

End-to-end Multimodel Deep Learning for Malware

Classification

 Elijah Snow*, Mahbubul Alam†, Alexander Glandon†, Khan Iftekharuddin†

* University of Texas at Dallas (elijah.snow@utdallas.edu)

† Electrical and Computer Engineering, Old Dominion University (malam001, aglan001, kiftekha @odu.edu)

Abstract— Malicious software (malware) is designed to cause

unwanted or destructive effects on computers. Since modern

society is dependent on computers to function, malware has the

potential to do untold damage. Therefore, developing techniques

to effectively combat malware is critical. With the rise in

popularity of polymorphic malware, conventional anti-malware

techniques fail to keep up with the rate of emergence of new

malware. This poses a major challenge towards developing an

efficient and robust malware detection technique. One approach

to overcoming this challenge is to classify new malware among

families of known malware. Several machine learning methods

have been proposed for solving the malware classification

problem. However, these techniques rely on hand-engineered

features extracted from malware data which may not be effective

for classifying new malware. Deep learning models have shown

paramount success for solving various classification tasks such as

image and text classification. Recent deep learning techniques are

capable of extracting features directly from the input data.

Consequently, this paper proposes an end-to-end deep learning

framework for multimodels (henceforth, multimodel learning) to

solve the challenging malware classification problem. The

proposed model utilizes three different deep neural network

architectures to jointly learn meaningful features from different

attributes of the malware data. End-to-end learning optimizes all

processing steps simultaneously, which improves model accuracy

and generalizability. The performance of the model is tested with

the widely used and publicly available Microsoft Malware

Challenge Dataset and is compared with the state-of-the-art deep

learning-based malware classification pipeline. Our results

suggest that the proposed model achieves comparable

performance to the state-of-the-art methods while offering faster

training using end-to-end multimodel learning.

Keywords— Deep Learning, Convolutional Neural Network,

Recurrent Neural Network, End-to-end learning, Multimodel,

Malware Classification

I. INTRODUCTION

Malware is short for malicious software and refers to
software whose purpose is to cause damage to a computer [1]
for reasons including stealing or ransoming information,
stealing processor power, or causing system failure [2]. Now
that society relies heavily on computers, combating malware is
very important. There are several current techniques for
malware detection. Signature based detection is based on
matching bytecodes over a known set of malicious signature
bytecodes [3]. The signature method is fast but purely
reactionary and unable to recognize new malware. Behavioral
analysis executes the program in a controlled environment and

observes it for malicious behavior, which is slow and risky [4].
Heuristic analysis uses features of a file to determine whether or
not it is malware [5]. Heuristic analysis is limited by the
effectiveness of its classification model, since it is designed by
hand. Because deep learning can be used to create a
classification model, using deep learning to extend heuristic
analysis has the potential to drastically improve performance
over heuristic analysis. Deep learning can surpass the
weaknesses of hand-designed models by cutting down the time
for model design and by using information that may be beyond
the comprehension of the programmer.

Deep learning has already shown paramount success in
various application domain such as computer vision, medical
image analysis, autonomous driving, etc. Consequently, deep
learning techniques are utilized for solving intricate cyber
security problems such as malware classification. Wang et al.
propose a malware classification technique which utilizes
XGBoost. The ensemble outputs are combined using geometric
mean and grid search to obtain a classification results. . The
proposed technique is tested on the Microsoft Malware
Classification Challenge (MMCC) dataset and achieves a top
classification accuracy of 99.83% [6, 7]. This specific method
ranked number one in the Microsoft Malware Classification
challenge in Kaggle. The 2nd and 3rd place teams used similar
methods, using random forests to determine feature importance
[8, 9]. The downside of Wang et al.’s approach is that their
model took two days to train [7]. Kalash et al. used a deep
convolutional network and transfer learning from the VGG-16
model [10] to classify malware based on input conversion to
grayscale image representation. They are able to achieve a
98.99% validation accuracy without using any other features of
the malware, and are notably the only strong result that does not
use ensembling to boost their accuracy [11]. Drew et al.
approach the problem from a gene sequencing perspective and
use ensembling method. Their classifier, Strand, is given the
file’s byte sequence and opcode sequence as input and is able to
achieve 98.59% classification accuracy for the MMCC dataset
[12]. Yan et al. also use an ensemble method with a deep
convolutional network based on VGG-16 [10] in conjunction
with a recurrent network composed of LSTM layers. They use
truncated backpropagation through time and a data
augmentation strategy based on a sliding window. The
convolutional and recurrent networks are trained separately, and
their results are combined with a second level classifier and
achieves a classification accuracy of 99.36% [13].

The above mentioned models rely on using an ensemble of
models or on using a pre-trained network as a starting point to

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

boost their accuracy. Conversely, this paper proposes an
efficient end-to-end multimodel deep learning architecture for
solving the malware classification task. End-to-end learning
multimodel leverages automatic feature learning from the
training data, eliminating the need for manual feature
engineering. Moreover, our proposed method incorporates
different deep learning architectures and jointly learns to capture
relevant features from different meta information of the malware
data. Additionally, our proposed method inherently achieves the
benefit of ensembling due to the use of multiple deep learning
models in a pipeline. Our proposed method shows competitive
accuracy when compared to the state-of-the-art methods.

To evaluate the performance of our proposed method we use
the challenging MMCC dataset which was publicly released
under a contest run on Kaggle. MMCC is composed of 10868
labeled pieces of malware from 9 different classes, and 10873
unlabeled pieces of malware. The structure of this dataset is
described in the testing methodology section of this paper and
has been released to be used freely for research purposes [14].
The use of this dataset has made it more straightforward to
compare different kinds of malware classification methods,
including other state-of-the art work. Our results suggest that our
end-to-end multimodel learning achieves accuracy comparable
to other state-of-the-art deep learning models with very good
training time. The model is able to achieve a best 4-fold
classification accuracy of 99.23% in only 35 minutes of training.

The remaining of the paper is organized as follows. Section
II covers the required background information for this model.
Section III discusses the testing methodology. Section IV shows
our results and comparison to other methods. Section V
concludes and discusses future work.

II. BACKGROUND

This section discusses the necessary background required to
understand our proposed end-to-end multimodel learning
malware classification technique.

A. Convolutional Neural Network

A Convolutional Neural Network (CNN) is a neural
network architecture that is not fully connected. Any given
node in a CNN is connected to a subset of the previous layer,
rather than the entire layer as would be the case with a densely
connected network. These connections are governed by the
convolution operation. In convolution, a kernel, which is a
matrix of weights and windows of the data of the previous layer
at combined in a dot product. When this dot product is applied
by sliding the window over a previous layer, this implements a
convolution. Kernel weights are adjusted in the same way that
a connection’s weights would be adjusted during the
backpropagation of dense network. A kernel may also be
referred to as a filter. For example, with a 2-dimensional input,
a kernel of size 3x3 would mean that each neuron in the output
layer is connected to a 3x3 window of the previous layer. This
technique takes advantage of the spatial relationship of the data
and as a result is particularly useful for image processing.
Typically, several kernels are applied in convolution to the
same input, producing multiple outputs, called feature maps.
For instance, an input of 128x128 with 32 kernels would

produce 32 feature maps, resulting in an output of size
128x128x32. Convolutional layers are typically used in
conjunction with pooling layers, which downsample a 2D input.
With a 2x2 max-pooling layer, each output neuron is selected
by taking the maximum value of a 2x2 area of the input,
resulting in an output layer with dimensions that are half of the
input dimensions. Other types of pooling are possible but less
common [15, 16]. Unlike a convolutional layer, in pooling the
areas of a layer that map to the next layer do not overlap. The
convolution and pooling are described below.

𝐶𝑜𝑛𝑣𝑂𝑢𝑡(𝑥, 𝑦) =

∑ ∑ 𝐶𝑜𝑛𝑣𝐼𝑛∆𝑦 (𝑥 − ∆𝑥, 𝑦 − ∆𝑦)𝐹𝑖𝑙𝑡𝑒𝑟(∆𝑥, ∆𝑦)∆𝑥 (1)

𝑃𝑜𝑜𝑙𝑂𝑢𝑡(𝑥, 𝑦) =

𝑀𝑎𝑥 {
𝐶𝑜𝑛𝑣𝑂𝑢𝑡(2𝑥, 2𝑦), 𝐶𝑜𝑛𝑣𝑂𝑢𝑡(2𝑥, 2𝑦 + 1),

𝐶𝑜𝑛𝑣𝑂𝑢𝑡(2𝑥 + 1,2𝑦), 𝐶𝑜𝑛𝑣𝑂𝑢𝑡(2𝑥 + 1,2𝑦 + 1)
}

(2)

B. Long Short Term Memory

LSTM (Long Short Term Memory) is a special form of
recurrent neural network designed to remember data for longer
periods of time than a normal recurrent neural network and was
introduced by Hochreiter and Schmidhuber. LSTMs differ from
regular recurrent neural networks in that they use “gates” to
control what the network remembers more effectively. Neurons
in a normal RNN use their previous value and an input to
produce their new value. LSTMs decide what their state should
be using a gate that controls the input value and a gate that
controls the previous value. These gates allow for better control
over what the network remembers. LSTMs also use an output
gate to determine what parts of their stored value should be sent
along to the next neuron. LSTM is suitable for sequences
processing including sentences or code since their meanings are
dependent on long range contextual information [17]. LSTM
operation is governed as follows.

For X {Input, Forget, Output}, Wx is a set of weights
applied to outside input and Ux is a set of weights applied to
recurrent input. it is the set of external inputs to the gate at time

t and mt is the set of recursive inputs from time t. 𝜎 is the

sigmoid function.

𝑓𝑡 = 𝜎(𝑊𝑓𝑖𝑡 + 𝑈𝑓𝑚𝑡−1) (3)

𝑖𝑡 = 𝜎(𝑊𝑖𝑖𝑡 + 𝑈𝑖𝑚𝑡−1) (4)

𝑜𝑡 = 𝜎(𝑊𝑜𝑖𝑡 + 𝑈𝑜𝑚𝑡−1) (5)

Each gate receives input from itself 1 time step ago and

outside input, and takes their weighted sum. A constant bias

may also be added to each value. The memory value ct of the

cell is calculated using these values in (6). Note that ∘ denotes

an element-wise product.

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

𝑐𝑡 = 𝑐𝑡−1 ∘ 𝑓𝑡 + 𝑖𝑡 ∘ 𝑡𝑎ℎ𝑛(𝑊𝑐𝑖𝑡 + 𝑈𝑐𝑚𝑡−1) (6)

Output of the LSTM cell is as follows:

ℎ𝑡 = 𝑜𝑡 ∘ tanh(𝑐𝑡) (7)

C. End-to-end Training

 End-to-end is a technique where an entire model is trained
simultaneously, rather than training its parts individually [18].
End-to-end is designed to reduce human interference in the
training of a model and eliminate the need of a separate scheme
to combine multiple trained networks. End-to-end models
optimize all processing steps simultaneously, and this has been
shown to improve performance of the models. A major principle
of end-to-end training is that the model, not the programmer,
decides what features are important. For example, Dieleman et
al. [19] use end-to-end models to autonomously extract features
from raw audio input for input representation understanding.
They note certain invariants are preserved in the features that
their model discover. End-to-end models also exhibit improved
accuracy [18, 20] and generalizability of the model to more
challenging datasets [21]. Also models that are trained end-to-
end, are more compact with smaller number of parameters [18].
Typically, separate models are trained and combined in
ensemble postprocessing [7, 13], but the need for this is
subverted by training the model end-to-end. End-to-end training
has been used primarily in image and language processing [22,
23] and a goal of this paper is to determine whether it can be
applied successfully to the challenge of malware classification,
and whether we can obtain competitive performance by doing
so. The top three teams in the MMCC used Random Forest to

determine important features [7-9], and end-to-end training in
this paper serves as an alternative for determining important
features without having to use any ensembling method, and
without having to weigh the importance of different kinds of
networks.

III. METHODOLOGY

A. End-to-end multimodel deep learning model

Our end-to-end model multimodel learning design is
composed of three types of networks in parallel branches: a
dense network, a CNN, and an RNN using LSTM. To best
facilitate this end-to-end learning, our multimodel is provided
with a wide array of features. The architectures are selected to
efficiently handle different attributes of the data and to capture
important features during training. Each of these neural network
architectures works optimally for different kinds of data, and
many kinds of data are available from a malware file. By using
the different architectures in conjunction with each other, we
seek to ensure that all the different kinds of data available from
the malware can be used as input to the neural network
architecture that is best suited for them. The structures of each
type of network are quite simple and are expanded upon in detail
in Table 1. In short, the dense network is composed of four fully
connected layers, the convolutional network of three
convolutional layers with pooling layers between them, and the
recurrent network of one LSTM layer. The three network
architectures are then connected in parallel and attached to four
fully connected layers as shown in Fig. 1.

The model is constructed using Keras [24] with Tensorflow
[25] as the backend and trained on a system using an Intel i7
6700k processor, Nvidia GTX 1070 GPU, 16GB of memory,
and Windows 10. The model is trained with an Adam [26]
optimizer minimizing training loss with learning rate 5*10^-4

Figure 1. Architecture of the end-to-end multimodel deep learning based malware classification technique.

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

and a learning rate decay of 10^-6 per epoch. Training occurred
in 20 epochs with a batch size of 16 at a mean of 105 seconds
per epoch resulting in a total training time of 35 minutes.
Algorithm 1 details the training and testing procedure for our
model using Adam optimization and 4-fold cross-validation.

The layers that compose the model and their properties are
detailed in Table 1. Dense(x,y) refers to a fully connected layer
with x neurons, using y activation function. Conv(x,(y1x
y2),(z1xz2)) refers to a convolutional layer producing x feature
maps using a kernel of size (y1,y2) and stride size (z1,z2) with
padding and ReLU activation in all instances. MaxPool refers to
a max pooling operation with a pooling size of 2x2 and a stride
size of 2x2. LSTM(x) refers to an LSTM layer with x neurons.
For dropout [27], a standard dropout-rate of 0.5 is used in all
cases. Any parameters not mentioned used Keras default values.

Algorithm 1: Training End-to-End Multimodel
Learning using cross validation fold

1: Input: Metadata, 64x64 Byte Code Images, 60 step Op
Code sequences

2: generate concatenated training vectors VAll from metadata

3: split vectors into 4 folds with 25% vectors removed to
comprise each training set T1,T2,T3,T4

4: for fold = 1:4

5: α1 = 5*10-4 (set learning rate for initial epoch)

6: for epoch = 1:20

7: for batch = 1:batches per fold

8: stochastically select batch Vbatch from VAll

9: gbatch = f(Vbatch , batch-1)

 calculate end-to-end gradient w.r.t. to all parameters

 for given batch Vbatch

10: calculate Adam “bias-corrected” moments

 mbatch (first moment) and vbatch (second moment)

11: fold, batch= fold, batch-1 – αepoch mbatch/(√𝒗𝒃𝒂𝒕𝒄𝒉+)

 update weights with using moments

 (divide-by-zero guard)

12: αepoch+1 = (1-10-6) αepoch (decay learning rate)

13: Output: fold (trained weights for end-to-end multimodel

 for each fold)

TABLE I. DETAILED ARCHITECTURE OF THE PROPOSED MODEL

Dense Network Convolutional Network

Dense(4096,ReLU)
Dropout

Dense(4096,ReLU)

Dropout
Dense(4096,ReLU)

Dropout

Dense(9,softmax)

Conv(32,(5x 5),(2x2))
MaxPool

Conv(64,(5x 5),(1x1))

MaxPool
Conv(96,(3x 3),(1x1))

MaxPool

Dropout

Recurrent Network End Layers

LSTM(64)
Dropout

Dense(4096,ReLU)
Dropout

Dense(4096,ReLU)

Dropout
Dense(1024,ReLU)

Dropout

Dense(9,softmax)

B. MMCC Data description and pre-processing

The MMCC dataset is composed of 10868 pieces of

malware that are labeled in accordance to membership in one

of nine malware classes. Additionally, the set contains 10873

unlabeled pieces of malware, but they are not used for this

work. For each piece of malware in the dataset, two files are

provided. First, for each instance of malware there is a .bytes

file containing the bytecode of the malware executable, with the

portable executable header removed so that the malware cannot

run and contaminate the system. Second, a .asm file is provided,

having been generated by the IDA decompiler [23], that

contains metadata about the malware such as its starting address

and the opcodes it calls [14]. For training our model, the

following metadata information from the files is collected.

● The sizes of the two files

● The length of the different sections of the .asm file

● Opcode 1, 2, and 3-grams

● Byte 4-grams

This metadata information is used as input to the dense

portion of the network. Because the number of possible n-grams

is very large, less frequent examples are ignored. More

specifically, for opcode 1-grams, the 66 most common are used,

and the 50 most common opcode 2-grams and 3-grams are

used. For the byte 4-grams, the 100 most common are used.

These values are combined into a single vector for use as input

to the model, and the choice of metadata is intentionally kept

simple; we rely on the deep model to extract the features that

provide power in classification.

For input to the convolutional portion of the network,

grayscale image conversions of the malware files are used as

input. The creation of grayscale images from the malware is

based on the concept that a byte can be interpreted as the

intensity of a pixel, and the conversion is simple. For each byte

in the bytecode of a piece of malware, the intensity of the

corresponding pixel in the output image is set to match it. Some

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

of the bytecode files contain ‘??’ in place of some bytes, and

these are interpreted as a value of 0 (a black pixel).

Interestingly, there are images embedded in some of the

malware files which become visible after this conversion. Each

image is resized to 64x64 using bicubic subsampling to

decrease computation time. For data augmentation, a random

shear of up to 10 degrees and a random shift of up to 64 pixels

are used before the image is given to the model. Example

bytecode images are shown in Fig 2.

To obtain the input to the RNN, the first 60 opcodes in each

file are used. There appears to be little or no improvement in

accuracy for a higher number of opcodes, despite an increase in

run time. However, lowering the number of opcodes used did

decrease the accuracy. Additionally, using the first 60 opcodes

in a file showed better results than opcodes from arbitrary

locations. For files with fewer than 60 opcodes, a special “zero”

opcode is inserted until there are 60. Opcodes are suitable for

use with LSTM because they occur in an order corresponding

to an execution sequence. Embedding is used to make the data

formatted suitably for input to LSTM. No further adjustments

are made to the data.

IV. RESULTS AND DISCUSSION

We performed the following malware classification

experiment with our end-to-end multimodel deep learning
technique. For each malware example corresponding to a
bytecode and metadata/opcode file pair, we extract 3 raw data
structures. These include first the grayscale image matrix from
bytecodes, second the opcode sequence, and third the metadata
concatenated into a vector. This feature information is compiled
into a dataset including associated malware family target class
labels per each example. Then we perform 4-fold cross
validation given the features and labels. This involves splitting
vectors into 4 folds with 25% vectors removed to comprise each
training set T1, T2, T3, T4 as described in algorithm 1, line 3.
Then for each fold, Adam optimization is performed as
described in algorithm 1, lines 6-12. Adam optimization is an
advanced modification of gradient descent learning and updates
the parameters for the end-to-end multimodel for each fold.
After training, each fold is tested, and the accuracies for each
fold are saved. Average and best accuracy are considered as
discussed below and compared to results from literature.

The model achieves a mean fold accuracy of 98.35% and a
best validation accuracy of 99.23% as shown in Table 2.
Extraction of features from the given files takes a mean of 1.674
seconds and varies proportionately with the size of the files.
Once the model is constructed, using it to classify a new
malware input takes about 0.03 seconds. Some works dealing
with the MMCC dataset use mean cross-validation
classification accuracy to measure performance, and some
simply use some of the training data for validation to test
accuracy. Since using some of the training data for validation is
equivalent to a single fold out of a k-fold cross-validation, we
use our best single fold result for accurate comparison to these
works, and mean cross-validation accuracy for comparison to
those who tested their own accuracy with cross-validation. The
confusion matrix for our 4-fold cross-validation is shown in
Fig. 3.

TABLE II. 4-FOLD CROSS-VALIDATION ACCURACY OF THE END-TO-END

MULTIMODEL LEARNING USING THE MMCC DATASET

Fold 1 Fold 2 Fold 3 Fold 4 Mean

Accuracy

Best

Accuracy

98.21% 98.29% 97.67% 99.23% 98.35% 99.23%

We compared our method to other works trained and tested
on MMCC dataset. With respect to heavily feature engineered
works like Wang et al. [7], our approach has lower classification
accuracy but runs far faster. Their model takes about 2 days to
generate [7]. Our model can be generated in 5 hours of feature
extraction about 30 minutes of training. Since their feature
engineering is heavily tailored to the dataset, new data would not
only take longer to feed through their model but would also
likely have lower accuracy than the current dataset. Ahmadi et
al. apply expert knowledge to more efficiently choose features

Fig. 2. Example grayscale images from the MMCC dataset

Fig. 3. Confusion matrix of classification results averaged from 4 folds.

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

compared to Wang et al. and achieve comparable results in a
shorter training time [28].

Our model slightly outperforms Kalash et al. [11] who
achieve an accuracy of 98.99% using 90% of the MMCC dataset
for training and 10% for validation when compared to our
99.23% accuracy. Their model utilizes a deep convolutional
network, which is the only other non-ensembled method
mentioned here and is notable for using only a grayscale image
conversion of the malware [11]. Their method however uses a
pretrained VGG network for initial layers. Our model foregoes
ensembling and use of pretrained networks, which all the other
models here (besides that of Kalash et al.) use to boost their
accuracy. Again, Drew et al. [12] with their gene sequencing
style model is able to achieve better accuracy compared to our
method, however, requires more training time and utilizes
manual ensemble technique. Table 3 below summarizes the
comparison of our method to other state-of-the-art malware
classification methods.

Yan et al. achieved a 99.36% classification accuracy on the
training data using 90% of their dataset for training and 10% for
validation. Their dataset is composed of the Microsoft Malware
Classification Challenge dataset plus a set of benign files of
around the same size, and 90% of this dataset is used for training.
Their accuracy score is comparable to our score of 99.23%
classification accuracy using a 75% of the MMCC dataset for
training and 25% for validation. Classification using their model
and ours takes 0.03 seconds, but ours uses features that take
longer to extract. They utilize a special data augmentation
strategy to balance out the representation of each class [13] since
the classes are not equally represented in the training data. For
example, one particular class comprises only 41 out of the 10868
pieces of malware in the MMCC training set [14].

Our model has two benefits that allow it to generalize to
other datasets. First, our multimodel learning uses covers the
widest array of features that will apply to a different dataset as
opposed to a model which uses only a narrow scope of features.
Second, the end-to-end training avoids excessive tailoring of a
model to a dataset and should be resilient to a generalization in
dataset as noted in [21] for end-to-end learning. Approaches like
those of Wang et al. [7] and Ahmadi et al. [28] which rely
heavily on feature engineering are not suitable to a change in
dataset because they are designed with the unique elements of
the MMCC dataset in mind. Yan et al.’s [13] approach uses a
similar breadth of features but in the event that retraining is
necessary for a new dataset their model would be less
appropriate since multiple networks must be trained separately
versus just one for our model. Retraining will be necessary if a
dataset has different malware families than the MMCC dataset,
but if the new dataset has the same families of malware, then our
model should still have excellent performance even without
retraining.

TABLE III. COMPARISON OF OUR PROPOSED END-TO-END MULTIMODEL

DEEP LEARNING PIPELINE WITH STATE-OF-THE-ART MODELS

V. CONCLUSION

This paper proposes end-to-end multimodel deep learning
for malware classification. We demonstrate that end-to-end
trained models are viable for malware classification and that
they achieve competitive performance with fast training. End-
to-end learning is useful for improving our model’s accuracy
and generalizability. Our proposed end-to-end model
incorporates three different types of deep neural network
architectures to capture diverse features from the meta
information of the malware data. We conduct a cross validation
experiment and achieve an average 98.35% classification
accuracy with 4-fold cross-validation using the MMCC dataset
which is comparable to the state-of-the-art methods trained on
the MMCC dataset. Moreover, our method shows significant
training time improvement when compared to the state-of-the-
art methods trained using the MMCC dataset.

Our future plan is to deploy our model in a live cyber
environment to study its performance in real time. Furthermore,
we plan to generalize the proposed multimodel learning
architecture for different types of multimodal data including
features extracted from malware metadata, byte codes, and
system calls.

VI. ACKNOWLEDGEMENT

 This work is partially supported by NSF under grant CNS-
1659795.

 Validation
Accuracy

Training
Time

(Hours)

Ensembling Measurement
Scheme

End-to-end

multimodel
(Our

proposed)

98.35% 0.58 No 4-fold CV

End-to-end

multimodel

(Our
proposed)

99.23% 0.58 No 75% training

25% validation

Wang et
al.[7]

99.83% 48 Yes 4-fold CV

Ahmadi et
al.[28]

99.77% N/A Yes 5-fold CV

Yan et
al.[13]

99.36% 2.91 Yes 90% training
10% validation

Kalash et
al.[11]

98.99% N/A No 90% training
10% validation

Drew et
al.[12]

98.59% 0.75 Yes 10-fold CV

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

REFERENCES

 [1] R. Moir. "Defining Malware: FAQ." https://technet.microsoft.com/en-

us/library/dd632948.aspx (accessed 7/23/18.

[2] M. J. Schwartz. "Cryptojacking Displaces Ransomware as Top Malware
Threat." https://www.bankinfosecurity.com/cryptojacking-displaces-

ransomware-as-top-malware-threat-a-11165 (accessed 7/23/18.

[3] I. Santos, Y. K. Penya, J. Devesa, and P. G. Bringas, "N-grams-based File
Signatures for Malware Detection," ICEIS (2), vol. 9, pp. 317-320, 2009.

[4] I. Firdausi, A. Erwin, and A. S. Nugroho, "Analysis of machine learning

techniques used in behavior-based malware detection," in 2010 second
international conference on advances in computing, control, and

telecommunication technologies, 2010: IEEE, pp. 201-203.

[5] Z. Bazrafshan, H. Hashemi, S. M. H. Fard, and A. Hamzeh, "A survey
on heuristic malware detection techniques," in The 5th Conference on

Information and Knowledge Technology, 28-30 May 2013 2013, pp. 113-

120, doi: 10.1109/IKT.2013.6620049.
[6] K. Team, "Microsoft Malware Winners' Interview: 1st place, "NO to

overfitting!"," No Free Hunch, 2015.

[7] X. Wang, J. Liu, and X. Chen, "Microsoft Malware Classification

Challenge (BIG 2015) First Place Team: Say No to Overfitting," 2015.

[Online]. Available:

https://github.com/xiaozhouwang/kaggle_Microsoft_Malware/blob/mast
er/Saynotooverfitting.pdf.

[8] M. Trofimov, D. Ulyanov, and S. Semenov, "Microsoft Malware

Classification Challenge third place solution," 2015. [Online]. Available:
https://github.com/geffy/kaggle-malware/blob/master/description.pdf.

[9] M. Michailidis and G. Jacobusse, "Microsoft Malware Classification

Challenge 2nd place solution documentation," 2015. [Online]. Available:
https://kaggle2.blob.core.windows.net/forum-message-

attachments/75478/2389/documentation.pdf.

[10] K. Simonyan and A. Zisserman, "Very Deep Convolutional Networks for
Large-Scale Image Recognition," CoRR, vol. abs/1409.1556, 2014.

[Online]. Available: http://arxiv.org/abs/1409.1556.

[11] M. Kalash, M. Rochan, N. Mohammed, N. D. B. Bruce, Y. Wang, and F.
Iqbal, "Malware Classification with Deep Convolutional Neural

Networks," in 2018 9th IFIP International Conference on New

Technologies, Mobility and Security (NTMS), 26-28 Feb. 2018 2018, pp.
1-5, doi: 10.1109/NTMS.2018.8328749.

[12] J. Drew, M. Hahsler, and T. Moore, "Polymorphic malware detection

using sequence classification methods and ensembles," EURASIP Journal
on Information Security, journal article vol. 2017, no. 1, p. 2, January 23

2017, doi: 10.1186/s13635-017-0055-6.

[13] J. Yan, Y. Qi, and Q. Rao, "Detecting Malware with an Ensemble Method
Based on Deep Neural Network," Security and Communication

Networks, vol. 2018, p. 16, 2018, Art no. 7247095, doi:

10.1155/2018/7247095.

[14] R. Ronen, M. Radu, C. Feuerstein, E. Yom-Tov, and M. Ahmadi,
"Microsoft Malware Classification Challenge," CoRR, vol.

abs/1802.10135, 2018. [Online]. Available:

http://arxiv.org/abs/1802.10135.
[15] Y. LeCun and Y. Bengio, "Convolutional networks for images, speech,

and time series," in The handbook of brain theory and neural networks,

A. A. Michael Ed.: MIT Press, 1998, sec. 303704, pp. 255-258.
[16] A. Krizhevsky, I. Sutskever, and G. E. Hinton, "ImageNet classification

with deep convolutional neural networks," presented at the Proceedings

of the 25th International Conference on Neural Information Processing
Systems - Volume 1, Lake Tahoe, Nevada, 2012.

[17] S. Hochreiter, J\, \#252, and r. Schmidhuber, "Long short-term memory,"

Neural Comput., vol. 9, no. 9, pp. 1735-1780, 1997, doi:
10.1162/neco.1997.9.8.1735.

[18] M. Bojarski et al., "End to End Learning for Self-Driving Cars," CoRR,

vol. abs/1604.07316, 2016. [Online]. Available:
http://arxiv.org/abs/1604.07316.

[19] S. Dieleman and B. Schrauwen, "End-to-end learning for music audio,"

in 2014 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2014: IEEE, pp. 6964-6968.

[20] Y. Zhou and O. Tuzel, "Voxelnet: End-to-end learning for point cloud

based 3d object detection," in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2018, pp. 4490-4499.

[21] D. Amodei et al., "Deep speech 2: End-to-end speech recognition in

english and mandarin," in International conference on machine learning,
2016, pp. 173-182.

[22] A. Graves and N. Jaitly, "Towards end-to-end speech recognition with
recurrent neural networks," presented at the Proceedings of the 31st

International Conference on International Conference on Machine

Learning - Volume 32, Beijing, China, 2014.
[23] S. Iizuka, E. Simo-Serra, and H. Ishikawa, "Let there be color!: joint end-

to-end learning of global and local image priors for automatic image

colorization with simultaneous classification," ACM Trans. Graph., vol.
35, no. 4, pp. 1-11, 2016, doi: 10.1145/2897824.2925974.

[24] F. Cholet, "Keras," 2015. [Online]. Available: https://keras.io.

[25] Mart et al., "TensorFlow: a system for large-scale machine learning,"
presented at the Proceedings of the 12th USENIX conference on

Operating Systems Design and Implementation, Savannah, GA, USA,

2016.

[26] D. P. Kingma and J. Ba, "Adam: A method for stochastic optimization,"

arXiv preprint arXiv:1412.6980, 2014.

[27] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R.
Salakhutdinov, "Dropout: a simple way to prevent neural networks from

overfitting," The journal of machine learning research, vol. 15, no. 1, pp.

1929-1958, 2014.
[28] M. Ahmadi, D. Ulyanov, S. Semenov, M. Trofimov, and G. Giacinto,

"Novel Feature Extraction, Selection and Fusion for Effective Malware

Family Classification," presented at the Proceedings of the Sixth ACM
Conference on Data and Application Security and Privacy, New Orleans,

Louisiana, USA, 2016.

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

