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Abstract—With the parameters set of the industry 4.0 and
the growth of new intelligent and interconnected systems, those
concepts have enabled innovative advances in several areas,
among them, solutions for different renewable sources of energy
efficiency. This study has as its objective the detection of short-
circuit faults in wind turbines utilizing an analysis of vibration
images. Using the Internet of things (IoT) context, we created
a methodology to check the operating condition of a machine.
The proposed method obtained excellent results, presenting a
new interconnected approach to the industry 4.0 for short-
circuit detection of induction generator squirrel-cage model, a
widely used and growing model in the renewable energy market.
Using the Random Forest-LBP combination, we achieved 87.9%
accuracy with no false positives between the normal class and
the failure classes.

Index Terms—Intelligent IoT, Wind Turine, Fault Detection

I. INTRODUCTION

Currently, several technologies are seeking less impact on the
environment through renewable sources and energy efficiency,
among them, solar energy and wind energy gain strength amid
industrial effects, becoming options for on-demand solutions
from various sectors around the world. Wind energy is one
of the most promising and efficient clean energy generation,
generating 3.86 % of power relative to world demand, this being
318.1 GW, operating in 103 countries, and [1]-[3] estimate
that the growth could reach 19% by 2030.

The world is leaning toward new sustainable technologies,
since, by reducing investment in fossil fuels as a result of
climate problems and limited resources, it creates a conjuncture
that drives new ways of generating renewable energies [4]. The
generation of renewable energies had a significant increase in
22% between 2014 and 2015 [2]. Within this global perspective
based on data from 2007, it was assumed that the worldwide
installation would reach 240 GW by 2012 and 540 GW by
2017, with a view of 600 GW in 2019, anticipating the growth
of 40 GW per year, having an estimate of 1000 GW by 2030
[5].

Even with a perspective of the expected growth of such
technologies, there are several challenges in solving current
problems, which, if solved, will allow guarantees for future

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

expansion. With technological advancement within industries,
coupled with new technologies such as the Internet of Things
(IoT) [6], are key points for future advancement within a
new perception that directly introduces the concepts fostered
by the Industry 4.0 [7], with futuristic vision connected to
solutions with intelligent technologies, complementing the
need to change the new generation of industries. Within the
current context of the wind power generation process and
challenges, points that affect operational problems directly
impact energy costs and maintenance costs up to 30% of the
cost of energy [8], [9]. Maintenance and technical assistance
in wind farms receive attention to preventive measures for
optimization and effectiveness of energy generating systems
[10] [9]. The study of [11] found faults through records in wind
turbines, and also the conclusion that the electric generator is
the most costly and most defective component, in private the
Squirrel Cage Induction Generator (SCIG), robust technology
with future propensities in the market in wind turbines in the
coming years. [11] In view of this scenario that involves means
for technological apparatus searched by the Industry 4.0 [7],
we based this study on the detection of short-circuit failures,
with a new approach for classification of the vibration signals
generated by generators of induction type (SCIG), with an
Internet view of Things (IoT) [6].

All studies works has in commom the approach of the
use of signal in a dimension (1D) in the treatment for data
analysis, common practice between data analysis in signals in
short-circuit faults. Our study aims to identify incipient motor
failures (SCIG) using machine learning with a new approach
in its classification reported in the next session, arriving very
significant results in the field of computer vision.

Our study brings several contributions addressing new
methodologies; an innovative model applied in digital image
processing (two-dimensional signal), a typical problem of signal
processing (signal in one dimension). The system integrates
a shared cloud tool, aiming at the popularization of new
technologies applied to machine learning, allowing to intensify
the use of database improving the precision of fault detection
algorithms. The method was thought to use IoT concepts by



aggregating different local systems to a cloud structure, this
integration is an essential step in the current cultural context
of industry 4.0 management, allowing greater exchange of
information and experiences among professionals.

II. METHODS OF LITERATURE

In this session is presented a short explanation of machine
learning techniques and extraction of characteristics used to
solve the proposed problem. In the characteristic extraction
step, we use classic extractors and CNN models.

A. Machine learning

Multilayer Perceptron (MLP) is composed of an input layer,
which can contain multiple hidden layers and an output layer
[12]. It consists of a combination of perceptrons, neurons
designed to solve non-linearly separable problems, using a
backpropagation error technique to aid learning.

Equation 1 shows the output signal of a neuron y; in iteration
n from a weight w;; that weights the output of neuron y; The
activation function ¢, if y; belongs to the input layer, y; is a

sample of the set of inputs.
=¢; (Z wji(n)y (n)) (1)
i=0

The instantaneous value of the total error in the iteration n,
g(n), is generated from the summation of errors of the set of
neurons of the output layer, computing the difference between
y; and the value desired d;, Equation 2.

n) —y;(n))* @)
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The negative derivative of the total error represents the local
gradient J;, in a neuron j, Equation 3.

o de(n)
0 = 0v;(n) )

In Backpropagation, Equation 4, the gradient J; in neuron
7, depends on the local gradient of a neuron £ on its right, the
weighting between both and its sign of output yj.

d;(n) = @j(v;(n n)wy;(n “4)
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Naive Bayes is based on Bayes Decision Theory [13],
the classifier of the supervised method is premised on using
probabilistic parameters to classify the samples according to the
percentage referring to the stipulated class. It is by calculating
the posterior probability P(w;|z), from the a priori probability
P(w;), and the probability distribution functions (PDF) p(x|w;)
and e p(x), as shown by Equation 5 [14].
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Equation 6 demonstrates the decision rule from the results
of Equation 5 for samples of two classes a binary classification
problem, for example.

=

Random Forest is an unsupervised network based on the
data set method chosen based on the initial set. In its training,
the algorithm improves the classification by calculating the
margin of the correct classifications h(X) =Y, in relation to
the wrong classifications h(X) # Y, as shown by Equation 7
[15].
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P(w;y | ) > P(w2
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belongs
belongs
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(6)

mg(X,Y) = avil(hy(X) = Y) =74y avi (hy(X) = j)

(7

The generalization error seen in Equation 8, is given by the
probability that the margin calculated in Equation 7 is less
than zero.

PE = Px y(mg(X,Y) <0) (8

Support Vector Machines (SVM) are based on the Statistical
Theory of Learning. The SVM was proposed by Vapnick [16]
to define the class regions through separating hyperplane w,
which best define the output y; between 1 and -1, then the
result of Equation 9 will always be equal to 1.

yil(w(z;) +b)] = i=1,..,1 9)

To find the optimal separation hyperplane and consequently
obtain the best classification, we must minimize the normal
vector to the separation hyperplane w, as seen in Equation 10.

p(w) = [w]|* (10)

Other modified models (versions) are used to handle mul-
ticlass problems: linear SVM, SVM Polynomial, SVM RBF
[17].

B. Classic Feature Extraction Methods

Local Binary Patterns (LBP) is a powerful texture descriptor
[18]. Computes the texture locally by comparing pixel by
neighborhood pixel. Equation 11 demonstrates the operation,
in which g, is one of the pixels P within a radius R from a
central pixel, g..
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For each operation between pairs, a binary value is assigned
to f(x), as shown by Equation 12.

=45 sthe

0 otherwise

x>0 (12)

The Gray Level Co-Occurrence Matrix (GLCM) [19] char-
acterizes the texture of an image by calculating the frequency
at which pairs of pixels with specific gray level values occur in
an image. The Equations 13, 14 and 15 are three of fourteen
attributes extracted by GLCM and, respectively, compute the
second angular momentum, variance and entropy in an image.

ZZp(M)Q (13)
ZZ(z — w)?p(i, 5) (14)
(15)

_ Z Zp(i, 7)log(p(i, j))

The Hu [20] moments are calculated from the central
moments, Equation 16, invariant to translation, and from
invariant moments to scale, Equation 17. All seven moments
display invariant characteristics of rotation, translation, and
scale

o = ii (Z) (Z) (=)= (=) My (16)
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C. Convolutional Neural Networks

Oxford Visual Geometry (VGG) [21] was runner-up in the
2014 ILSVRC challenge [22]. Its architecture consists of 16
uniform convolutional layers. Convolutions Factorized was the
strategy used responsible for increasing depth, without causing
overfitting of the model.

Inception, also called GoogleNet [21], was the winner of the
ILSVRC 2014 challenge [22]. It was developed by the Google
Brain team inspired by the architecture created by LeNet5
(convolutional layers, pooling layers and fully connected layers),
the network implemented a new element called the creation
module. This module applies several small convolutions in
order to drastically reduce the number of parameters.

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

ResNet was presented at ILSVRC 2015. Although the
VGG talks about the correlation between the depth of the
network and the accuracy, experiments performed in the article
Residual Neural Network (ResNet) [23], disagree with this
view, considering classic CNNs. With increasing network depth,
accuracy becomes saturated and then rapidly degrades mainly
due to the increasing gradient problem [24]. To address this
problem ResNet authors have introduced a new building block,
Residual Block.

Extreme Inception (Xception) is a CNN model that was
proposed by Francois Chollet [25], in which is presented the
Depthwise Separable Convolution layer. The model obtained
good results in the JFT dataset [26], which contains 350 million
images. Although Xception has the same number of parameters
as Inception V3, this CNN uses the model parameters more
efficiently.

MobileNet as Xception is based on a simplified architecture
that uses separable convolutions in depth, introduced by Howard
et al. [27]. The new architecture added two hyper-parameters
(Width Multiplier, Resolution Multiplier), allowing the model
to work efficiently with hardware restrictions on mobile and
embedded systems.

Nasnet is a CNN model developed by Google Brain research
team [28]. The authors propose a building block in a small set
of data and then transfer to a large dataset, looking for the best
convolutional layer. The model explores the hypothesis that it
is possible to create an efficient architecture directly from the
dataset.

III. METHODOLOGY

In this section, we will present how to apply the proposed
methodology. First, the sensor used is introduced, then the
experimental model of a wind turbine, the cloud training
and classification system are described. Those procedures
demonstrates that it is possible to detect and acquire data
anywhere, thus being viable for industry 4.0.

The method consists of monitoring short-circuit faults by
extracting characteristics collected with a three-axis sensor,
specifically a MEMs accelerometer [29]. The collection of the
vibration signal is made periodically in the radial direction
of the electric generator. The signal is sent to an embedded
system, where the signal originally from 1D becomes 2D per
image plot then the image is sent to a database in the cloud.
By transforming the vibration data into images, it enabled the
use of extractors with specific characteristics of the images,
allowing to explore characteristics that only 2D signal extractors
can highlight. After the extraction step, the classification of
the standard occurs and sends to the device the condition of
the generator: normal, low impedance fault or high impedance
fault.

In the Lapisco Image Interface Platform for Application
Development (LINDA) are implemented all extraction and
classification techniques used.As a cloud tool, it can be used
by any device with internet access, applying industry concepts
4.0.



Figure 2 shows the steps of the methodology. Step 1, the
user has the option to predict the condition of the generator
or train a new network.Step 2, when choosing the option to
train a new network, the LINDA tool will be used, where the
steps of project definition, image upload, attribute extraction,
training, and forecasting will be performed. Step 3, analysis of
the results to choose the best classifier-extractor combination
that satisfies the proposed problem. Step 4, the trained network
is applied in an API to perform predictions with higher speed.

A. Experimental model and data acquisition.

A wind turbine simulator [11], described in Figure 1, was
used. It consists of two squirrel-cage motors, full-scale and full-
variable-speed. The two motors are 1CV three-phase electrically
connected in delta with a 220V supply, 60Hz and rated current
of 3A. A WEG-branded CFW-08 frequency converter powers
the stator winding. Each engine has a predetermined function,
motor 1 simulates wind speed, and motor 2 simulates a full-
scale generator.

Varible Full-scale
Wind speed generation
Freq. Conv. Freq. Conv.
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[] =
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Fig. 1: Test-bench layout used to simulate short circuit faults.

The system has a board that controls the Short-Circuit Test
Board in Machines (SCTBM), whose function is to simulate
electrical connections of short-circuit between coils of the
coiled stator. Low impedance and high impedance faults were
applied, which comprise 9.26% of the total windings.

The engine that has the function of simulating the wind
starts its operation with the frequency of 45Hz and evolves up
to 60Hz. The acquisition of vibration data comprises the entire
operating range of the generator, from 45Hz to 60Hz.

B. IoT framework

Lapisco Image Interface for Application Development
(LINDA) is a web application divided into two systems. The
first in Java that runs the web service and manages the sending
of images between devices and workstations with the processing
of the platform in a computational cloud. The second system
is a database in PostgreSQL that is a free technology that has
the function of storing the processing algorithms (extractors
and classifiers) described in the section, as well as the images
used in the training and the alternatives between the classifier-
extractor pair. LINDA is a generic tool, can be employed in
various problems. For this article, we chose the theme of wind
turbine failure detection using vibration data.
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To start new training, the user must follow the instructions.
Name the project, choose the number of classes, choose the
type of action (extraction or classification). Extraction, the user
has nine resource descriptors available; Figure 3 shows the
layout of the project settings page. Subsequently, the images
are loaded and separated by classes. In Figure 4, the user can
check the thumbnails of the images sent to the system. Next,
the configuration is made to perform classification, allowing the
possibility to choose seven classifiers described in the section
II. When performing the classification, the user is allowed to
verify through bar graphs, the results of the accuracy of all
classifiers for a given characteristic extractor as observed in
Figure 5. The platform also generates confusion matrices for
each result shown in Figure and Figure 7.

Hardware used in LINDA hosting was an Intel Xeon server
with 16 threads and 32Gb of memory, running the Linux
Ubuntu 16.04 64-bit operating system, Java version 1.8.0 and
Python version 3. Classifiers and descriptors are implemented
in Python and use the TensorFlow and Keras libraries.

The platform displays a list with the API settings; conse-
quently, the address and hash code to be used. This option
requires programming knowledge if there is a desire to integrate
LINDA with other platforms by creating an IoT model.

C. Feature Extraction Steps

The acquisition of vibration data is performed periodically
for 10 seconds at a sampling rate of 5 kHz. Data processing
occurs in an integrated system and sent to the cloud. The data
sent is images with a window of 5208x833 pixels to prevent
loss of information.

Dataset is organized into three classes: normal, low
impedance fault and high impedance fault. In Table I we
can observe the number of images present in the dataset for
each class. Each class contains images of the three axes of
the accelerometer. Class O corresponds to 248 of the X-axis,
248 of the Y-axis and 248 of the Z-axis. Class 1 corresponds
to 153 images of the X-axis, 153 images of the Y-axis and
153 images of the Z-axis. Finally, Class 2 corresponds to 183
images of each axis X, Y and Z.

TABLE I: Organization of the dataset and number of images
per class.

Class  Generator condition Axis Number of images
X 248
Y 248
0 Normal 7 248
Total 744
X 153
. Y 153
1 Low impedance fault 7 153
Total 459
X 183
L Y 183
2 High impedance fault 7 183
Total 549
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Fig. 2: Flowchart of the steps employed in our approach to classifying wind turbine conditions. A user with a device with
internet access can choose to access LINDA to train a new network or use an already trained network (1). In LINDA the user
uploads images separating into classes. Then, image feature extraction, network training, and prediction are performed (2). The
results of various combinations of extractors and classifiers are shown (3). The best classifier-extractor combination is chosen to

carry out the prediction of the problem to be solved.
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Fig. 3: Creation of a project on the LINDA platform.
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Fig. 4: Thumbnail of a class of images collected from the generator.

D. Machine Learning Methods.

In order to achieve the best combination of extractors with
classifiers, we have selected different types of classifiers to
detect patterns that indicate the condition of the generator.

MLP was trained using the Levenberg-Marquardt method,

with numbers of neurons ranging from 2 to 1000 in its
hidden layer. The Bayesian classifier used the Gaussian density
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function. The random search for Random Forest (RF) was used
to find: the number of characteristics for better division ranging
from 1 to 10; the maximum depth is 6 or none of the trees to
be used; the minimum number of samples to divide an internal
node ranges from 1 to 10; the minimum number of samples
per sheet also varies from 1 to 10 [30]. The SVM classifier
considered the kernels linear and radial basis function (RBF)
with the hyperparameters C and v varying according to the
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Fig. 5: LINDA Statistical Precision Bar Graph.

TABLE II: Number of attributes returned by each extractor.

Extractor Number of attributes
LBP 48
GLCM 14
Hu Moments 7
Densenet 121 1024
Densenet 169 1664
Densenet 201 1920
InceptionResNetV2 1536
InceptionV3 2048
MobileNet 1024
NASNetLarge 4032
NASNetMobile 1056
ResNet50 2048
VGGl16 512
VGGI19 512
Xception 2048

True False
Positive | | Negative
TP FN
False True
Positive | Negative
FP TN

Fig. 6: Confusion Matrix.

values of the range 275, 274, 273 ., 215 and 271%, 2714 | |
23. The MLP and SVM hyperparameters were defined using
10-fold cross-validation.

E. Performance evaluation

The following metrics were used to evaluate the performance
of the classifiers: Accuracy, Precision, F1-score and Recall. For
a better understanding, see Figure 6, where the confusion matrix
is used as a reference for calculating the metrics. The matrix
is mounted with True Positive (TP) values that correspond
to the accuracy number of the classifier. False Negative (FN)
when erroneously classifies the class, the output was for class
2 indicates and is class 1. False Positive (FP) when classifying
return failures (class 1 or 2) as normal. True Negative (TN)
quantifies the number of times that the low impedance or high
impedance classes are classified correctly.

Accuracy (Acc) calculates the number of true positives in
relation to the amount of data. Equation 18 shows how to
calculate accurately.

Actual Condition of the generator
Acc = (18)
number of total data
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Precision (P) is a rate that evaluates whether what was
classified as normal (Class 0), was correct. Equation 19 shows
how the calculation is done.

TP
P=Tpr7p
Recall (R) measures how often the classifier finds the pattern
of a class. The calculation can be observed in Equation 20.
TP
"~ TP+TN
F1 score is the harmonic mean between Accuracy and Recall.

It represents the overall efficiency of the classifier, shown in
the Equation 21.

19)

R (20)

_ 2PR
" P+R
IV. RESULTS AND DISCUSSIONS

F1 2n

This section presents the results related to the classification
of the motor stage condition. The data were processed on a
Core i7 at 3.6 GHz with 8 GB of RAM computer, running
Ubuntu LTS 16.04.

Figure 8 presents the classification results, ranked in de-
creasing order of accuracy, and Table III presents the detailed
data. Nonetheless, only the five top results of the combinations
classifiers with feature extractors were exhibited for further
analysis. Overall, all combinations obtained a good performance
in accuracy, achieving at least 75%. However, GLCM is not



TABLE III: Top five results obtained by features extractors and classifiers, listed in decreasing order of accuracy.

Classifier Extractor Accuracy Precision F1-Score Recall

RF LBP 87.67+1.99 83.67+2.63 83.55+2.62 83.5442.59
SVM RBF DenseNet201 ~ 79.07£2.43  73.56£3.19  73.15£3.06  73.09+3.07
SVM RBF DenseNet169  77.12£2.88  70.66+£4.20  69.85+4.17  69.79+3.98
SVM Linear  DenseNet201 ~ 76.92+2.24  70.96+3.17  70.63+3.20  70.7143.20
SVM RBF VGG16 75.53£2.15  69.01£3.06 67.99+£3.12 67.91+2.86

TABLE IV: Time from top five results showed in TABLE III.

. Extraction Training Score
Classifier Extractor time (ms) time (s) time (s)
RF LBP 410.000+0.000  23.226+0.545 6.779+0.352
SVM RBF DenseNet201 6.000£0.000 18.499+0.254  8.458+0.318
SVM RBF DenseNet169 11.000£0.000 28.662+0.418  9.200+0.227
SVM Linear  DenseNet201 6.00040.000 16.1694+0.223  7.513+0.244
SVM RBF VGG16 17.000£0.000 10.397+£0.213  3.155+0.163

present in the top five results, as well as Naive Bayes and MLP
classifiers. The combination of the Random Forest classifier
and the LBP extractor achieved the best performance, reaching
87.67%, 83.67%, 83.54% and 83.55% in accuracy, precision,
recall and F1-score, respectively.

The confusion matrices of the two best combinations are
shown in Figure 7. In both combinations, we see that the
metrics fall due to confusion between the failure classes
(low and high impedance). On the other hand, the normal
operating class is totally different from the fault classes. We
can highlight the LBP-Forest Random combination since it
reached 100 % accuracy in the classification of the normal
class. The DenseNet201-SVM-RBF combination also obtained
a satisfactory result, differentiating the normal class from the
two fault classes with 97% accuracy. However, we detected an
increase in errors between the fault classes.

Even though there is a confusion between the fault classes,
the proposed approach differentiates regular operation and
fault operation, which is more significant than detecting the
fault type. Once a fault is detected, the system will activate a
protection mechanism, regardless of the fault type.

Because of the proposed approach is a real-time application,
Table IV presents the extraction time, training time and score
time of the top five results, which are essential parameters to
analyze the viability of the approach.

The LBP extractor, which is a classic image feature extractor,
achieved a better performance than deep extractors, specifically
8.6% higher in accuracy. However, from Table IV, LBP
extractor has the highest extraction time. The deep extractors
are faster because they reshape the image according to their
architectures, while LBP processes the image in its full
dimension, which is 5208x833 pixels.

V. CONCLUSION AND FUTURE WORK

We propose in this work a method of pre-classification of
vibration signals with a two-dimensional signal visualization
approach. Through the induction of high and low impedance
short circuits, we trace the collected signals and use them for
training the classifiers. Classification can be done remotely, at
any place with internet access.
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Fig. 7: Confusion matrices of the best two results after feature
extraction and classification.

The validation of the classifiers demonstrated the ability
of the proposed method, with the combination of RF and
LBP, to distinguish, in a three-class problem, between normal
vibration signals, low impedance failure, and high impedance
failure, obtaining 87.67% accuracy. For a binary fault or non-
failure problem, it obtained 100.00% accuracy, as shown in
the confusion matrix presented in the Results section.

For future works, we can extend the application of the
method to other types of signals, such as current and axial
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