π, θ) = q(θ)q(π)
T∏
t=0

q(st|ot)

q(θ) = N (θ;µξ, σ
2
ξ )

q(π) = N (π;µψ, σ
2
ψ)

q(st|ot) = N (st;µφ, σ
2
φ)

where [µφ, σ
2
φ] = fφ(ot)

(4)

The distribution q(st|ot) is a diagonal Gaussian with mean
and variance parameterized by some function approximator
fφ(ot), while the the variational posterior over parameters θ
and policies π are both diagonal Gaussians.

B. Learning & Inference

In order to implement learning, we derive the updates for
ξ = {µξ, σ2

ξ}, φ, λ and α that minimize free energy F . Given
(3) and (4), the variational free energy F for a given time
point t can be defined as:

Ft(ot, ξ, φ, λ, α) =

Eθ∼q(θ)
[
Eq(st−1|ot−1)

[
DKL[q(st|ot)||p(st|st−1, πt−1, θ)]

]]
+ DKL

[
q(θ)||p(θ)

]
− Eq(st|ot)[ln p(ot|st)]

(5)
where we have followed [11] and omitted the additional

term DKL[q(π)||p(π)] from the optimisation of ξ, φ, λ, α,
allowing us to ignore the dependency between hidden states
and (the prior probability of) policies. We optimise q(π) with
respect to F separately, as described in the following section.

Equation (5) can be minimized with respect to ξ, φ, λ, α
using stochastic gradient descent. Given some observation
ot, the negative log-likelihood (third term) can be calculated
by mapping the observation to the variational parameters
of q(st|ot), e.g., [µφ, σ

2
φ] = fφ(ot). The reparameterization

trick [24] is then utilized to obtain a differentiable sample
from q(st|ot)1, which is then passed through fλ(st), giving
the parameters of the likelihood distribution [µλ, σ

2
λ]. The

negative-log likelihood of the observations is then calculated
under this distribution. Next, the parameter divergence (second
term) is calculated analytically, as both distributions are fully
factorized Gaussians. Finally, The state divergence (first term)
is calculated by taking K samples from q(θ), again using
the reparameterization trick. For each sample θ(i) in K, a
reparameterized sample from the previous beliefs over hidden
states q(st−1|ot−1) is propagated through fθ(i)(st−1, πt−1)
(where πt−1 refers to the action that was taken at the previous
time step), giving the parameters of the transition distribution.
The KL-divergence term is then analytically calculated for
each sample in K and averaged.

This procedure is carried out in batched fashion over the
available data set. At test time, inference can be achieved by
directly mapping observations to the variational parameters
using fφ(ot). This approach to inferring hidden states is
similar to that of a variational autoencoder [24], but here
the global prior has been replaced with a prior based on the
transition distribution. Moreover, the inference of parameters
θ is homologous to the Bayesian neural network approach to
parameter learning [25].

Deriving updates for all parameters through a single (vari-
ational) objective function offers several potential benefits.
First, the learned latent space is forced to balance between the
compression of observations and (action-conditioned) tempo-
ral transitions. This is in contrast to ‘modular’ approaches,
whereby a latent space is first learned to compress obser-
vations, and subsequently, a transition model is learned in
this fixed latent space [2]. Moreover, this approach allows the
quantification of uncertainty in both hidden states and model
parameters, thereby quantifying both aleatoric and epistemic
uncertainty [26], [27].

1For a Gaussian N (x;µ, σ2), a reparameterized sample is obtained via
x = µ+ σ � ε, where ε ∼ N (0, 1)
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C. Policy selection

Under active inference, policy selection is achieved by
updating q(π) in order to minimize free energy F . Given
the prior belief that policies minimize expected free energy,
i.e., p(π) = σ(−G(π)) (as specified in (3)), free energy is
minimized when q(π) = σ(−G(π)) [11]. For discrete action
spaces with short temporal horizons, G(π) can be evaluated
in full by considering each possible policy [10]. However, in
continuous action spaces, there are infinite policies, meaning
an alternative approach is required.

In the current work, we treat q(π) as a diagonal Gaussian
with parameters ψ = {µψ, σ2

ψ}. At each time step, we
optimise ψ such that q(π) ∝ −G(π). While this solution
will fail to capture the exact shape of −G(π), agents need
only identify the peak of the landscape to enact the optimal
policy. To optimise the parameters of q(π), we utilise the
cross-entropy method (CEM) [3], [6]. At each time step t,
we consider policies of a fixed horizon H , using notation
πt:t+H = {at, ..., at+H}. The distribution over policies is
initialized as q(πt:t+H) ← N (πt:t+H ; 0, I) and optimized as
follows:
(i) Sample N policies from q(πt:t+H)
(ii Evaluate −G(πt:t+H) for each sample πt:t+H (described

in the following section), returning a scalar value
(iii) Refit q(πt:t+H) to the top M samples
This procedure is carried out I times, after which the mean
of the belief for the current time step at = E[q(πt:t+Ht )] is
returned. Moreover, this procedure is carried out after each
new observation. For the current experiments, H = 12, N =
1000, M = 100 and I = 10.

This process of model predictive control [28] was selected
for consistency with previous computational models of active
inference [10], where a distribution over policies is updated
after each new observation. Alternative approaches include
optimizing a parametrized policy with respect to past eval-
uations of expected free energy [16]. However, this approach
is not suited for non-stationary objective functions or active
exploration [5]. Alternatively, a parametrized policy could be
optimized with respect to imagined rollouts from a transition
model [6], which would enable active exploration [5]. The
effectiveness of these approaches depends on the complexity
of the value function relative to the transition dynamics [29],
as well as the stationarity of the value function.

D. Trajectory sampling

To evaluate the expected free energy for a given policy
−G(π), it is first necessary to evaluate the expected future be-
liefs conditioned on that policy q(s̃t:t+H , õt:t+H |π). The fact
that the transition model is probabilistic, and the parameters of
the transition model are random variables, induces a distribu-
tion over future trajectories [11]. Several approaches exist to
approximate the propagation of uncertain trajectories [3]. For
instance, one can ignore uncertainty entirely and propagate the
mean of the distributions, or one can explicitly propagate the
full statistics of the distribution [30]. In the current work, we

utilise a particle approach [3], [6], whereby a set of Monte
Carlo samples are propagated. In particular, we consider B
samples from the parameter distribution θ(i) ∼ q(θ), and for
each sample in B, propagate J samples through the transition
model s(j)t ∼ p(st|st−1, πt−1, θ(i)). To infer observations and
rewards, we pass all samples through the respective model and
average.

E. Expected free energy

In this section we describe how to evaluate −G(π), where
we have used π = πt:t+H for notational convenience. The
negative expected free energy for a policy is equal to the
sum of negative expected free energies over time, −G(π) =∑t+H
τ=t −G(π, τ), where

−G(π, τ) ≈ Eq(orτ |π)[ln p(o
r
τ )]︸ ︷︷ ︸

Extrinsic value

+ H[q(oτ |π)]− Eq(sτ |π)
[
H[q(oτ |sτ , π)]

]
︸ ︷︷ ︸

State information gain

+ H[q(sτ |π)]− Eq(θ)
[
H[q(sτ |π, θ)]

]
︸ ︷︷ ︸

Parameter information gain

(6)

We refer to [10] for a derivation of (6). The first term
(extrinsic value) quantifies the degree to which the expected
observations q(orτ |π) are congruent with the agent’s prior
beliefs (i.e., preferences) p(ort ). Note that in active inference,
there is no intrinsic delineation of reward signals - all obser-
vations are assigned some a-priori probability. However, as
RL environments specify a distinct reward signal, we have
defined the agent’s prior preferences over reward observations
or only. Moreover, as RL environments are constructed such
that agents wish to simply maximize the sum of rewards (rather
than obtain any particular reward observation), we evaluate
extrinsic value as orτ ∼ q(oτ |π), such that extrinsic value
increases as larger rewards are predicted. We refer the reader
to [18] for an alternative formulation where agent’s learn a
specific prior distribution.

The second term (state information gain) quantifies the
expected reduction in uncertainty in beliefs over hidden states
q(sτ ). In other words, it promotes agents to sample data in
order to resolve uncertainty about the hidden state of the
environment. This term is formally equivalent to a number of
established quantities, such as (expected) Bayesian surprise,
mutual information, and the expected reduction in posterior
entropy [11], [31], and has been used to describe various
epistemic foraging behaviors, such as saccades [34]–[37] and
sentence comprehension [15]. In the current paper, we conduct
experiments in fully observed environments, and as such, do
not consider the state information gain term in our analysis.

The final term (parameter epistemic value) quantifies the
expected reduction in uncertainty in beliefs over parameters
q(θ), and promotes agents to actively explore the environment
in order to resolve uncertainty in their model [14], [38]. In
order to evaluate parameter epistemic value, we use a nearest

978-1-7281-6926-2/20/$31.00 ©2020 IEEE



neighbor estimate of the entropies [27], [39]. In other words,
we estimate the entropy via spatial properties of samples from
the relevant distributions. Specifically, we estimate the entropy
as H[p(x)] = 1

n

∑n
i=1 ln (nρn,i) + ln 2 + CE , where n is the

number of samples from the distribution, ρn,i is the nearest
neighbor distance of a sample xi from other samples xj and
CE is the Euler constant. Alternatively, parameter epistemic
value could be rewritten as the (expected) Bayesian surprise
of the distribution over parameters and then calculated analyti-
cally [36], [37], [40], [41]. However, this requires doing fictive
updates to the parameter distribution, which is computationally
expensive when conducted for each candidate policy at each
time step.

F. Fully observed model

The model presented in the preceding sections serves as
the most general formulation, applicable in both partially-
observed and fully-observed environments. In what follows,
we describe an implementation for the fully-observed case,
leaving an analysis of the partially-observed case for future
work.

To adapt the generative model for fully-observed environ-
ments, we utilise a fixed identity covariance for the like-
lihood distribution p(ot|st), and parameterize the mean as
µλ = fλ(st) = E[st], thereby encoding the belief that there
is a direct mapping between states and observations. For the
transition distribution p(st|st−1, πt−1, θ), we parameterize the
mean as fθ(st−1, πt−1) and utilize a fixed unit variance. In all
experiments, fθ(st−1, πt−1) is a feed-forward network with
two fully connected layers of size 500 with ReLU activations,
which defines the dimensionality of p(θ) and q(θ).

Note that by treating the variance of the transition distri-
bution as fixed, the evaluation of parameter epistemic value
is significantly simplified. Specifically, the second entropy
term in parameter epistemic value becomes constant under
policies, such that we need only evaluate the first entropy term
H[q(sτ |π)] = H[Eq(θ)[q(sτ |π, θ)]]. We use 5 samples from
q(θ) to evaluate the expectation in this entropy term through-
out. Finally, we treat the variance of q(st|ot) as a fixed unit
parameter and parameterize the mean as µφ = fφ(ot) = ot,
thereby encoding the belief that there is a direct mapping
between observations and states. Note that this means that the
parameters of λ and φ are fixed and are thus excluded from
the optimisation scheme.

IV. EXPERIMENTS

In this section, we investigate (i) whether the proposed
active inference model can successfully promote exploration
in the absence of reward observations (i.e. exploration), and
(ii) whether the model can achieve good performance and
high sample efficiency on challenging continuous control tasks
(i.e. exploitation). We evaluate these two aspects of the model
separately, leaving analysis of their joint performance (i.e. the
exploration-exploitation dilemma) to future work.

We utilise the following learning scheme for both the
exploration and exploitation experiments. We initialize the data

set with 5 seed episodes collected under random actions. For
each iteration of the experiment, we train the agent’s model
via Eq. 5 with 100 batches randomly sampled from the data
set, using a batch size of 50. Agents then collect data from
the environment until the episode ends (when the maximum
number of steps is reached, or when agent the agent reaches
a terminal state).

A. Exploration

Fig. 1. Comparison of exploration strategies. (A) The cumulative state-
space coverage after 100 epochs for the reward agent. (B) The cumulative
state-space coverage after 100 epochs for the ε-greedy agent. (C) The
cumulative state-space coverage after 100 epochs for the active inference
agent. These results demonstrate that the active inference agent explores more
of the state space, relative to the other exploration strategies.

To test whether the active inference model enables efficient
exploration, we explore the state space visited by different
algorithms in the continuous MountainCar environment (O ∈
R2,A ∈ R1). We compare the active inference model to two
algorithms, (i) a ‘reward’ agent which operates via the same
scheme, but only selects actions based on extrinsic value,
and (ii) and an ε-greedy agent which selects action based
on extrinsic value, but additionally adds Gaussian exploration
noise (σ2 = 0.3) to each action. Agents learn and act in the
environment for 100 epochs. The cumulative coverage of state
space is plotted in Fig. 1. These results demonstrate that the
active inference agent can effectively explore more of the state
space, relative to the other algorithms.

B. Exploitation

Next, we investigate whether the active inference agent can
achieve good performance on continuous control tasks. We
explore performance in the inverted pendulum task (O ∈ R3,
A ∈ R1) and the more challenging hopper task (S ∈ R15,
A ∈ R3). The performance of our model is compared to a
strong model-free baseline, DDPG [42].

As both environments have well-shaped rewards, we only
consider the exploitation component (extrinsic value) of the
expected free energy objective function, ignoring the ex-
ploration component (epistemic value). As such, we utilise
a point-estimate version of the model, thus removing the
distributions over parameters. To retain stochasticity in the
transition model, we parameterize both the mean and variance
of the transition distribution using a function approximator
(as opposed to just the mean), and fix the variance of the
recognition distribution to 0.1. Moreover, following [6], we
use an action repeat of 3 for all algorithms, enabling shorter
planning horizons and a more pronounced learning signal.
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In Fig. 2, we plot the performance of both algorithms as
a function of the number of epochs. We show the mean
performance over a fixed set of 5 random seeds and the
shaded lines shown the 95% interquartile range at each epoch.
These results demonstrate that the active inference agent can
achieve strong performance in under 100 epochs on both tasks,
demonstrating an order of magnitude better sample efficiency
compared to the model-free baseline.

Fig. 2. Comparison of Performance on two continuous control tasks. (A)
Average returns over 1500 epochs on the inverted pendulum task for the active
inference agent and the model-free DDPG agent. (B) Average returns over
1500 epochs on the hopper task for the active inference agent and the model-
free DDPG agent. Note that for A & B, we stopped the active inference agent
after 100 epochs due to convergence. (C & D) A zoomed-in view of figures
A & B, showing a more fine-grained view of the active inference agent’s
progression over 100 epochs. For all figures, the filled lines represent the mean
of 5 random seeds, whereas the shaded areas denote the 95% interquartile
range. Together, these results demonstrate that the active inference agent can
learn difficult continuous control tasks, with a far greater sample efficiency,
relative to a strong model-free baseline.

V. PREVIOUS WORK

a) Deep active inference: Previous work has explored
the prospect of scaling active inference using amortized infer-
ence. In [17], the authors parameterized both the generative
model and recognition distribution with function approxima-
tors and used evolutionary strategies to optimise the free
energy functional when gradients were not available. Similarly,
[16] utilized amortization to parametrize distributions and also
amortized action by learning a parameterized approximation
of the expected free energy bound. Finally, [18] extended
previous work to include a specific planning component based
on CEM. The authors focused on the problem of learning
the prior distribution over reward observations p(or) and
demonstrated this could be implemented in a learning-from-
example framework.

Our work builds upon these previous models by incorporat-
ing model uncertainty and its active resolution. In other words,
we extend the previous point-estimate models to include full
distributions over parameters and update the expected free
energy functional such that the uncertainty in these distribu-
tions is actively minimized. This brings our implementation
in line with the canonical models of active inference from
the cognitive and computational neuroscience literature [12].

Moreover, it enables us to evaluate the feasibility of active
exploration under the scaled active inference framework, apply
the model to more complex control tasks, and obtain increased
sample efficiency, relative to previous models.

b) Model-based RL: The model presented in the current
work bears a number of resemblances with model-based
approaches to RL. First, variational autoencoders have been
used extensively to map observations into a compressed latent
space, thereby simplifying the problem of action selection and
the process of learning a forward transition model [2], [6],
[41], [43]–[46]. Moreover, the CEM algorithm is a popular
method for implementing planning in model-based RL [3], [6],
[47]. Recent work has additionally highlighted the importance
of using a probabilistic dynamics model in order to capture
epistemic uncertainty [3], [6], [7], [48]–[50]. The success of
these approaches has demonstrated that deterministic models
are prone to model bias, which can lead to overfitting in
low data regimes. Most approaches either utilize Bayesian
neural networks [27], ensembles of deterministic networks
[3], dropout [48] or Gaussian processes [30] in order to
capture uncertainty. In the current work, we opted for Bayesian
neural networks to ensure consistency with the variational
principles espoused by the active inference framework, but
note that ensembles can be made explicitly Bayesian with
minor modifications [51].

c) Information gain: Identifying scalable and efficient
exploration strategies remains one of the key open questions
in RL. Model-free methods, such as ε-greedy or Boltzmann
choice rules [52], utilise noise in the action selection process
or uncertainty in the reward statistics [53], [54].

A more powerful approach [55] is to construct a model of
the world, allowing the agent to evaluate which parts of state
space it has (and has not) visited. For instance, [56] construct a
pseudo-count measure for estimating state visitation frequency
in continuous state spaces. Alternatively, an explicit forward
model of the transition dynamics can be learned. This allows
for measures such as the amount of prediction error [57]–
[60] or prediction error improvement [61] to be utilized for
exploration.

If the learned model (implicitly or explicitly) captures
probabilistic features then information-theoretic measures can
be used to guide exploration (see [62] for a review). In
[63], the authors derived an information-theoretic measure to
maximize the predictive power of the agent, while in [64],
the authors derived an objective function to maximize the
mutual information between actions and future states of the
environment (i.e., empowerment).

Of particular relevance to the current work is the use of
information gain to promote exploration, which has been
demonstrated to outperform alternative measures such as pre-
diction error [65]. From a theoretical perspective, information
gain helps overcome what is known as the TV-problem [36],
where (unpredictable) noise in the environment is mistakenly
treated as epistemically valuable. This is because information
gain considers the amount of information provided for beliefs,
as opposed to the amount of information provided by the signal
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per se.
Information gain can be traced back to [66], who used

it to quantify the amount of information to be gained from
some experiment. Reference [67] developed a Bayesian frame-
work in order to maximize information gain via dynamic
programming, however, the experiments were limited to dis-
crete state spaces using tabular MDPs. In [40], the authors
utilized Bayesian neural networks to quantify the amount of
information gained from some (action-conditioned) transition.
This work was further extended in [41], where the amount
of information gain was quantified with respect to a latent
dynamics model.

In parallel with the current work, [5] looked to maximize
expected information gain, which entails an active approach to
exploration. This is in contrast to the majority of exploration
strategies in RL, which are reactive, in the sense that they must
first observe an informative state before being able to gather in-
formation [5]. This can lead to problems of over-commitment,
whereby informative parts of state space must be unlearned
once the relevant information has been gathered. However,
[5] optimized expected information gain offline, whereas the
current model uses an online approach. Finally, The use of
nearest-neighbour entropy estimators for information gain has
been explored in [27], [68].

VI. DISCUSSION & CONCLUSION

We have presented a model of active inference that can
scale to continuous control tasks, complex dynamics and
high-dimensional state spaces. The presented model can be
trained via a single objective function, variational free energy,
and acts to maximise expected free energy, which captures
both epistemic and aleatoric uncertainty, and prescribes both
goal-directed and information-gathering behaviour via a single
normative drive.

Our model makes two primary contributions. First, we
showed that the full active inference construct can be scaled to
the kinds of tasks considered in the RL literature. This involved
extending previous models of deep active inference to include
model uncertainty and expected information gain. Second, we
highlighted the overlap between active inference and state-of-
the-art approaches to model-based RL. These include the use
of variational inference for the compression of observations,
the use of variational inference for learning distributions over
parameters, the use of probabilistic models of dynamics, the
use of prospective planning in latent space, and the active
resolution of uncertainty.

While active inference defines the properties of living
systems from first principles [12], and model-based RL has
attempted to engineer adaptive agents through the most ef-
fective means available, both perspectives have converged on
similar solutions. Our work has exploited this convergence to
show that active inference provides a principled and unified
theoretical framework in which to contextualize the various
developments in model-based RL. This perspective by itself
offers little practical benefit. However, active inference offers
two potentially novel perspectives from which model-based

RL can benefit. The first is casting reward as (prior) probabil-
ities. This provides a principled framework for learning reward
structure (i.e., reward shaping), for assigning rewards (i.e.,
probability) across multiple observation modalities [69], and
for learning-from-demonstration [18]. The second perspective
is casting both exploration and exploitation as two components
of a single imperative to maximize expected Bayesian model
evidence. This perspective has the potential to recast the
exploration-exploitation dilemma as a problem of optimising
parameters in order to maximise model evidence. We leave a
practical investigation of this perspective to future work.
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