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Abstract— Malicious software (malware) is designed to cause 

unwanted or destructive effects on computers. Since modern 

society is dependent on computers to function, malware has the 

potential to do untold damage. Therefore, developing techniques 

to effectively combat malware is critical. With the rise in 

popularity of polymorphic malware, conventional anti-malware 

techniques fail to keep up with the rate of emergence of new 

malware. This poses a major challenge towards developing an 

efficient and robust malware detection technique. One approach 

to overcoming this challenge is to classify new malware among 

families of known malware. Several machine learning methods 

have been proposed for solving the malware classification 

problem. However, these techniques rely on hand-engineered 

features extracted from malware data which may not be effective 

for classifying new malware. Deep learning models have shown 

paramount success for solving various classification tasks such as 

image and text classification. Recent deep learning techniques are 

capable of extracting features directly from the input data. 

Consequently, this paper proposes an end-to-end deep learning 

framework for multimodels (henceforth, multimodel learning) to 

solve the challenging malware classification problem. The 

proposed model utilizes three different deep neural network 

architectures to jointly learn meaningful features from different 

attributes of the malware data. End-to-end learning optimizes all 

processing steps simultaneously, which improves model accuracy 

and generalizability. The performance of the model is tested with 

the widely used and publicly available Microsoft Malware 

Challenge Dataset and is compared with the state-of-the-art deep 

learning-based malware classification pipeline. Our results 

suggest that the proposed model achieves comparable 

performance to the state-of-the-art methods while offering faster 

training using end-to-end multimodel learning. 

Keywords— Deep Learning, Convolutional Neural Network, 

Recurrent Neural Network, End-to-end learning, Multimodel, 
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I. INTRODUCTION 

Malware is short for malicious software and refers to 
software whose purpose is to cause damage to a computer [1] 
for reasons including stealing or ransoming information, 
stealing processor power, or causing system failure [2]. Now 
that society relies heavily on computers, combating malware is 
very important. There are several current techniques for 
malware detection. Signature based detection is based on 
matching bytecodes over a known set of malicious signature 
bytecodes [3]. The signature method is fast but purely 
reactionary and unable to recognize new malware. Behavioral 
analysis executes the program in a controlled environment and 

observes it for malicious behavior, which is slow and risky [4]. 
Heuristic analysis uses features of a file to determine whether or 
not it is malware [5]. Heuristic analysis is limited by the 
effectiveness of its classification model, since it is designed by 
hand. Because deep learning can be used to create a 
classification model, using deep learning to extend heuristic 
analysis has the potential to drastically improve performance 
over heuristic analysis. Deep learning can surpass the 
weaknesses of hand-designed models by cutting down the time 
for model design and by using information that may be beyond 
the comprehension of the programmer. 

Deep learning has already shown paramount success in 
various application domain such as computer vision, medical 
image analysis, autonomous driving, etc. Consequently, deep 
learning techniques are utilized for solving intricate cyber 
security problems such as malware classification. Wang et al. 
propose a malware classification technique which utilizes 
XGBoost. The ensemble outputs are combined using geometric 
mean and grid search to obtain a classification results. . The 
proposed technique is tested on the Microsoft Malware 
Classification Challenge (MMCC) dataset and achieves a top 
classification accuracy of 99.83% [6, 7]. This specific method 
ranked number one in the Microsoft Malware Classification 
challenge in Kaggle. The 2nd and 3rd place teams used similar 
methods, using random forests to determine feature importance 
[8, 9]. The downside of Wang et al.’s approach is that their 
model took two days to train [7]. Kalash et al. used a deep 
convolutional network and transfer learning from the VGG-16 
model [10] to classify malware based on input conversion to 
grayscale image representation. They are able to achieve a 
98.99% validation accuracy without using any other features of 
the malware, and are notably the only strong result that does not 
use ensembling to boost their accuracy [11]. Drew et al. 
approach the problem from a gene sequencing perspective and 
use ensembling method. Their classifier, Strand, is given the 
file’s byte sequence and opcode sequence as input and is able to 
achieve 98.59% classification accuracy for the MMCC dataset 
[12]. Yan et al. also use an ensemble method with a deep 
convolutional network based on VGG-16  [10] in conjunction 
with a recurrent network composed of LSTM layers. They use 
truncated backpropagation through time and a data 
augmentation strategy based on a sliding window. The 
convolutional and recurrent networks are trained separately, and 
their results are combined with a second level classifier and 
achieves a classification accuracy of 99.36% [13]. 

The above mentioned models rely on using an ensemble of 
models or on using a pre-trained network as a starting point to 
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boost their accuracy. Conversely, this paper proposes an 
efficient end-to-end multimodel deep learning architecture for 
solving the malware classification task. End-to-end learning 
multimodel leverages automatic feature learning from the 
training data, eliminating the need for manual feature 
engineering. Moreover, our proposed method incorporates 
different deep learning architectures and jointly learns to capture 
relevant features from different meta information of the malware 
data. Additionally, our proposed method inherently achieves the 
benefit of ensembling due to the use of multiple deep learning 
models in a pipeline. Our proposed method shows competitive 
accuracy when compared to the state-of-the-art methods.  

To evaluate the performance of our proposed method we use 
the challenging MMCC dataset which was publicly released 
under a contest run on Kaggle. MMCC is composed of 10868 
labeled pieces of malware from 9 different classes, and 10873 
unlabeled pieces of malware. The structure of this dataset is 
described in the testing methodology section of this paper and 
has been released to be used freely for research purposes [14].  
The use of this dataset has made it more straightforward to 
compare different kinds of malware classification methods, 
including other state-of-the art work. Our results suggest that our 
end-to-end multimodel learning achieves accuracy comparable 
to other state-of-the-art deep learning models with very good 
training time. The model is able to achieve a best 4-fold 
classification accuracy of 99.23% in only 35 minutes of training. 

The remaining of the paper is organized as follows. Section 
II covers the required background information for this model. 
Section III discusses the testing methodology. Section IV shows 
our results and comparison to other methods. Section V 
concludes and discusses future work. 

II. BACKGROUND 

This section discusses the necessary background required to 
understand our proposed end-to-end multimodel learning 
malware classification technique. 

A. Convolutional Neural Network 

A Convolutional Neural Network (CNN) is a neural 
network architecture that is not fully connected. Any given 
node in a CNN is connected to a subset of the previous layer, 
rather than the entire layer as would be the case with a densely 
connected network. These connections are governed by the 
convolution operation. In convolution, a kernel, which is a 
matrix of weights and windows of the data of the previous layer 
at combined in a dot product. When this dot product is applied 
by sliding the window over a previous layer, this implements a 
convolution. Kernel weights are adjusted in the same way that 
a connection’s weights would be adjusted during the 
backpropagation of dense network. A kernel may also be 
referred to as a filter. For example, with a 2-dimensional input, 
a kernel of size 3x3 would mean that each neuron in the output 
layer is connected to a 3x3 window of the previous layer. This 
technique takes advantage of the spatial relationship of the data 
and as a result is particularly useful for image processing. 
Typically, several kernels are applied in convolution to the 
same input, producing multiple outputs, called feature maps. 
For instance, an input of 128x128 with 32 kernels would 

produce 32 feature maps, resulting in an output of size 
128x128x32. Convolutional layers are typically used in 
conjunction with pooling layers, which downsample a 2D input.  
With a 2x2 max-pooling layer, each output neuron is selected 
by taking the maximum value of a 2x2 area of the input, 
resulting in an output layer with dimensions that are half of the 
input dimensions. Other types of pooling are possible but less 
common [15, 16]. Unlike a convolutional layer, in pooling the 
areas of a layer that map to the next layer do not overlap. The 
convolution and pooling are described below. 

𝐶𝑜𝑛𝑣𝑂𝑢𝑡(𝑥, 𝑦) = 

∑ ∑ 𝐶𝑜𝑛𝑣𝐼𝑛∆𝑦 (𝑥 − ∆𝑥, 𝑦 − ∆𝑦)𝐹𝑖𝑙𝑡𝑒𝑟(∆𝑥, ∆𝑦)∆𝑥      (1) 

 
𝑃𝑜𝑜𝑙𝑂𝑢𝑡(𝑥, 𝑦) = 

 

𝑀𝑎𝑥 {
𝐶𝑜𝑛𝑣𝑂𝑢𝑡(2𝑥, 2𝑦), 𝐶𝑜𝑛𝑣𝑂𝑢𝑡(2𝑥, 2𝑦 + 1),

𝐶𝑜𝑛𝑣𝑂𝑢𝑡(2𝑥 + 1,2𝑦), 𝐶𝑜𝑛𝑣𝑂𝑢𝑡(2𝑥 + 1,2𝑦 + 1)
}  

(2) 

B. Long Short Term Memory 

LSTM (Long Short Term Memory) is a special form of 
recurrent neural network designed to remember data for longer 
periods of time than a normal recurrent neural network and was 
introduced by Hochreiter and Schmidhuber. LSTMs differ from 
regular recurrent neural networks in that they use “gates” to 
control what the network remembers more effectively. Neurons 
in a normal RNN use their previous value and an input to 
produce their new value. LSTMs decide what their state should 
be using a gate that controls the input value and a gate that 
controls the previous value. These gates allow for better control 
over what the network remembers. LSTMs also use an output 
gate to determine what parts of their stored value should be sent 
along to the next neuron. LSTM is suitable for sequences 
processing including sentences or code since their meanings are 
dependent on long range contextual information [17]. LSTM 
operation is governed as follows. 

For X {Input, Forget, Output}, Wx is a set of weights 
applied to outside input and Ux is a set of weights applied to 
recurrent input. it is the set of external inputs to the gate at time 

t and mt is the set of recursive inputs from time t. 𝜎  is the 

sigmoid function. 

𝑓𝑡 = 𝜎( 𝑊𝑓𝑖𝑡 + 𝑈𝑓𝑚𝑡−1)              (3) 

                                           
𝑖𝑡 = 𝜎( 𝑊𝑖𝑖𝑡 + 𝑈𝑖𝑚𝑡−1)              (4)   

                                           
𝑜𝑡 = 𝜎( 𝑊𝑜𝑖𝑡 + 𝑈𝑜𝑚𝑡−1)             (5) 

 
Each gate receives input from itself 1 time step ago and 

outside input, and takes their weighted sum. A constant bias 

may also be added to each value. The memory value ct of the 

cell is calculated using these values in (6). Note that ∘ denotes 

an element-wise product. 
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𝑐𝑡 = 𝑐𝑡−1 ∘ 𝑓𝑡 + 𝑖𝑡 ∘ 𝑡𝑎ℎ𝑛(𝑊𝑐𝑖𝑡 + 𝑈𝑐𝑚𝑡−1)  (6) 

 

 

Output of the LSTM cell is as follows: 

 

ℎ𝑡 = 𝑜𝑡 ∘ tanh(𝑐𝑡)                       (7) 
 

C. End-to-end Training 

 End-to-end is a technique where an entire model is trained 
simultaneously, rather than training its parts individually [18]. 
End-to-end is designed to reduce human interference in the 
training of a model and eliminate the need of a separate scheme 
to combine multiple trained networks. End-to-end models 
optimize all processing steps simultaneously, and this has been 
shown to improve performance of the models. A major principle 
of end-to-end training is that the model, not the programmer, 
decides what features are important. For example, Dieleman et 
al. [19] use end-to-end models to autonomously extract features 
from raw audio input for input representation understanding. 
They note certain invariants are preserved in the features that 
their model discover. End-to-end models also exhibit improved 
accuracy [18, 20] and generalizability of the model to more 
challenging datasets [21]. Also models that are trained end-to-
end, are more compact with smaller number of parameters [18]. 
Typically, separate models are trained and combined in 
ensemble postprocessing [7, 13], but the need for this is 
subverted by training the model end-to-end. End-to-end training 
has been used primarily in image and language processing [22, 
23] and a goal of this paper is to determine whether it can be 
applied successfully to the challenge of malware classification, 
and whether we can obtain competitive performance by doing 
so. The top three teams in the MMCC used Random Forest to 

determine important features [7-9], and end-to-end training in 
this paper serves as an alternative for determining important 
features without having to use any ensembling method, and 
without having to weigh the importance of different kinds of 
networks. 

III. METHODOLOGY 

A. End-to-end multimodel deep learning model 

Our end-to-end model multimodel learning design is 
composed of three types of networks in parallel branches: a 
dense network, a CNN, and an RNN using LSTM. To best 
facilitate this end-to-end learning, our multimodel is provided 
with a wide array of features. The architectures are selected to 
efficiently handle different attributes of the data and to capture 
important features during training. Each of these neural network 
architectures works optimally for different kinds of data, and 
many kinds of data are available from a malware file. By using 
the different architectures in conjunction with each other, we 
seek to ensure that all the different kinds of data available from 
the malware can be used as input to the neural network 
architecture that is best suited for them. The structures of each 
type of network are quite simple and are expanded upon in detail 
in Table 1. In short, the dense network is composed of four fully 
connected layers, the convolutional network of three 
convolutional layers with pooling layers between them, and the 
recurrent network of one LSTM layer. The three network 
architectures are then connected in parallel and attached to four 
fully connected layers as shown in Fig. 1. 

The model is constructed using Keras [24] with Tensorflow 
[25] as the backend and trained on a system using an Intel i7 
6700k processor, Nvidia GTX 1070 GPU, 16GB of memory, 
and Windows 10. The model is trained with an Adam [26] 
optimizer minimizing training loss with learning rate 5*10^-4 

 
Figure 1. Architecture of the end-to-end multimodel deep learning based malware classification technique. 
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and a learning rate decay of 10^-6 per epoch. Training occurred 
in 20 epochs with a batch size of 16 at a mean of 105 seconds 
per epoch resulting in a total training time of 35 minutes. 
Algorithm 1 details the training and testing procedure for our 
model using Adam optimization and 4-fold cross-validation. 

The layers that compose the model and their properties are 
detailed in Table 1. Dense(x,y) refers to a fully connected layer 
with x neurons, using y activation function. Conv(x,(y1x 
y2),(z1xz2)) refers to a convolutional layer producing x feature 
maps using a kernel of size (y1,y2) and stride size (z1,z2) with 
padding and ReLU activation in all instances. MaxPool refers to 
a max pooling operation with a pooling size of 2x2 and a stride 
size of 2x2. LSTM(x) refers to an LSTM layer with x neurons. 
For dropout [27], a standard dropout-rate of 0.5 is used in all 
cases. Any parameters not mentioned used Keras default values. 

 

Algorithm 1: Training End-to-End Multimodel 
Learning using cross validation fold 

 

1: Input: Metadata, 64x64 Byte Code Images, 60 step Op 
Code sequences 

2: generate concatenated training vectors VAll from metadata 

3: split vectors into 4 folds with 25% vectors removed to 
comprise each training set T1,T2,T3,T4 

4: for fold = 1:4 

5:   α1 = 5*10-4 (set learning rate for initial epoch) 

6:   for epoch = 1:20 

7:      for batch = 1:batches per fold 

8:            stochastically select batch Vbatch from VAll 

9:            gbatch =  f(Vbatch , batch-1)   

               calculate end-to-end gradient w.r.t. to all parameters    

               for given batch Vbatch 

10:          calculate Adam “bias-corrected” moments 

               mbatch (first moment) and vbatch (second moment) 

11:          fold, batch=  fold, batch-1 – αepoch  mbatch/(√𝒗𝒃𝒂𝒕𝒄𝒉+ ) 

               update weights with using moments 

               ( divide-by-zero guard) 

12:          αepoch+1 = (1-10-6)  αepoch (decay learning rate) 

13: Output: fold (trained weights for end-to-end multimodel  

                            for each fold) 

 

 

 

 

 

TABLE I.  DETAILED ARCHITECTURE OF THE PROPOSED MODEL  

Dense Network Convolutional Network 

Dense(4096,ReLU) 
Dropout 

Dense(4096,ReLU) 

Dropout 
Dense(4096,ReLU) 

Dropout 

Dense(9,softmax) 

Conv(32,(5x 5),(2x2)) 
MaxPool 

Conv(64,(5x 5),(1x1)) 

MaxPool 
Conv(96,(3x 3),(1x1)) 

MaxPool 

Dropout 

Recurrent Network End Layers 

LSTM(64) 
Dropout 

Dense(4096,ReLU) 
Dropout 

Dense(4096,ReLU) 

Dropout 
Dense(1024,ReLU) 

Dropout 

Dense(9,softmax) 

 

B. MMCC Data description and pre-processing  

The MMCC dataset is composed of 10868 pieces of 

malware that are labeled in accordance to membership in one 

of nine malware classes. Additionally, the set contains 10873 

unlabeled pieces of malware, but they are not used for this 

work. For each piece of malware in the dataset, two files are 

provided. First, for each instance of malware there is a .bytes 

file containing the bytecode of the malware executable, with the 

portable executable header removed so that the malware cannot 

run and contaminate the system. Second, a .asm file is provided, 

having been generated by the IDA decompiler [23], that 

contains metadata about the malware such as its starting address 

and the opcodes it calls [14]. For training our model, the 

following metadata information from the files is collected. 

 

● The sizes of the two files 

● The length of the different sections of the .asm file 

● Opcode 1, 2, and 3-grams 

● Byte 4-grams 

 

This metadata information is used as input to the dense 

portion of the network. Because the number of possible n-grams 

is very large, less frequent examples are ignored. More 

specifically, for opcode 1-grams, the 66 most common are used, 

and the 50 most common opcode 2-grams and 3-grams are 

used. For the byte 4-grams, the 100 most common are used. 

These values are combined into a single vector for use as input 

to the model, and the choice of metadata is intentionally kept 

simple; we rely on the deep model to extract the features that 

provide power in classification.  

 

For input to the convolutional portion of the network, 

grayscale image conversions of the malware files are used as 

input. The creation of grayscale images from the malware is 

based on the concept that a byte can be interpreted as the 

intensity of a pixel, and the conversion is simple. For each byte 

in the bytecode of a piece of malware, the intensity of the 

corresponding pixel in the output image is set to match it. Some 
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of the bytecode files contain ‘??’ in place of some bytes, and 

these are interpreted as a value of 0 (a black pixel). 

Interestingly, there are images embedded in some of the 

malware files which become visible after this conversion. Each 

image is resized to 64x64 using bicubic subsampling to 

decrease computation time. For data augmentation, a random 

shear of up to 10 degrees and a random shift of up to 64 pixels 

are used before the image is given to the model. Example 

bytecode images are shown in Fig 2.  

 

 
To obtain the input to the RNN, the first 60 opcodes in each 

file are used. There appears to be little or no improvement in 

accuracy for a higher number of opcodes, despite an increase in 

run time. However, lowering the number of opcodes used did 

decrease the accuracy. Additionally, using the first 60 opcodes 

in a file showed better results than opcodes from arbitrary 

locations. For files with fewer than 60 opcodes, a special “zero” 

opcode is inserted until there are 60. Opcodes are suitable for 

use with LSTM because they occur in an order corresponding 

to an execution sequence. Embedding is used to make the data 

formatted suitably for input to LSTM. No further adjustments 

are made to the data. 

 

IV. RESULTS AND DISCUSSION 

  
We performed the following malware classification 

experiment with our end-to-end multimodel deep learning 
technique. For each malware example corresponding to a 
bytecode and metadata/opcode file pair, we extract 3 raw data 
structures.  These include first the grayscale image matrix from 
bytecodes, second the opcode sequence, and third the metadata 
concatenated into a vector. This feature information is compiled 
into a dataset including associated malware family target class 
labels per each example. Then we perform 4-fold cross 
validation given the features and labels. This involves splitting 
vectors into 4 folds with 25% vectors removed to comprise each 
training set T1, T2, T3, T4 as described in algorithm 1, line 3. 
Then for each fold, Adam optimization is performed as 
described in algorithm 1, lines 6-12. Adam optimization is an 
advanced modification of gradient descent learning and updates 
the parameters for the end-to-end multimodel for each fold. 
After training, each fold is tested, and the accuracies for each 
fold are saved. Average and best accuracy are considered as 
discussed below and compared to results from literature.  

 

The model achieves a mean fold accuracy of 98.35% and a 
best validation accuracy of 99.23% as shown in Table 2. 
Extraction of features from the given files takes a mean of 1.674 
seconds and varies proportionately with the size of the files. 
Once the model is constructed, using it to classify a new 
malware input takes about 0.03 seconds. Some works dealing 
with the MMCC dataset use mean cross-validation 
classification accuracy to measure performance, and some 
simply use some of the training data for validation to test 
accuracy. Since using some of the training data for validation is 
equivalent to a single fold out of a k-fold cross-validation, we 
use our best single fold result for accurate comparison to these 
works, and mean cross-validation accuracy for comparison to 
those who tested their own accuracy with cross-validation. The 
confusion matrix for our 4-fold cross-validation is shown in 
Fig. 3.  

TABLE II.  4-FOLD CROSS-VALIDATION ACCURACY OF THE END-TO-END 

MULTIMODEL LEARNING USING THE MMCC DATASET 

Fold 1 Fold 2 Fold 3 Fold 4 Mean 

Accuracy 

Best 

Accuracy 

98.21% 98.29% 97.67% 99.23% 98.35% 99.23% 

 

 

 
 

We compared our method to other works trained and tested 
on MMCC dataset. With respect to heavily feature engineered 
works like Wang et al. [7], our approach has lower classification 
accuracy but runs far faster. Their model takes about 2 days to 
generate [7]. Our model can be generated in 5 hours of feature 
extraction about 30 minutes of training. Since their feature 
engineering is heavily tailored to the dataset, new data would not 
only take longer to feed through their model but would also 
likely have lower accuracy than the current dataset. Ahmadi et 
al. apply expert knowledge to more efficiently choose features 

 
 

Fig. 2.  Example grayscale images from the MMCC dataset 

 
 

Fig. 3.  Confusion matrix of classification results averaged from 4 folds. 
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compared to Wang et al. and achieve comparable results in a 
shorter training time [28]. 

Our model slightly outperforms Kalash et al. [11] who 
achieve an accuracy of 98.99% using 90% of the MMCC dataset 
for training and 10% for validation when compared to our 
99.23% accuracy. Their model utilizes a deep convolutional 
network, which is the only other non-ensembled method 
mentioned here and is notable for using only a grayscale image 
conversion of the malware [11]. Their method however uses a 
pretrained VGG network for initial layers. Our model foregoes 
ensembling and use of pretrained networks, which all the other 
models here (besides that of Kalash et al.) use to boost their 
accuracy. Again, Drew et al. [12] with their gene sequencing 
style model is able to achieve better accuracy compared to our 
method, however, requires more training time and utilizes 
manual ensemble technique. Table 3 below summarizes the 
comparison of our method to other state-of-the-art malware 
classification methods.  

Yan et al. achieved a 99.36% classification accuracy on the 
training data using 90% of their dataset for training and 10% for 
validation. Their dataset is composed of the Microsoft Malware 
Classification Challenge dataset plus a set of benign files of 
around the same size, and 90% of this dataset is used for training. 
Their accuracy score is comparable to our score of 99.23% 
classification accuracy using a 75% of the MMCC dataset for 
training and 25% for validation. Classification using their model 
and ours takes 0.03 seconds, but ours uses features that take 
longer to extract. They utilize a special data augmentation 
strategy to balance out the representation of each class [13] since 
the classes are not equally represented in the training data. For 
example, one particular class comprises only 41 out of the 10868 
pieces of malware in the MMCC training set [14].  

Our model has two benefits that allow it to generalize to 
other datasets. First, our multimodel learning uses covers the 
widest array of features  that will apply to a different dataset as 
opposed to a model which uses only a narrow scope of features. 
Second, the end-to-end training avoids excessive tailoring of a 
model to a dataset and should be resilient to a generalization in 
dataset as noted in [21] for end-to-end learning. Approaches like 
those of Wang et al. [7] and Ahmadi et al. [28] which rely 
heavily on feature engineering are not suitable to a change in 
dataset because they are designed with the unique elements of 
the MMCC dataset in mind. Yan et al.’s [13] approach uses a 
similar breadth of features but in the event that retraining is 
necessary for a new dataset their model would be less 
appropriate since multiple networks must be trained separately 
versus just one for our model. Retraining will be necessary if a 
dataset has different malware families than the MMCC dataset, 
but if the new dataset has the same families of malware, then our 
model should still have excellent performance even without 
retraining. 

 

 

 

 

 

 

TABLE III.  COMPARISON OF OUR PROPOSED END-TO-END MULTIMODEL 

DEEP LEARNING PIPELINE WITH STATE-OF-THE-ART MODELS 

 

V. CONCLUSION 

This paper proposes end-to-end multimodel deep learning 
for malware classification. We demonstrate that end-to-end 
trained models are viable for malware classification and that 
they achieve competitive performance with fast training. End-
to-end learning is useful for improving our model’s accuracy 
and generalizability. Our proposed end-to-end model 
incorporates three different types of deep neural network 
architectures to capture diverse features from the meta 
information of the malware data.  We conduct a cross validation 
experiment and achieve an average 98.35% classification 
accuracy with 4-fold cross-validation using the MMCC dataset 
which is comparable to the state-of-the-art methods trained on 
the MMCC dataset. Moreover, our method shows significant 
training time improvement when compared to the state-of-the-
art methods trained using the MMCC dataset.  

Our future plan is to deploy our model in a live cyber 
environment to study its performance in real time. Furthermore, 
we plan to generalize the proposed multimodel learning 
architecture for different types of multimodal data including 
features extracted from malware metadata, byte codes, and 
system calls.   
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 Validation 
Accuracy 

Training 
Time 

(Hours) 

Ensembling Measurement 
Scheme 

End-to-end 

multimodel 
(Our 

proposed) 

98.35% 0.58 No 4-fold CV 

End-to-end 

multimodel 

(Our 
proposed) 

99.23% 0.58 No 75% training 

25% validation 

Wang et 
al.[7] 

99.83% 48 Yes 4-fold CV 

Ahmadi et 
al.[28] 

99.77% N/A Yes 5-fold CV 

Yan et 
al.[13] 

99.36% 2.91 Yes 90% training 
10% validation 

Kalash et 
al.[11] 

98.99% N/A No 90% training 
10% validation 

Drew et 
al.[12] 

98.59% 0.75 Yes 10-fold CV 
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