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Abstract—In 5G networks, the deployment and management
of mobile edge computing infrastructure is a major challenge
for mobile operators. Most recent work focused on extracting
static movement patterns of mobile users from the trajecto-
ries generated during a specific time period to help with the
management and orchestration of network resources. However,
movement patterns of mobile users are not static over time.
Understanding significant differences in mobile users’ movement
during different time periods can provide insights for mobile
operators to dynamically reconfigure the network in response
to the changes in traffic flows by time of day. Therefore, in
this paper, we propose a framework based on contrast data
mining to identify significantly different movement patterns,
which we model as corridors, during different time periods. To
measure the difference, an improved distance measure based on
a modified Hausdorff distance and Earth Movers’ distance is
proposed to calculate the dissimilarity between the identified
corridors, which considers the spatial heterogeneity of mobile
networks. To further extract the significantly different corridors,
we formulate the definition of contrast corridors of mobile users’
movement. Experimental results on synthetic datasets as well
as real-life datasets collected by China Mobile show that our
method can effectively and robustly detect contrast corridors
from trajectories generated from different time periods in mobile
networks by improving the F1 score by 20% on average.

Index Terms—contrast data mining, corridor identification,
mobile networks.

I. INTRODUCTION

With the rapid development of wireless networks (from
2G/3G/4G to 5G) in recent years, internet-connected mobile
devices are penetrating every aspect of life, work and enter-
tainment. A major challenge in the management of mobile
networks is how to provide high bandwidth coverage to large
numbers of mobile users. In particular, understanding and dis-
covering significant changes in the movement patterns of users
in mobile networks can help service providers in the deploy-
ment of networks and base stations, and the management of

network resources. For example, the ability to identify changes
in users’ movement patterns can help the orchestration of 5G
network resources through network function virtualization [1]
and network slicing [2].

In a cellular network, each cell tower (base station) covers
a small geographical area. If phone users access the Internet,
their positions can be passively detected by the cell towers
that provide Internet data to them. Thus, a mobile phone
user’s trajectory can be represented as a sequence of cell tower
IDs with corresponding timestamps. This trajectory acquisition
technique provides a good way for mobile operators to under-
stand mobile users’ movement patterns. Some studies have
focused on identifying the underlying geographical corridors
of users, which can be treated as pathways that are frequently
traversed by a considerable number of mobile users [3], [4],
[5]. However, most studies tried to find the pathways based
on the data during one specific time period and treated the
network as temporally homogeneous in their analyses.

Therefore, in our work, we focus on the problem of identi-
fying what are those significant changing corridors, which we
model as contrast patterns that can be used to identify targets
for network reconfiguration. We consider two challenges from
real-life data. The first one is that mobile trajectories are coarse
and their granularity varies due to the non-uniform spatial
distribution of cell towers [6], [7]. Thus, it is necessary to
propose a distance measure that can deal with the heteroge-
neous spatial scales when measuring the dissimilarity between
trajectories. The second challenge is that identifying static
corridors plays an important role in managing networks for
the long term design of network, but with the introduction
of new generations of cellular network technology, such as
5G, there is a great opportunity for dynamically reconfiguring
the network in response to changes in traffic flows by time of
day. For example, users’ movement patterns might be different
in the morning to the patterns in the afternoon, as shown in
Fig. 1.
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(a) morning (b) afternoon

Fig. 1: Heat maps of mobile phone users’ traffic density in
mornings and afternoons in a city of China. (The results are
obtained based on the methods introduced in [4])

In this paper, we propose to use contrast data mining
on trajectories generated in mobile networks to analyze the
changes in phone users’ movement patterns during different
time periods. To the best of our knowledge, this is the first
paper that focuses on the temporal changes of human trajecto-
ries generated from heterogeneous mobile data networks. Our
main contributions are: (1) we propose a modified Hausdorff
distance to measure the dissimilarity between corridors in
heterogeneous mobile networks; (2) we propose a contrast
corridor mining algorithm based on Earth Movers’ Distance
to detect the differences/changes in movement patterns during
different time periods; (3) we conduct experiments over the
real-life data of mobile users in a southern province in China as
well as a synthetic data to evaluate our approach, which shows
improvements in both interpretability and detection ability.

The remainder of the paper is organized as follows. Section
II provides a review of the related work. Section III introduces
some definitions and formulates the problem we focus on. In
Section IV, we present the main methodology we propose for
mining contrast corridors, which includes the distance measure
for corridors, the distance measure for subtrajectories and
contrast corridor mining. The details of our experiments on
synthetic data as well as real life data and a discussion of the
results of our methods are shown in Section V. Section VI
concludes our work and proposes some future challenges.

II. RELATED WORK

In this section, we briefly review the most related work, i.e.,
corridor identification and contrast mining on trajectory data.

A. Corridor Identification

The problem of corridor/pathway identification has been
widely studied in the literature, mostly using subtrajectory
clustering [8] to address the challenges. For example, Lee et
al. [9] proposed a partition-and-group framework for clustering
trajectories, TRACLUS, which enables the discovery of com-
mon sub-trajectories, based on a trajectory partitioning algo-
rithm that uses the MDL (Minimum Description Length) prin-
ciple. A three-phase approach was proposed in [3] to discover
trajectory corridors (i.e., frequently followed paths) using the

discrete Fréchet distance. Trajectories are segmented into sub-
trajectories (short polygonal curves, not line segments) using
meshing-grids, and then the sub-trajectories in each grid cell
are clustered separately using hierarchical clustering. In [10], a
trajectory clustering method based on motifs (frequently occur-
ring substrings) was proposed. Trajectories are simplified first
and partitioned according to some predefined motion patterns,
such as wide left turn and short left turn. Then the algorithm
computes motifs and maps subtrajectories corresponding to
motifs into some feature space. Finally, DBSCAN (Density-
Based Spatial Clustering of applications with Noise) is applied
and representative trajectories are obtained using the method
mentioned in [9]. Recently, Zygouras et al. [5] proposed a
method for detecting a set of corridors from GPS trajectories
using the MDL principle. However, most studies focus on the
analysis of GPS data. For the trajectories in mobile networks,
in [11], the authors proposed a method based on the Apriori
algorithm to find frequent hotspot sequences. In our previous
work [4], a large-scale mobile network dataset was studied and
we found that mobile network data differs from GPS data due
to two inherent properties. Specifically, the temporal resolution
of mobile network data is normally much lower than GPS
data, and the spatial resolution of mobile network data can
vary from several hundred meters to a few meters according
to the cell tower density of different areas. Therefore, we
proposed a multi-scale trajectory clustering algorithm for
corridor identification in heterogeneous mobile networks. The
experimental results demonstrated that the proposed method
can better deal with mobile network data than other methods
proposed for GPS data. However, in our previous work the
temporal heterogeneity in users’ movement patterns was not
considered.

B. Contrast Mining

Contrast patterns are often defined as patterns whose sup-
ports differ significantly among the datasets that are under
contrast [12]. These contrast patterns can describe discrimi-
native behavior between classes or emerging trends between
datasets with respect to a property of interest by means of
an understandable representation [13], [14]. In the problem of
contrast mining on trajectory data, the aim is to find discrimi-
native patterns (e.g., sequences, graphs, matrices, tensors) that
occur frequently in one dataset and infrequently in another.
For example, in the work of Wang et al. [15], a framework
for discovering the impact of road closures on traffic flows was
proposed. By computing the growth rate of traffic flows on n-
Edgesets, the emerging n-Edgesets were selected by using the
LOF (Local Outlier Factor).

In our work, we focus on finding the discriminative cor-
ridors, which are represented as directed weighted graphs,
between two trajectory data sets generated in different time
periods.

III. OVERVIEW OF PROBLEM

In this section, we introduce some definitions and formulate
our problem.
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Fig. 2: Illustrative example of a corridor.

A. Preliminaries

Suppose that in a mobile network, there are N cellular tow-
ers, which are represented as C = {c1, c2, ..., cN}, and each
cell tower has a unique identifier and has known coordinates.

Trajectory A trajectory can be represented as a sequence of
states in a given period of time: Traj = {s1, s2, ..., sl}, where
l is the number of cells visited by the user. A state is defined
as s = (c, t, stay), where c is the cell ID, t is the time when
the user entered the current cell, and stay is the stay time in
the current cell.

Tracklet A tracklet, T , is a directed fragment of a trajectory
Traj, i.e., T = {sa, ..., sb}, where 1 ≤ a < b ≤ l.
Tracklets can be extracted from trajectories by using the
method proposed in [4], which considers movement direction
and stay time stay.

Corridor A corridor can be treated as a pathway that is
frequently traversed by a considerable number of mobile users
[4], which is a cluster of similar tracklets. It can be represented
as a graph, denoted as cor = 〈V,E〉, where V is the set of
cells in the corridor, E is the set of all the edges in the graph
and the weight of each edge represents the traffic load between
the corresponding two nodes. Fig. 4a shows an example of one
corridor, where small circles here represent nodes/cell towers,
and the line width of each edge represents the weight of the
corresponding edge.

B. Problem Statement

In this paper, we focus on characterizing the ma-
jor differences between these corridors in different time
periods. Specifically, given the historical trajectories of
M mobile users during two different time periods, i.e.,
the positive trajectory data set TRAJ+ = {Traj+1 ,
T raj+2 , . . . , T raj

+
M} and the negative trajectory data set

TRAJ− = {Traj−1 , T raj
−
2 , . . . , T raj

−
M}, and the identified

corridor sets COR+ =
{
cor+1 , cor

+
2 , . . .

}
and COR− =

{cor−1 , cor
−
2 , . . .}, our research question is how to detect

the significantly different corridors, called contrast corridors,
between COR+ and COR−. In order to answer this question,
we study the following two sub-problems:

(1) How to measure the dissimilarity between two corridors,
i.e., how can we calculate the distance between corridors?

(2) How to define and mine contrast corridors?

Fig. 3: Framework of our proposed method.

To address the first question, we should consider the het-
erogeneous distribution of corridors in order to distinguish
corridors located in dense areas (e.g., central areas) and avoid
missing similar corridors in sparse areas, such as corridors
located in rural areas. The challenge of the second sub-
problem is how to measure the change of support in this
specific problem, because it differs from general contrast
mining problems, which are mainly focused on transactional
data.

C. Framework

The framework of our proposed method is illustrated in
Fig. 3. The inputs are the record of mobile users and the
location of cell towers (longitude and latitude). Each record
includes user ID, cell ID and the corresponding timestamp.
There are three main steps to identify the contrast corridors in
different time periods. The first step is trajectory extraction.
In the first step, data are preprocessed by data aggregation,
data cleaning and oscillation resolution [16]. Then the tra-
jectory of each user is extracted according to our definition
in Section III-A. In the second step, corridors are identified
by using the method proposed in [4]. The final step is to
identify significantly different corridors by using contrast
mining. In particular, the pair-wise distances between corridors
are calculated and contrast corridors are formally defined and
extracted.

IV. METHODOLOGY FOR CONTRAST CORRIDOR MINING

In the following subsections, we describe the details about
our methodology for contrast corridor mining.

A. Distance Measure for Corridors

In order to measure the distance between two corridors, we
propose an algorithm that is based on EMD (Earth Mover’s
Distance) [17]. The EMD is a method that is applied to
evaluate the dissimilarity between two multi-dimensional dis-
tributions in some feature space where a distance measure
between single features, which we call the ground distance,
is given. It is proportional to the minimum amount of work
required to change one distribution into the other, where a unit
of work is defined as the amount of work needed to move a
unit of weight by a unit of ground distance.

Suppose there are two corridors corp = Gp 〈Vp, Ep〉 and
corq = Gq 〈Vq, Eq〉, where V denotes the vertices and E
represents the edges in the corridors. For each non-zero edge
in a corridor, the weight of it, w, is defined as the weight
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of the edge, which indicates the traffic volume between two
cells. Each corridor can be treated as a distribution, which
has a set of edges with their corresponding weights, i.e., a
cor can be represented as {(e1, we1), (e2, we2), ...}, where e
is an edge in the graph and we is the weight of edge e.
{(e1, we1), (e2, we2), ...} is also called the signature of the
distribution.

Then the ground distance matrix between two corridors is
defined as D = [dkl] (k = 1, ...,m, l = 1, ..., n), where m and
n are the number of edges in corridor p and q respectively,
and dkl is the ground distance between edge ek ∈ Ep and
edge el ∈ Eq . Considering the non-uniform distribution of cell
towers, we propose to calculate the ground distance between
two edges based on a modified version of the distance measure
proposed in [4], which is described in Section IV-B. Then we
can formulate the problem as a linear programming problem.

Given the corresponding signatures of two corridors and the
ground distance matrix, our aim is to find a flow F = [fkl],
where fkl is the flow between edges ek and el, that minimizes
the overall cost defined as:

WORK(p, q,F) =
m∑
k=1

n∑
l=1

fkldkl, (1)

subject to the following constraints:
1) fkl ≥ 0;

2)
n∑
l=1

fkl ≤ wek , 1 ≤ k ≤ m;

3)
m∑
k=1

fkl ≤ wel , 1 ≤ l ≤ n;

4)
m∑
k=1

n∑
l=1

fkl = min(
m∑
k=1

wek ,
n∑
l=1

wel).

The first constraint means that only the weight from corp
can be moved to corq . The second constraint ensures that the
total weight moved from an edge in corp to corq should be
no more than its own weight, and the third constraint ensures
that the total weight moved to any edges in corq should be no
more than their own weight. The last constraint requires that
the total weight moved should be equal to the total weight of
the lighter corridor.

Then the EMD is defined as the work normalized by the
total flow:

EMD(corp, corq) =

m∑
k=1

n∑
l=1

fkldkl

m∑
k=1

n∑
l=1

fkl

. (2)

B. Multi-scale Hausdorff Distance

In order to calculate the ground distance between two edges,
in this paper we adopt the distance measure proposed in [4]
with additional modifications by considering the direction.
Here we brief describe it and then introduce our modification
on it.

Hausdorff distance is the maximum distance of a set to the
nearest point in the other set, which represents the maximum
mismatch level between two point sets [18]. We modify it

from two aspects. First, instead of using the distance between
points, the distance between a point and a line segment is
adopted to measure the distance between a point in one set to
the other set. Second, to overcome the problem caused by cell
heterogeneity, the distance is normalized by a scaling factor,
which is calculated based on the cell density. The definition
is given as follows.

Modified Hausdorff Distance Given two tracklets T1 =
{c11, c12, ..., c1m} and T2 = {c21, c22, ..., c2n}, the MHD
dist(T1, T2) is defined as:

dist(T1, T2) = max(∆(T1, T2),∆(T2, T1)), (3)

∆(Ti, Tj) = max(dρ
ci1,Tj

, dρ
ci2,Tj

, . . . , dρcim,Tj
). (4)

In Equation 4, ∆(Ti, Tj) is the distance between two
tracklets. dρci,Tj

is the distance between a point ci and a tracklet
Tj , which can be calculated as:

dρci,Tj
= αci · dci,Tj , (5)

where α is the normalization factor and dc,T is the distance
between cell c and tracklet T , i.e., the shortest distance from
the cell center to all line segments in tracklet T . The equation
for calculating α is given as:

αci =
N · ρ (ci)∑N
k=1 ρ(ck)

, (6)

where ρ(ci) is the density of the cell center of ci. The density
contributed by a cell is assumed to be a Gaussian distribution.
The mean vector is the center of the cell tower, and that three
times the standard deviation is equal to the coverage radius of
the cell. Therefore, the accumulated density at each cell in the
network is considered as the density of the cell in a network,
which is:

ρ (ci) =

N∑
j=1

1√
2πσj

exp(−
d2ci,cj
2σ2

j

), (7)

where dci,cj is the spherical distance between centers of two
cells ci and cj , and σj = rj/3, rj is the coverage radius of
cj .

This measurement can be used to find the closeness of two
sets of points. However, it ignores the direction information
of sequences. Therefore, we propose to add another factor
that considers the direction of movement. Here we use the
accumulated direction of all the segments in one tracklet as
the direction of movement of the tracklet. Given a tracklet
Ti = {c1, c2, ..., cm}, the direction of movement of it can be
calculated as:

dirTi =
m−1∑
i=1

dir(si, si+1), (8)

where dir(·, ·) is the movement direction of two consecutive
states. Then the direction difference between two tracklets Ti
and Tj is:
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Algorithm 1: ∆(T1, T2)

Input: Two tracklets T1 and T2
Output: ∆(T1, T2)
∆(T1, T2) = 0 ;
for each c1i in T1 do

dc1iT2
=∞ ;

for each line segment c2jc
2
j+1 in T2 do

calculate the distance dc1i (c2jc2j+1)
) between a

point c1i and a line segment c2jc
2
j+1 ;

dc1iT2
= min(dc1iT2

, dc1i (c2jc2j+1)
) ;

end
calculate αc1i using Equation 6 and 7 ;
∆(T1, T2) = max(∆(T1, T2), αc1i · dc1iT2

) ;
end
calculate β using Equation 8, 9, 10 ;
∆(T1, T2) = β∆(T1, T2) .

dir(Ti, Tj) =
dirTi · dirTj

|dirTi
| · |dirTj

|
. (9)

The direction distance will be used to obtain the second
normalization factor β, which can be calculated as:

β =

{
1/dir(Ti, Tj), dir(Ti, Tj) > 0

∞. dir(Ti, Tj) ≤ 0
(10)

Then the distance between two tracklets after normalized
is:

∆(T1, T2) = β ·∆(T1, T2). (11)

The pseudocode is provided in Algorithm 1. The time
complexity of the Modified Hausdorff distance is the same as
the Hausdorff distance, which is O(n2), where n is the average
number of sample points in the trajectories under comparison.

Here we provide an example to illustrate how to calculate
the distance between two corridors. As shown in Fig. 4a,
we have two corridors, which have been represented as two
graphs. The signatures of these two corridors are cor1 =
{(e1, 10), (e2, 5), (e3, 9)} and cor2 = {(e4, 9), (e5, 6), (e6, 7)}
respectively. The ground distance matrix between these 6
edges can also be calculated by using the distance measure
described in Section IV-B. Suppose that the ground distance
matrix is equal to the matrix shown in Fig. 4b, by solving the
linear programming problem we can obtain the flow matrix
as shown in Fig. 4c, and the final EMD between these two
corridors is 0.2636.

C. Contrast Corridor Mining

Given two different datasets, two sets of
corridors P = {corp1 , ..., corpi , ..., corpN1

} and
Q = {corq1 , ..., corqj , ..., corqN2

} can be found respectively
using our proposed corridor identification method, where N1

and N2 are the numbers of corridors identified in these two
datasets, and corpi (1 ≤ i ≤ N1) and corqj (1 ≤ j ≤ N2)
represent each individual corridor in these two datasets.

(a) corridors (cor1, cor2)

(b) ground distance matrix D (c) flow matrix F

Fig. 4: An illustration of distance calculation between corri-
dors.

Algorithm 2: Contrast corridor mining
Input: a positive corridor set P and a negative

corridor set Q
Output: a set of contrast corridors Corcon
Corcon = ∅ ;
for each corpi in P do

common = 0 ;
for each corqj in Q do

calculate the EMD distance
EMD(corpi , corqj ) and the flow matrix F
between corpi and corqj ;

supp =

m∑
k=1

n∑
l=1

fkl∑
wpi

;
if EMD(corpi , corqj ) < disthres and
supp > suppthres then
common = 1 ;

end
end
if common 6= 1 then

Corcon = Corcon ∪ {corpi} ;
end

end

Then we define a contrast corridor as follows:

Contrast Corridor A corridor corpi in P is defined as a
contrast corridor if it satisfies any of these two following
conditions:

1) Distance If the distance between corridor corpi and any
other corridors in Q is greater than a threshold disthres,
then the corridor is treated as a contrast corridor in P ,
which indicates that corpi is sufficiently different from
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any corridors in Q.

EMD(corpi , corqj ) ≥ disthres,∀corqj ∈ Q; (12)

2) Support If two corridors are similar to each other but
a certain amount of earth of one corridor cannot move
to the other corridor, then it will be treated as a contrast
corridor. Satisfaction of this condition means that the
corridors under contrast are similar but their supports
are significantly different.

m∑
k=1

n∑
l=1

fkl∑
wpi

≤ suppthres,∀corqj ∈
{corq|EMD(corpi , corq) ≤ disthres, corq ∈ Q} ,

(13)
where

∑
wpi is the sum of the weights of all the edges

in corridor corpi .
The pseudocode is provided in Algorithm 2. The time com-

plexity of contrast corridor mining is O(N1N2)O(x), where
O(x) is the time complexity of solving the linear programming
problem, which can normally be solved in polynomial time
using the simplex algorithm.

V. EXPERIMENTS AND RESULTS

In this section, we first evaluate our proposed algorithm on
synthetic data in terms of accuracy, F1 score, precision and
recall. Then two real-life case studies are conducted to further
evaluate the effectiveness of our method.

A. Contrast Mining on Synthetic Data

To validate the effectiveness of our proposed method, we
compare it with two other baseline methods:

1. Non-density This method is generally similar to our
proposed method except for the distance metric between two
edges, i.e., the original Hausdorff distance is adopted. (The
non-density method can be any other state-of-the-art method
that does not take the heterogeneity into account, such as
DFM [19], DTW [20], LCSS [21], EDR [22] and SSPD [23].
However, since the results in [4] have shown that they are
not suitable for dealing with mobile network data, we have
included them in our empirical analysis.)

2. Node-based The ground distance is defined as the
spherical distance between two nodes, and for each node in a
corridor, its weight is defined as the degree of the node, which
is the number of edges that are incident to the node.

Synthetic data are generated by utilizing the real corridors
identified by the method proposed in [4]. We generate positive
and negative datasets based on the data of Foshan City. Given
a set of corridors COR = {cor1, cor2, . . . , corn}, we first
divide the corridor set into two equal-sized subsets (here we
assume n to be even, i.e., COR1 =

{
cor1, . . . , corn/2

}
and

COR2 =
{
corn/2+1, . . . , corn

}
). The corridors in COR2 are

considered as the negative dataset, i.e., COR− = COR2.
Then the corridors in the positive dataset COR+can be
generated by considering the following four scenarios:

1) n/2 corridors have same distribution as the corridors in
COR2;

0 20 40 60 80 100
0

0.5

1

0 20 40 60 80 100
0

0.5

1

0 5 10 15 20 25
0.7

0.8

0.9

1

0 20 40 60 80 100
0

0.5

1
our

non-density

node-based

Fig. 5: Performance comparison in contrast pattern finding
between our proposed method and two reference methods.

2) n/2 corridors have same distribution as the corridors in
COR1;

3) n/2 corridors have same cell set as the cell set of
corridors in COR2 but with distinct distributions;

4) n/2 corridors have same distribution as the corridors in
COR2 but with significantly different amount of traffic
volume.

Corridors generated by scenario 1 are treated as common
corridors for both positive and negative datasets, whereas
corridors generated by scenarios 2, 3 and 4 are contrast
corridors according to our definition.

Fig. 5 shows the comparison between our proposed method
and the other two baselines in terms of accuracy, F1 score,
precision and recall. The results indicate that our proposed
method performs better than the other two methods with
varying distance thresholds (which has been normalized for
comparison). In the node-based method, the direction of the
movement pattern is ignored. Therefore, some closely-located
corridors may be treated as very similar even though they have
different directions/connections between nodes.

B. Contrast Mining on Real Data

The real-life dataset was originally collected by China
Mobile, which contains 5,000 mobile users from a province
in South China. The cell locations (longitude and latitude) of
each user were recorded every 5 minutes in a time period of
three weeks (from 23:55 14/11/2015 to 23:50 05/12/2015).

First, we select two corridor sets to illustrate the effective-
ness of our proposed method compared with two other base-
lines. As shown in Fig. 6, there are six corridors in each of the
two corridor sets under contrast. While three of the corridors
(the first three corridors in each dataset, labeled as 1, 2, and
3) are the same in both the positive and negative datasets,
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(a) positive dataset

(b) negative dataset

Fig. 6: Two sets of corridors under contrast.

other corridors are different from each other. Fig. 7 shows
the distance matrices we obtained by using different methods.
Ideally, in the distance matrix, the value at position (1, 1),
(2, 2) and (3, 3) should be much smaller than the distances
at other positions, because in our dataset there are only these
three pairs of similar corridors. By using our proposed method,
clearly similar corridors have smaller distances between each
other. Although the non-density and node-based method can
also identify similar corridors, incorrect conclusions may be
obtained when calculating the distance between corridor 5 in
the positive dataset and corridor 5 in the negative dataset. This
is because these two corridors have similar directions and they
are located close to each other in a dense area. Our method
can deal with this well since it normalizes the distance by
considering the heterogeneous distribution of cell towers.

Then two sets of experiments are conducted using the
dataset in Foshan City, i.e., weekday (Mon-Fri) vs weekend
(Sat-Sun) and morning (0:00-12:00) vs afternoon (12:00-
0:00). The EMD between weekdays and weekends in Fig. 8a
is 0.7632. There are more contrast corridors identified on
weekdays in Fig. 8a, and most of them are located in the
central area, which indicates that people would move more
frequently on weekdays, especially in the central area. The
contrast patterns on the weekdays may be attributed to work
commutes. By contrast, some contrast patterns surrounding
the urban area (e.g., beltway) are identified on weekends, as
shown in Fig. 8b, and these patterns may be explained by
leisure activities out of the city center on weekends.

The results of morning vs afternoon (Fig. 8c and Fig. 8d)
indicate that the city is more active in the afternoon compared
with in the morning, since more contrast corridors are identi-

(a) our

(b) non-density

(c) node-based

Fig. 7: The distance matrix between two sets of corridors
obtained by three different methods.
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(a) weekday (b) weekend

(c) morning (d) afternoon

Fig. 8: Identified common and contrast corridors in different
time periods. Corridors with blue color indicate they are
common corridors in two time periods, while other colors are
contrast corridors.

fied in the afternoon. Most contrast corridors in the morning
are located outside the city area, while in the afternoon some
contrast corridors are identified in the central area. Note that
the afternoon time period starts from 12:00 to 0:00, which
means the corridors are generated not only from the afternoon
activity but most of the evening movement of mobile users.

VI. CONCLUSION

In this paper, a framework for mining the changes in the
movement patterns of mobile users is proposed. We con-
sider the non-homogeneous distribution of cell towers in the
distance measure, which is more appropriate for trajectories
generated in mobile networks compared to other state-of-the-
art distance measures. A contrast corridor mining algorithm
is also proposed to find significant changes between the
corridors generated in different time periods. Both synthetic
and real-life datasets are applied to validate the effectiveness
of our proposed method. Contrast corridors can be effectively
detected from trajectories in mobile networks, and our method
outperforms others by an average 20% improvement in the F1
score. Our findings could help mobile operators to identify
the key focus areas (i.e., corridors) in large-scale deployments
of 5G networks for cost minimization, and the ability to
identify the temporal dynamics of corridor patterns can help
the management and orchestration of 5G network resources.

In the future, it would be interesting to study the identification
of the change points of movement patterns.
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