
Classifying Neuromorphic Datasets with Tempotron
and Spike Timing Dependent Plasticity

Laxmi R. Iyer
Machine Intellection

Institute of Infocomms Research
Singapore

Email: laxmi r iyer@i2r.a-star.edu.sg

Yansong Chua
Huawei Technologies

Shenzhen, China

Abstract—Although the spike rate of a neuron codes useful
information, there is a lot of evidence that information is
contained in the precise timing of spikes.

Static images have long been used as benchmarks for ANNs.
However, in the neuromorphic community novel benchmarks
have developed that have both spatial and temporal information.
We require capable SNN algorithms that classify temporal
datasets.

There has been a lot of research in training SNNs. Trained
ANNs have been converted to SNNs. SNNs have been trained
using variants of backpropagation. However, less research has
been done on local learning rules, and biologically plausible
methods such as spike timing dependent plasticity (STDP) in
training SNNs.

In this paper, we present a biologically plausible algorithm that
utilizes STDP and tempotron learning rule to classify temporal
datasets. We have used DvsGesture to test our algorithm.

Index Terms—spiking neural networks, spike timing dependent
plasticity, tempotron, self organized feature map, DvsGesture

I. INTRODUCTION

The computational mechanisms of the brain have been
a challenge for researchers for the past several decades.
Early researchers developed artificial neural networks (ANN),
and later, the more biological spiking neural networks were
developed. The main advantage of spiking neural networks
over their predecessors is the ability to spike. Although the
spike rate of a neuron codes useful information, there is a
lot of evidence that information is contained in the precise
timing of spikes. Primates are able to classify objects around
100-150 ms after the presentation of the stimulus. Given the
amount of processing that is necessary for the task, it is not
possible to use a time averaged spike code. [1]–[3] Specialized
subsystems such as the electrosensory systems of electric fish
[4] and the auditory system of barn owls [5], [6] require
precise timings of spikes. It has been shown that spike timing
is important for the vestibular system [7] and somatosensory
system [8]. According to neuroprosthetic studies, precise spike
timings are also important in generating smooth movement [9].
From the above studies, we note that a rate code mechanism
alone is not adequate in explaining neural coding in the brain.

This research is supported by Programmatic grant no. A1687b0033 from
the Singapore government’s Research, Innovation and Enterprise 2020 plan
(Advanced Manufacturing and Engineering domain)

It is therefore important to develop neuromorphic algorithms
that account for the temporal coding of neurons.

Images have long been used as benchmarks for artificial
neural network algorithms - MNIST was used to test early
neural networks, now ImageNet and CIFAR-10 are examples
of current day benchmarks. However, these datasets contain
spatial data that do not vary with time. As a result, precise
spike timings are not required to classify them. Therefore,
in the field of neuromorphic computing, new benchmarks
have been created, for e.g. N-MNIST [12], N-Caltech101
[12], MNIST-DVS [13] and DvsGesture [36]. Many of these
are recorded using the DVS camera [10] and have the time
dimension. However, as we argue in [14], many of these
datasets are recorded from static images, and therefore do not
contain useful information in time (see [14] for more details).
In this paper, we use the term ‘temporal dataset’ frequently.
By ‘temporal dataset’ we mean that patterns in the dataset vary
in time, and the manner in which they vary in time is essential
information that is required to classify the dataset. DvsGesture
is a dataset containing recordings of hand movements, and so
it has information that varies in time, therefore it is a temporal
dataset.

Spiking neural networks, despite their advantages, have not
reached the same performance as their ANN counterparts. In
order to improve performance, several approaches have been
taken to train SNNs in the recent years. The first approach
for training SNNs is to train ANNs, and convert the trained
ANNs to SNNs. The trained weights will then be used for in-
ference. The obvious advantage of this is that well-established
deep learning techniques can be applied for training before
conversion. There are some problems, however. For example,
ANNs have negative activations but SNNs fire only spikes.
Applying maxpooling in SNNs is not as straightforward as
ANNs as maxpooling is a non-linear operation and cannot
be applied to spikes. For more information on the issues of
converting SNNs to ANNs, see e.g. [15]. Due to these issues,
a second approach is to constrain ANNs to have properties
similar to SNNs before conversion. Traditional ANN methods
are applied to the constrained networks before conversion to
SNN. However, converting ANNs to SNNs is evidently not
able to take advantage of the temporal properties that are
unique to SNN spikes.

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

Another more recent approach of training SNNs is to
use variants of backpropagation that are suitable for SNNs.
These methods are able to take advantage of the temporal
dynamics of spiking neural networks. For example, [16] bin
spike trains, and perform gradient descent on the histogram
bins. [17] describe a spatiotemporal backpropagation rule that
separates spatial input signals that come from other neurons,
and temporal dynamics that arise from the neuron itself. [18]
has a backpropagation rule that takes into account temporal
dependencies in a spike train for credit assignment. In [19]
the backpropagation rule updates a rate coded error signal
on a macro scale and also has updates on a shorter micro
time scale that captures individual spikes. In general, however,
backpropagation requires global signals in order to propagate
errors throughout the network.

Finally, an approach that is less established is the use of
local and biologically plausible training rules. For practical
applications, these provide a very hardware-efficient solution
to training SNNs. In neuroscience, biologically plausible train-
ing of SNNs is of great interest. However, research on STDP
methods is relatively new, and results on benchmark datasets
have not yet matched other SNN training methods. There are
a few researchers that have explored STDP. The group by
Masquelier and Thorpe [20], [21] and Panda et. al. [24]–[26]
have explored convolutional neural networks (CNNs) in STDP
and get very good results on MNIST and other benchmarks
used for ANNs. However, their work has been tested on and
optimized for static datasets such as MNIST, Caltech-101,
etc. Thiele et. al [27], [28] have goals similar to ours, and
have produced a CNN with STDP, which achieves very good
results on N-MNIST. However, as we have noted in [14], as
N-MNIST has very little information in the temporal domain,
and does not require an SNN to classify it, and ANNs can do
just as well (see [14], Section 3). We, on the other hand, have
used DvsGesture, produced from dynamic hand movements to
test the dataset.

In this paper, we present the first STDP network that has
been tested on a truly temporal dataset. The network described
in this paper is an extension of the algorithms described in
[29]–[31]. [29] is an interesting implementation of a spiking
neural network with STDP, that performs clustering of the
input space. [14], [30] has extended this to classify N-MNIST.
[31] builds upon [29] by adding the functionality of a self
organized feature map (SOM). The network described in this
paper builds on earlier works to create an STDP network that
is capable of classifying temporal datasets.

Earlier, [32] used a combination of the self organized feature
map (SOM) and tempotron [33] to classify an audio dataset,
TIDIGITs [32]. However, their SOM was an ANN, and the
incoming spikes to the SOM were very regular. Our network
is similar to theirs - however, our incoming spikes are from
the DvsGesture dataset, and we use a spiking SOM. While
they classify audio, DvsGesture is consist of recordings from
the DVS camera.

The next section details the methods, followed by exper-
iments and results. The final section is on discussion and

conclusion.

II. METHODS

A. Network Architecture

The network consists of input layer, excitatory layer and
inhibitory layer. The input layer consists of Ninp neurons
each of which corresponds to a pixel of the input image. The
excitatory layer and inhibitory layer consist of Ne neurons.
Input neurons activate neurons in the excitatory layer. Each
excitatory neuron is connected to an inhibitory neuron with
a fixed weight. When an excitatory neuron activates the
corresponding inhibitory neuron, the inhibitory neuron inhibits
all neurons in the excitatory layer except for the neuron that
activated it, with varying degrees of inhibition. Therefore, the
functionality of a winner take all (WTA) network is created.

Instead of inhibiting all neurons with a fixed rate as in [29],
the level of inhibition is increased in proportion to the square
root of the Euclidean distance from the firing neuron, as in
the SOM learning algorithm [31]. This is controlled by two
parameters, cinhib and cmax. The level of inhibition equals
cinhib multiplied by Euclidean distance, or cmax whichever
is less. cmax is the maximum level of inhibition. Therefore,
when an excitatory neuron fires, neurons that are close by in
distance may have a chance to fire, while neurons further away
will not. For more information on the inhibition, refer to [31].

Weights between the input neurons and excitatory neurons
are plastic. When an excitatory neuron spikes, the input-
excitatory weights are learned using STDP. The weights be-
tween excitatory and inhibitory layers are fixed.

Threshold Adaptation: If a spike occurs in the excitatory
neuron, the threshold is increased so it is harder to spike. The
effect of threshold adaptation is that learning is not dominated
by a single neuron, but is distributed across the neurons.

Further details of the basic network structure and function-
ality are described in [29], [30]. Details on SOM functionality
are given in [31].

B. Temporal Datasets

In the above network, a neuron fires a spike in response to
an input, and due to STDP, learns this input. Due to graded
inhibition, several neurons may fire, but learn the same input
pattern to varying degrees. This network [29] and its SOM
variant [31] have been used to successfully classify MNIST
and N-MNIST datasets.

For a pattern that temporally varies over the course of the
pattern presentation, such learning is not sufficient. Several
independent neurons must spike over the period of pattern
presentation during which temporal subpatterns of the main
pattern should be learned. Such a sequence of neurons should
be used to classify the data.

We enhance the networks described above with this capa-
bility by making the following changes.

1) Short Time constants - The membrane time constant, τM
and the synaptic STDP time constant, τSTDP are short,
and around 1

10 th the presentation time. With a short τM ,
spiking occurs regularly over short time periods. With a

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

small τSTDP , learning occurs only when pre and post
synaptic spikes occur within a short interval.

2) Reset of parameters - At every k ms where k is 1
10 th

the presentation time, all voltage traces, all currents
and current traces, and synaptic traces are reset. The
parameters are reset to ensure that after the k ms time
window, learning is completely independent of what is
learnt in the previous time windows.

3) Online Learning - In the previous systems, during
pattern presentation, if no spikes arrived, the current (in
[14], [30]) or spike rate (in [29]) was increased and the
pattern was presented again, to have atleast n spikes.
However, in this system, a sequence of spikes from
different neurons should occur at regular intervals during
pattern presentation. Therefore, the maximum excitatory
presynaptic current (EPSC) is kept constant so learning
occurs online.

4) Classification of sequences - The sequence of output
spikes generated by the STDP system are further classi-
fied using the tempotron learning rule. The tempotron
learning rule is a biologically plausible method for
classifying sequences of spikes, and can be used to
classify the spikes generated by the STDP system.

Collectively these measures ensure neurons spike at regular
intervals throughout the pattern presentation, independently
learning temporal subpatterns of the overall input pattern. This
is reflected in the learning of weights (Fig. 1). The sequence of
neurons that spike are then classified by the tempotron learning
rule.

C. DvsGesture

Several neuromorphic benchmarks today are datasets
recorded by moving a DVS camera over static images. We
argue in [14] that although the temporal dimension exists
in these datasets, they do not really have discriminatory
features in the temporal domain. DvsGesture is created by
recording dynamic arm movements using a DVS camera. Since
the arm movements are dynamic, we expect DvsGesture to
contain discriminatory features in the time domain, which are
necessary information to classify the dataset. We therefore feel
that DvsGesture is a suitable dataset to test our algorithm.

DvsGesture is comprised of 1,342 patterns. Arm movements
were recorded from 29 subjects who stood against a stationary
background. There are 11 arm and hand movements each
performed with 3 illumination conditions. These gestures
were recorded using the DVS128 ([13]) camera. 11 classes
correspond to gestures such as hand waving, arm rotations
clockwise, arm rotations counter-clockwise and clapping. The
11th class, Other consists of a gesture invented by the subject.
For ease of classification, we took out the Other class.

III. RESULTS

A series of experiments were conducted to test the system.
Firstly EPSC value, Axe was adjusted to ensure that most
patterns elicited a sequence of output spikes. In the series of

experiments described in this section, two parameters were
varied, and the system was explored:

1) Number of output neurons, Ne - if the number of output
neurons is too small, patterns are not adequately learned.
If the number of output neurons is too large, overfitting
occurs as there are too many parameters to be trained.

2) Inhibition parameter, cinhib - this is the parameter that
controls the neighborhood size in the SOM. If inhi-
bition is too low, the number of neurons that learn
independently is too low. Therefore, not enough learning
takes place. If inhibition is too high, neurons learn
more independently, and overfitting may occur. cinhib
is expressed in nA in all results, and the inhibitory post
synaptic current (IPSC) is equal to cinhib× square root
of Euclidean distance from the first spiking neuron.

A. Adjusting learning and threshold adaptation rate for Net-
work size

Initially, we noted that same amount of Axe current that
generates a sequence of output spikes on a larger network (i.e.
one with larger number of output neurons) is unable to do so
when the network is smaller. This is because when learning is
distributed across neurons, in networks with smaller number
of output neurons, individual neurons fire more frequently
than on networks with larger output neurons. When neurons
fire frequently, threshold increases faster (see Section II-A,
Threshold Adaptation), and can increase to an extent that no
neuron fires. Therefore, if networks of different sizes (i.e.
number of output neurons) are to be compared, the threshold
adaptation amount should be adjusted for network size. Since
learning rate is complementary to threshold adaptation rate
(see [14], section 5) learning rate should also be adjusted
accordingly. In this section we describe how this is done.

The total amount of threshold increase in the network
depends on the number of spikes across all neurons throughout
training period (we denote it as Ns) and is equal to:

Ns∆x (1)

where ∆x is the amount of threshold increase per spike,
in a neuron, or the threshold adaptation rate. If we suppose
that all neurons have an equal probability of spiking (this
assumption is true if a few neurons do not dominate learning
in the network), then the total amount of threshold increase in
a particular neuron throughout training can be approximated
to

Ns∆x

Ne
(2)

where Ne is the number of neurons in the network.
The largest network size used for comparisons is denoted by

N∗
e . In the experiments in this paper, we set N∗

e as 900. We set
Axe such that a sequence of output spikes are generated for a
network of N∗

e neurons. Let the threshold adaptation rate in a
network of size N∗

e equal to ∆x∗. We adjust ∆x for networks
of any size, such that the amount of total threshold increase

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

Fig. 1. Input-excitatory weights of a 900 output neuron network after training - Left: weights from input to each excitatory neuron is arranged as 128× 128
matrix to visualize the input learnt. These indiviual neuron weights are arranged on a 30× 30 grid. Right (a)-(d): Zoomed snapshots of the image on the left.
As can be seen the weights learn temporal snapshots of different actions. These snapshots can be used as raw material for producing actions from different
classes. (a.) Some images are a part of clapping and others, arm rolling, and others, left hand wave or left hand clockwise or counterclockwise movements,
(b.) Can be part of left-hand waving or left hand clockwise or counterclockwise movements, (c.) can be a part of right-hand waving or right hand clockwise
or counter clockwise movements, and (d.) can be part of arm rolling or air drums. Similar actions are grouped together in space due to SOM functionality.

TABLE I
TRAINING AND TEST ACCURACY FOR NETWORKS OF DIFFERENT SIZES

Number of
output neurons

Inhibition
(nA)

Training
Accuracy

Testing
Accuracy

49 10 48.50% 45.38 %
100 10 60.11% 46.82%
400 10 81.01% 52.16%
900 10 86.48% 48.05%

(2) is equivalent to that of the system with N∗
e neurons. This

is as follows:

Ns∆x
∗

N∗
e

=
Ns∆x

Ne
(3)

where Ne is the network size of any network. Readjusting
this equation, we get:

∆x = ∆x∗
Ne

N∗
e

(4)

On smaller networks ∆x is set to the amount calculated in
equation 4. Since learning rate and spike frequency adaptation
are complementary (see [14] section 5), learning rate is also
adjusted in the same manner:

η = η∗
Ne

N∗
e

(5)

where η∗ is the learning rate for a network of size N∗
e . In

this manner, networks of different sizes can be compared.
In the first experiment, we ran the network for sizes 900,

400, 100, and 49. The inhibition level was set to 10. A sample

TABLE II
TRAINING AND TEST ACCURACY FOR NETWORKS WITH LESS INHIBITION

Number of
output neurons

Inhibition
(nA)

Training
Accuracy

Testing
Accuracy

400 2.5 81.97% 47.84%
400 5 81.56% 51.13%
400 10 81.01% 52.16%

of the sequence of output neurons firing in response to the
input can be seen in Fig. 2. As can be seen, the output spikes
are very similar to the input sequence. Both training and test
accuracy for each of the networks is shown in table I. As we
have seen a 400 neuron network gives the best results in this
section. The test accuracy is 52.16%.

B. Training Networks with less Inhibition

Larger networks with more inhibition may lead to more
overfitting, since more neurons learn independently of one
another. Less inhibition means that neighborhood neurons
learn more collectively leading to less number of independent
parameters. Therefore, smaller networks were trained with less
inhibition. The network size was fixed at 400, and inhibition
levels were 10, 5 and 2.5. The results are shown in table II. As
can be seen in the results, there is no improvement in results
with less inhibition.

In all the results we have seen so far, there is a large
difference between the training accuracy and test accuracies.
The reason for this is evident - the dataset has only 732
patterns. Input dimensionality is 128 × 128 input neurons.
Weights are of the size 128×128× number of output neurons.

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

(a) (b)

Fig. 2. (a.) Sequence of frames created from input spikes. Input spikes
collapsed over every m ms, where m is 1

10
th the presentation time. The

images from top to bottom depict a pattern from the class right hand clockwise.
(b.) The images from top to bottom show the sequence of output neurons that
spike in response to the input. Each output neuron is represented by weights
from the input, and rearranged on a 128 × 128 grid as in fig. 1. As can be
seen, the sequence of output neurons that fire on the right, look very similar
to the input spikes on the left.

Therefore, the number of parameters to be trained is very high,
and the dataset is not adequate to train it. In the next section,
we will examine ways to overcome overfitting.

C. Methods to overcome Overfitting

Reducing the number of training parameters or increasing
the number of patterns in the training set are two methods to
reduce overfitting. We will explore methods for doing both in
this section.

1) Maxpooling: One of the popular deep learning methods
to overcome overfitting is maxpooling. We apply maxpooling
to the input patterns, so they are reduced from a dimensionality
of 128× 128 to that of 64× 64 and 32× 32 respectively. In
the DvsGesture dataset, patterns consist of AER events rather
than intensity values at pixels. We, therefore do maxpooling
of the events. If an event exists in any of the pixels in the
n × n patch of the input pattern at time t, an event is set at
the corresponding pixel of the maxpooling output at time t.

Maxpooling was applied using both n = 2, i.e. 2×2 as well
as n = 4, i.e. 4× 4 filters (see Fig. 3). Results obtained from
this is given in Tables III and IV. As can be seen, maxpooling

Fig. 3. Left: Sequence of frames created from input spikes from a 128 ×
128 input. Input spikes collapsed over every m ms, where m is 1

10
th the

presentation time. The images from top to bottom depict a pattern from the
class right hand wave. In the two columns on the right, the original 128×128
pattern is maxpooled to create a 64×64 pattern (middle column), and 32×32
pattern (right).

TABLE III
TRAINING AND TEST ACCURACY FOR MAXPOOLING WITH 2× 2 FILTERS

Number of
output neurons

Inhibition
(nA)

Training
Accuracy

Testing
Accuracy

100 10 60.93% 48.46%
400 10 83.33% 48.25%
900 10 80.19% 39.63%

does not improve the results, with the best results of 48.46%
not exceeding the best results in the previous section.

2) Data Augmentation: Another technique we used for
overfitting was data augmentation. An important consideration
to be taken while producing augmented images with Dvs-
Gesture is that the dataset is represented using address-event
representations (AER) rather than just intensity values at pixels
as in regular images. Therefore, the transformation should be
applied to each event rather than pixel value. An event has
an (x, y) coordinate along with a time stamp t and polarity
p so we denote this event with the tuple (x, y, t, p). Image
augmentation is applied only to the training patterns and not
the test patterns.

We do mirroring the events along the y-axis and shifting the
pixels along x- and y- axes, and have 7 total transformations.

The first transformation is mirroring. In a pattern, the x-
coordinate of each event is mirrored along the y-axis, as
follows. Suppose xmax is the maximum value of the x-
coordinate. So xm, the transformed x-coordinate is:

(x, y, t, p)→ (xm, y, t, p)|xm = xmax + 1− x (6)

Applying this transformation to all events in pattern P1

produces a new pattern P2 which is a reflection of all events
along the y-axis in P1. Note that for patterns of some classes,
the mirrored pattern belongs to a different class. For example if
pattern P1 is right hand wave the mirrored pattern will be left

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

TABLE IV
TRAINING AND TEST ACCURACY FOR MAXPOOLING WITH 4× 4 FILTERS

Number of
output neurons

Inhibition
(nA)

Training
Accuracy

Testing
Accuracy

100 10 58.47% 35.93%
400 10 81.56% 47.84%
900 10 88.93% 41.27%

Fig. 4. Left: Original pattern: Sequence of frames created from input spikes
from a 128 × 128 input. Input spikes collapsed over every m ms, where
m is 1

10
th the presentation time. The images from top to bottom depict a

pattern from the class right hand clockwise. Right: Frames from the pattern
that has been produced as a result of applying the Mirroring transformation
(Equation 6) to the pattern shown on the left. This pattern is of class left hand
counterclockwise.

hand wave. If P1 is right arm clockwise, the mirrored pattern
P2 will be left arm counter clockwise. This can be seen in Fig.
4. We have applied the transformation in Equation 6 patterns
of all classes except air guitar. This is because we expect
guitar players to predominantly use one side for playing guitar,
and do not want to change the characteristics of the original
dataset.

The next transformations involve shifting the events by a
few pixels in the x- and y-axes. The shifting transformations
are applied to the original patterns as well as the patterns
produced by the mirroring transformation (Equation 6).

(x, y, t, p)→ (xs1, y, t, p)|xs1 = x+ 2 (7)

TABLE V
TRAINING AND TEST ACCURACY FOR DATASET WITH AUGMENTED DATA

Number of
output neurons

Inhibition
(nA)

Training
Accuracy

Testing
Accuracy

100 10 48.23% 43.33%
400 10 70.37% 56.06%
900 10 83.23%% 60.37%

This involves the shifting of the image to the right by 2
pixels. Similarly, image was shifted to the right by 4 pixels,
to the left by 2 and 4 pixels respectively, shifted up by 2 pixels
and down by 2 pixels.

So each pattern P0 will produce 6 new patterns, P1 − P6,
one pattern for each transformation. The class of the shifted
pattern will remain the same as the original pattern. Those
events whose address after shifting falls outside the 128×128
are removed from the new patterns.

All the transformations described above augmented the size
of the dataset from 732 to 5777. Results from running the
system with the augmented images are shown in Table V.

As can be seen, data augmentation does increase the test ac-
curacy to 60.37%, a significant improvement over the previous
results.

IV. DISCUSSION AND CONCLUSION

In this paper, we present an SNN with STDP learning,
SOM and tempotron for temporal datasets and test it with
the DvsGesture dataset. We note that the best results with the
DvsGesture dataset is 60.37%.

Earlier networks have been tested on DvsGesture, and their
results are much better. Maro and Benosman’s method [22]
has an accuracy of 96.6%, The system proposed by Yang et.
al. [23] gets 97.4% accuracy, SLAYER has 93.64% accuracy
and Amir et. al. [12] gets 96.49% accuracy. [22] and [23] use
advanced computer vision techniques in their networks. Amir
et. al [12] and SLAYER [18] use backpropagation with deep
neural networks for classification. The network described in
[12] has 16 layers, while SLAYER has 8 layers.

However, our system uses the biologically plausible learning
mechanisms for classification. As the main purpose of this net-
work is to demonstrate SNN learning on a temporal database,
we do not use additional computer vision techniques in this
paper. Since CNNs using STDP are just being researched, we
first performed this experiment on a single layer feedforward
network which is obviously a much simpler network than
CNNs with backpropagation described above. Further work
will be done on such deep networks to avoid overfitting and
for enhanced accuracy.

It should be noted that research in this area is important,
but relatively new. SNNs that use STDP have been recently
developed (for e.g. [20], [21], [24]–[29]), but they have either
been optimized for static datasets such as MNIST and Caltech-
101, or neuromorphic datasets derived from static images
such as N-MNIST (which we argue in [14] does not have
discriminative information in the time domain), but as far as
we know none have been tested on temporal datasets.

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

The highlights of this paper are:
• SNN with biologically plausible learning rules - STDP,

SOM and tempotron.
• Tested on a temporal dataset, DvsGesture. DvsGesture

consists of dynamic hand gestures, which need informa-
tion of temporal sequences in order to classify it.

• Online learning - Unlike [29], the network on which this
paper was based, this network learns online from a stream
of AER data, without requiring a pattern to be presented
again, if it did not elicit spikes.

• Clustering of the dataset (first layer) is completely un-
supervised. The supervised tempotron is used only for
learning sequences of output spikes. Error signals are not
propagated to the first layer to improve the clustering
results.

As there is a large difference between the training and test
accuracy, we can see that the system has overfitting. Further,
when the data is augmented there is an improvement in the
results, showing that the small dataset is inadequate to train all
the parameters of the network, due to all-to-all connectivity.
The issues in this paper that need to be addressed are as
follows:

• We need to move towards CNNs, rather than all-to-all
connection networks.

• Rather than having artificial time steps after which all
parameters are reset, the system should be more event-
based [27] - Rather than having artificial clocking mech-
anisms such as system reset, learning should be triggered
by events. In this manner, when there are no events, there
is no learning. This is important for energy efficiency.

Examples of CNNs with STDP that have recently been de-
veloped are [20], [21], [24]–[28]. More temporal datasets need
to be developed. DvsGesture and N-Cars [36] are examples of
datasets that are being developed to address the issues with
neuromorphic datasets derived from static images.

In the spirit of neuromorphic systems, we need to move
closer to biological mechanisms. Research in STDP based
mechanisms is still nascent, with results generally not being
equal to those with backpropagation or converting SNNs to
ANNs. This research is an important step in that direction.

ACKNOWLEDGMENT

The authors would like to thank Jibin Wu for helping with
the tempotron.

REFERENCES

[1] H. Kirchner and S. Thorpe, “Ultra-rapid object detection with saccadic
eye movements: Visual processing speed revisited,” Vision Research vol.
46, pp. 17621776

[2] S. Crouzet and H. Kirchner and S. Thorpe, “Fast saccades toward faces:
Face detection in just 100 ms,” Journal of Vision, vol. 10, pp. 117

[3] D. Butts and C. Weng and J. Jin and C. -I. Yeh and N. Lesica and
J. -M. Alonso and G.B. Stanley, “Temporal precision in the neural
code and the timescales of natural vision,” Nature vol. 449, pp. 9295,
doi:10.1038/nature06105

[4] W. Heiligenberg, “Neural Nets in Electric Fish,” Cambridge: MIT Press,
1991

[5] W. Gerstner and R. Kempter and J. van Hemmen and H. Wagner,
“Hebbian learning of pulse timing in the barn owl auditory system,”
In Pulsed Neural Networks, eds. W. Maass and C. Bishop, pp. 351375,
MIT Press, 1999.

[6] C. Carr and M. Konishi, “A circuit for detection of interaural time
differences in the brain stem of the barn owl,” Journal of Neuroscience,
vol. 10, pp. 32273246, 1990.

[7] S. G. Sadeghi, M.J. Chacron and M. C. Taylor and K. E. Cullen, “Neural
variability, detection thresholds, and information transmission in the
vestibular system,” Journal of Neurosci., vol. 27, pp. 771781, 2007,
doi:10.1523/JNEUROSCI.4690-06.2007

[8] M. Harvey and H. Saal and J.F. Dammann III and S. J. Bens-
maia, “Multiplexing stimulus information through rate and tempo-
ral codes in primate somatosensory cortex,” PLoS Biology 11, 2013
doi:10.1371/journal.pbio.1001558

[9] D. Popovic and T. Sinkjaer, “Control of Movement for the Physically
Disabled,” London: Springer-Verlag, 2000

[10] G. Orchard and G. Cohen and A. Jayawant and N. Thakor, “Converting
Static Image Datasets to Spiking Neuromorphic Datasets Using Sac-
cades,” Front. Neurosci., vol.9, no.437, Oct. 2015

[11] T. S.-Gotarredona and B. L.-Barranco, “Poker-DVS and MNIST-DVS.
Their History, How They Were Made, and Other Details,” Front.
Neurosci., vol. 9, no. 481, 2015, doi:10.3389/fnins.2015.00481

[12] A. Amir and B. Taba and D. Berg and T. Melano and J. McKinstry and
C. D. Nolfo, “A Low Power, Fully Event-Based Gesture Recognition
System,” IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2017

[13] T. S.-Gotarredona and B. L.-Barranco,“A 128 × 128 1.5% Contrast
Sensitivity 0.9% FPN 3 s Latency 4 mW Asynchronous Frame-Free
Dynamic Vision Sensor Using Transimpedance Preamplifiers,” IEEE
Journal of Solid-State Circuits, vol. 48, no. 3, pp. 827-838, 2013

[14] L.R. Iyer and Y. Chua and H. Li, “Is Neuromorphic MNIST neuromor-
phic? Analyzing the discriminative power of neuromorphic datasets in
the time domain,” arXiv 2018

[15] M. Pfeiffer and T. Pfeil, “Deep learning with spiking neu-
rons: opportunities and challenges,” Front. Neurosci., 2018, doi:
10.3389/fnins.2018.00774.

[16] E. Stromatias and M. Soto and T. Serrano-Gotarredona and B. Linares-
Barranco, “An event-driven classifier for spiking neural networks fed
with synthetic or dynamic vision sensor data,” Front. Neurosci., 11:350,
2017, doi: 10.3389/fnins.2017.00350.

[17] Y. Wu and L. Deng and G. Li and J. Zhu and L. Shi, “Spatio-temporal
backpropagation for training high-performance spiking neural networks,”
arXiv [Preprint], arXiv:1604.03058, 2017.

[18] S. B. Shreshtha and G. Orchard, “SLAYER: Spike layer reassignment
in time,” 32nd Conference on Neural Information Processing Systems
(NeurIPS), 2018.

[19] Y. Jin and P. Li and W. Zhang, “Hybrid macro/micro level backprop-
agation for training deep spiking neural networks,” arXiv [Preprint],
arXiv:1805.07866.

[20] S.R. Kherapidsheh and M. Ganjitabesh and S.J. Thorpe and T.
Masquelier, “STDP-based spiking deep convolutional neural net-
works for object recognition,” Neural Networks, vol. 99, 2017,
doi:10.1016/j.neunet.2017.12.005

[21] M. Mozafari and M. Ganjitabesh and A. Nowzari-Dalini and S.J.
Thorpe and T. Masquelier, “Bio-inspired digit recognition using reward-
modulated spike-timing-dependent plasticity in deep convolutional net-
works,” Pattern recognition, vol. 94, pp. 87-95, 2019.

[22] J-. M. Maro and R. Benosman, “Event-based gesture recognition with
dynamic background suppression using smartphone computational ca-
pabilities”, arXiv [preprint] arXiv:1811.07802v2 [cs.CV], 2019

[23] J. Yang and Q. Zhang and B. Ni and L. Li and J. Liu and M. Zhou
and Q. Tian, “Modeling point clouds with self-attention and gumbel
subset sampling”, IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2019

[24] P. Panda and K. Roy, “Unsupervised regenerative learning of hierar-
chical features in spiking deep networks for object recognition,” 2016
International Joint Conference on Neural Networks, July 2018.

[25] C. Lee and P. Panda and G. Srinivasan and K. Roy, “Training deep
spiking convolutional neural networks with STDP-based unsupervised
pre-training followed by supervised fine-tuning,” Front. Neurosci., vol.
12 no. 435, 2018, doi:10.3389/fnins.2018.00435

[26] C. Lee and G. Srinivasan and P. Panda and K. Roy, “Deep spiking
convolutional neural network trained with unsupervised spike-timing-

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

dependent plasticity,” IEEE Transactions on Cognitive and Developmen-
tal Systems, vol. 11, no. 3, 2019.

[27] J. C. Thiele and O. Bichler and A. Dupret, “A timescale invariant STDP-
based spiking deep network for unsupervised online feature extraction
from event-based sensor data,” 2018 International Joint Conference on
Neural Networks, July 2018.

[28] J. C. Thiele and O. Bichler and A. Dupret, “Event-based, timescale
invariant unsupervised online deep learning with STDP,” Front. Comp.
Neurosci., vol. 12, no. 48, 2018, doi: 10.3389/fncom.2018.00046

[29] P. U. Diehl and M. Cook, “Unsupervised learning of digit recognition
using spike-timing dependent plasticity,” Front. Comp. Neurosci., Aug.
2015

[30] L. R. Iyer and A. Basu, “Unsupervised learning of event-based image
recordings using spike-timing-dependent plasticity,” 2017 International
Joint Conference on Neural Networks (IJCNN), May 2017.

[31] H. Hazan and D. Saunders and D. T. Sanghavi and H. Siegelmann and R.
Kozma, “Unsupervised Learning with Self-Organizing Spiking Neural
Networks,” 2018 International Joint Conference on Neural Networks
(IJCNN), July 2018.

[32] Z. Pan and H. Li and J. Wu and Y. Chua, “An event-based cochlear
filter temporal encoding scheme for speech signals,” 2018 International
Joint Conference on Neural Networks (IJCNN), 2018.

[33] R. Gutig and H. Sompolinsky, “The tempotron: a neuron that learns
spike-timing based decisions,” Nature Neuroscience, vol. 9, no. 3, Mar.
2006

[34] S. Johansson and I. Birznieks, “First spikes in ensembles of human
tactile afferents code complex spatial fingertip events,” vol. 7, pp.
170177, 2004

[35] F. Gabbiani and J. Midtgaard, “Neural information processing,” Ency-
clopedia of Life Sciences (Nature Publishing Group), pp. 112, 2001

[36] A Sironi and M. Brambilla and N. Bourdis and X. Lagorce and R.
Benosman, “HATS: Histograms of Averaged Time Surfaces for Robust
Event-based Object Classification,” To appear in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2018

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

