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Abstract—Data sparsity remains a challenging and common
problem in real-world recommender systems, which impairs
the accuracy of recommendation thus damages user experience.
Cross-domain recommender systems are developed to deal with
data sparsity problem through transferring knowledge from
a source domain with relatively abundant data to the target
domain with insufficient data. However, two challenging issues
exist in cross-domain recommender systems: 1) domain shift
which makes the knowledge from source domain inconsistent
with that in the target domain; 2) knowledge extracted from
only one source domain is insufficient, while knowledge is
potentially available in many other source domains. To handle
the above issues, we develop a cross-domain recommendation
method in this paper to extract group-level knowledge from
multiple source domains to improve recommendation in a sparse
target domain. Domain adaptation techniques are applied to
eliminate the domain shift and align user and item groups to
maintain knowledge consistency during the transfer learning
process. Knowledge is extracted not from one but multiple source
domains through an intermediate subspace and adapted through
flexible constraints of matrix factorization in the target domain.
Experiments conducted on five datasets in three categories show
that the proposed method outperforms six benchmarks and
increases the accuracy of recommendations in the target domain.

Index Terms—recommender system, cross-domain recom-
mender system, knowledge transfer, collaborative filtering

I. INTRODUCTION

Recommender systems have been in existence for more than
twenty years and are prompted by both research and wide
application in industry [1]. Recommender systems are now
an indispensable part in personalization of products/services
and are adopted by many websites, such as Amazon.com,
Google, YouTube, Netflix, Yahoo and Facebook. Most of
the recommender systems built are under the assumption of
collaborative filtering, i.e. similar users share similar interests
in the past will have similar interests in the future. However,
the interactions between users and items are limited compared
with the huge number of items existed. This is the data
sparsity problem, a challenging and common issue in many
existing recommender systems . Cross-domain recommender
systems are developed to deal with the data sparsity problem.
The abundance of data in another domain can assist the
recommendation in a specific target domain with insufficient
data. Further, user demands of diverse recommendation also

prompted recommender systems to expand from single-domain
to multi-domain [2].

Cross-domain recommender systems extract knowledge
from domains that contain relatively rich data and adapt
it to the target domain where data are insufficient. Two
different types of cross-domain recommender systems have
been developed [2]. Some methods connect multiple domains
through auxiliary information such as user generated infor-
mation [3], social information [4] or item attributes. On the
other hand, some methods focus on preference data which are
the most commonly collected data on e-commerce or online
rating websites. Since the entity correspondence is not always
fully available, some strategies are developed to match users
or items in two domains [5]. In this paper, we focus on
cross-domain recommender systems where users and items
have no intersections, which is commonly existed between
different websites or platforms. This is of great help for newly-
launched recommender system, where data sparsity problem is
particularly severe and challenging, to benefit from a mature
recommender system.

Since no intersections exists in users/item between the
source domain and the target domain, the knowledge shared
is group-level rating pattern. How to extract the group-level
knowledge and adapt it to the target domain is very crucial
for the cross-domain recommendation. Two challenging issues
exist in group-level knowledge extraction and adaptation: 1)
Domain shift exists between the source and the target domain,
so the group-level knowledge from source and target domains
is not consistent. 2) The group-level knowledge extracted
from one source domain is insufficient, while multiple sources
potentially can assist recommendation in the target domain.
The first issue is commonly recognized as domain shift in
transfer learning [6] and raised as an issue in cross-domain
recommender systems in [7]. To get rid of the inconsistent
knowledge, inevitable loss of information aggravate the second
issue. Most existing methods on cross-domain recommenda-
tion ignore the domain shifts and fail to extract consistent
knowledge shared by two domains, let alone extracting con-
sistent knowledge from multiple sources. Without handling the
two issues, the effectiveness of knowledge transfer is not guar-
anteed, thus the accuracy of cross-domain recommendation is
impaired.
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In this paper, we develop a cross-domain recommenda-
tion method with multiple source (CDR-MS), which extracts
group-level knowledge from multiple source domains to im-
prove recommendation performance in a sparse target domain.
We first cluster users and items into groups on multiple source
domains and conduct group alignment with domain adaptation
techniques, which ensures the knowledge consistency. Then,
an intermediate subspace is learned through a Karcher mean
to preserve knowledge from multiple source domains. We
use a less restricted constrains on matrix factorization for the
adaptation of the group-level knowledge from multiple sources
to the target domain to increase the flexibility and ensure the
consistency at the same time. The main contributions of this
paper are as follows:

1) A domain adaptation method that aligns the subspaces
of multiple source domains with the target domain. This
method is able to conduct user and item latent group
alignment in multiple domains to eliminate domain shift.

2) A matrix factorization method with constraints that are
less restrictive in group-level knowledge adaptation. The
constraints are more flexible than previous methods and
ensure that more useful knowledge is transferred to the
target domain.

3) A cross-domain recommendation method CDR-MS
which enables transferring group-level knowledge from
multiple sources to improve the recommendation accu-
racy in the target domain with insufficient data. The
comparison results of the proposed method CDR-MS
and six single-domain or cross-domain recommenda-
tion methods on five real-world datasets show that our
proposed method outperforms other recommendation
methods in sparse data.

The rest of the paper is organized as follows. Section
III gives some preliminary and a formal description of the
problem. Section IV describes our method CDR-MS to enable
cross-domain recommendation in multiple domains. In Section
V, we present our experiments on five real-world datasets
containing three categories. Finally, in Section VI, conclusions
are provided with future study.

II. RELATED WORK

In this section, related work of recommender systems and
cross-domain recommender systems is presented.

Recommender systems are primarily devised to assist indi-
viduals who are short on experience or knowledge deal with
the vast number of choices in relation to items. Recommender
systems take advantage of various sources of information to
predict preferences of users in relation to different items.
Although recommender systems achieved great success, data
sparsity is still one of the most challenging and common issue
in developing real-world recommender systems, which impairs
the accuracy of recommendation. If a system fails to provide
practical support, new users will quickly lose interest and
stop using it. The data sparsity problem can be alleviated
from introducing side informations such as user generated
information and item attributes [8]. However, sometimes it is

more difficult to acquire side information since users need to
spend time and efforts. Another solution is to develop cross-
domain recommender systems. There may be insufficient data
in one domain, but relatively rich data in another domain.
The abundance of data in another domain can assist the
recommendation in a specific target domain. Its ability to
alleviate the data sparsity problem drives the development of
the cross-domain recommender systems.

Cross-domain recommender systems based on preference
data can be designed in various ways according to the overlap
of users and item, the form the data takes, or the tasks the
system needs to handle [2]. Non-overlapping methods tend
to extract shared knowledge based on collective group-level
user behavior. In overlapping methods, the original source
and target rating matrixes are collectively factorized, then
the entities’ features are extracted. Constraints on each entity
ensure these features are exactly the same in the source and
target domains so they can act as a bridge for knowledge
transfer.

Methods that handle two domains with non-overlapping en-
tities transfer knowledge from a group-level. Users and items
are clustered into groups and knowledge is shared through
group-level rating patterns. For example, code book transfer
(CBT) clusters users and items into groups and extracts group-
level knowledge as a “codebook” [9]. Later, a probabilistic
model named rating matrix generated model (RMGM) is
extended from CBT, relaxing the hard group membership to
soft membership [10]. These two methods cannot ensure that
the information on the two groups from two different domains
is consistent, and the effectiveness of knowledge transfer is
not guaranteed. [11] extend CBT with common and domain-
specific rating patterns and improves the accuracy through ad-
justment. A cross-domain recommendation method with con-
sistent information transfer (CIT) [7] uses a domain adaptation
technique and extract consistent knowledge from the source
domain. This method is superior especially when the source
domain data and the target domain data are divergent. Also,
some cross-domain recommendation methods deal with data
with overlapping entities. Transfer by collective factorization
(TCF) [12] was developed to use implicit data in the source
domain to help predict explicit feedback in the target domain,
such as ratings. A kernel induced recommendation method is
proposed to transfer knowledge even with a small number of
overlapping entities [13].

The above methods are applied to only one source do-
main. Also, we review related cross-domain recommendation
methods dealing with multiple sources. Cross-domain triadic
factorization (CDTF) [14] is a user-item-domain tensor that
integrates both explicit and implicit feedback. It assumes that
users are fully overlapping and that the user factor matrix
is the same, thus bridging the domains. Cluster-based matrix
factorization (CBMF) [15] tries to extend CDTF to partially
overlapping entities, but the core of the CBMF method is
the same as with non-overlapping entities, which transfer
knowledge based on groups rather than using the overlapping
entities as a bridge. A cross-domain recommendation method
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is developed [16] to extract group knowledge separately with
non-linear constraints in a tensor form. The methods above can
take advantages of knowledge from multiple source domains
but they cannot handle the problem of the domain shift at the
same time.

III. PRELIMINARY AND PROBLEM FORMATION

In this section, cross-domain recommendation by tri-
factorization is briefly introduced. The problem targeted in
this paper is also formally formulated.

A. Cross-domain Recommendation by Tri-factorization

Matrix factorization projects both users and items onto the
same latent space so that they are comparable, and through
their inner products reconstructs the rating matrix [17]. Sim-
ilarly, the rating matrix R ∈ RM×N (bold letters represent
matrixes) can be factorized into three matrixes (suppose there
are M users and N items). Users and items are clustered
into several latent groups and in the middle is the group-
level rating pattern: R = USV T , where U ∈ RM×K is
user group membership matrix, representing users clustered
into K groups, V ∈ RN×L is item group membership matrix,
representing items clustered into L groups and S ∈ RK×L is
the group rating pattern matrix, i.e. the group-level knowledge.

Say rating matrixes in D domains are available, denoted
as RD = {R1, ...,Rd, ...,RD}. The assumption of the cross-
domain recommender systems is that the group-level knowl-
edge can be shared if these domains are similar. Thus for the
dth rating matrixes are reconstructed as:

R̂d = UdS(V d)
T

(1)

B. Problem Formulation

In our problem setting, there is no correspondence on the
users/items across the domains and users/items are treated as
completely different. We assume that on both the source and
target domains the data are explicit ratings. The problem is
formally defined as:

Given D rating matrixes RD = {R1, ...,Rd, ...,RD}, Rd

∈ RMd×Nd

, our goal is to develop a multi-domain recommen-
dation method to assist the recommendation task of predicting
the ratings using knowledge in one target domain Rt from all
the other rating matrixes in RD, where for each source domain
data Ud ∩ U t = ∅ and Id ∩ It = ∅.

IV. CROSS-DOMAIN RECOMMENDATION FROM MULTIPLE
SOURCES

In this section, our proposed CDR-MS method is presented
beginning with an overview of the method procedure contain-
ing five steps. Each of the five steps is then explained in detail.

A. The Method Overview

The proposed method CDR-MS ensures the knowledge ex-
tracted from multiple source domains is consistent with that in
the target domain. The procedure consists five steps. 1) Users
and items are clustered separately and user feature matrixes
and item feature matrixes are obtained; 2) Use and item group

alignment is conducted to extract a shared subspace among
the multiple source domains, the group-level knowledge is
extracted; 3) Group-level knowledge from multiple sources is
transfered to the target domain with a less restricted constraint;
4) Feature representation is regulated in the target domain to
retain domain specific characteristics; 5) Recommendation in
the target domain.

B. The CDR-MS method

Our proposed method consists five steps.
1) Step 1: Clustering users and items in each domain:

First, users and items in each domain are clustered separately
for each source domain and the target domain. We choose the
Flexible Mixture Model (FMM) to cluster the users and items
separately [18], since this method allows both users and items
to fall into multiple groups with different memberships. This
fits to the situation that users may have various preferences
and items may have diverse content.

Suppose users are clustered into K user groups
{Z(1)

u , . . . , Z
(K)
u }, while items are clustered into L item

groups {Z(1)
v , . . . , Z

(L)
v }. Zu and Zv are two latent variables

that denote the user and item groups respectively. P (Zu|u)
is the conditional probability of a user belonging to a user
group, denoting the group membership of the user; P (Zv|v)
is the conditional probability of an item belonging to an item
group, denoting its group membership. Each user group has
a rating preference for each item group. r is the variable
representing the preference of user groups to item groups.
P (r|Zu, Zv) is the conditional probability of r given user
group Zu and item group Zv . The rating for a coupled
user-item pair is:

R(u, v) =
∑
r

r
∑

Zu,Zv

P (r|Zu, Zv)P (Zu|u)P (Zv|v) (2)

Equation (2) can be rewritten into matrix form:

X = USV T (3)

where U ∈ RM×L and V ∈ RN×L are the user and item
feature matrix. Uij represents the membership of user ui for
user group Z(j)

u . Ui∗ is the ith row of matrix U representing
membership of user ui to each group. U∗j is the jth column
of matrix U representing the membership of each user to user
group Z(j)

u . The same goes for items. S ∈ RK×L is the group-
level knowledge matrix. Sij represents the preference of user
group Z(i)

u for item group Z(j)
v .

2) Step 2: User and item group alignment: After clus-
tering, the user group and item group membership matrixes
{U (0)

s1 , . . . ,U
(0)
sd }, {V

(0)
s1 , . . . ,V

(0)
sd } are acquired for the

source domains and U
(0)
t , V (0)

t for the target domain.
To extract consistent group-level knowledge from two

source domains, the user groups and item groups need to be
aligned of the two source domains. There are many domain
adaptation methods for two domains available but seldom for
multiple domains. Domain adaptation is to find an intermediate
space between subspaces from the source domain and the
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target domain. When there are d source domains available, one
way to deal with the d subspaces is to compute the mean of the
d subspaces. For example, Karcher has defined the mean of
points on a manifold [19]. With the Karcher mean calculated,
the user aligned groups and item aligned groups are obtained
for both source domains and the target domain as shown in
Algorithm 1, denoted as Ūs, V̄s, U (1)

t , V (1)
t .

Algorithm 1 User and Item Group Alignment

Input:
{U (0)

s1 , . . . ,U
(0)
sd }, the source user group membership ma-

trixes;
{V (0)

s1 , . . . ,V
(0)
sd }, the source item group membership

matrixes;
U

(0)
t , the target user membership matrix;

V
(0)
t , the target item membership matrix;

Output:
Ūs, the aligned source user matrix;
V̄s, the aligned source item matrix;
U

(1)
t , the aligned target user matrix;

V
(1)
t , the aligned target item matrix;

1: Calculate Z-score of {U (0)
s1 , . . . ,U

(0)
sd }

Calculate Z-score of {V (0)
s1 , . . . ,V

(0)
sd }

2: Calculate the basis of user subspaces: Pu =

PCA
(
fzs(U

(0)
s1 ), . . . , fzs(U

(0)
sd )
)

Calculate the basis of item subspaces: Pv =

PCA
(
fzs(V

(0)
s1 ), . . . , fzs(V

(0)
sd )

)
3: Calculate Karcher mean of Pu and Pv , denoted as

KM(Pu) and KM(Pv)

4: Ūs = Ψs(KM(Pu),U
(0)
t ) similar to (16-17) in [7]

V̄s = Φs(KM(Pv),V
(0)
t )

U
(1)
t = Ψt(KM(Pu),U

(0)
t )

V
(1)
t = Φt(KM(Pv),V

(0)
t )

5: return Ūs, V̄s, U (1)
t and V

(1)
t

3) Step 3: Group-level knowledge transfer in the target
domain: With the aligned user and item group representations
from the source domains, the shared knowledge of the multiple
sources is extracted:

Js(Ss) =
D∑

d=1

‖Isd ◦ (Xsd − ŪsSs(V̄s)
T )‖F +λs‖Ss‖F (4)

where Is is an indicator matrix for Xs, if (Is)ij = 1, then
(Xs)ij 6= 0 and (Is)ij = 0, otherwise. The same applies to
It for Xt. ◦ is an entry-wise product, λs is the parameter for
regularization.

Since Ūs and V̄s are treated as mean representation for mul-
tiple source domains, a restrictive constraint is not suitable for
the knowledge share between the multiple source domains and
the target domain. Different from [7] that extract consistent
knowledge from both the source and the target domains, a
less restrictive constraint between the group-level knowledge
from the source domains and that from the target domain is
applied. The constrains result in user groups who are similar

tend to have similar preferences and item groups tend to have
similar latent factors. Specifically, the regularization form is
[20]:

Ro(St) = tr(ST
t L

u
sSt) (5)

where tr is the trace of the matrix, L denotes a Laplacian
matrix, and Lu

s = Du
s − W u

s . W u
s is the user group

similarity matrix, and Du
s is a diagonal matrix defined as

[Du
s ]ii =

∑
j [Wu

s ]ij . User group similarities are measured
from the user group-level knowledge by RBF measurement :

[Wu
s ]ij = e−

‖Ssi∗−Ssj∗‖
2

σ2 , where σ2 is set to be the median of
all the non-zero values calculated by ‖Ssi∗−Ssj∗‖2. Similarly,
the item constrains is calculated as Lv

s from the column view
of Ss.

We achieve group-level knowledge transfer by minimizing
the following objective function:

Jt(St) = ‖It ◦ (Xt −U
(1)
t St(V

(1)
t )T )‖F

+ λutr(ST
t L

u
sSt) + λvtr(StL

v
sS

T
t ) + λt‖St‖F (6)

where λu ,λv and λt are trade-off parameters of the regular-
ization.

4) Step 4: Group representation regulation: In our problem
setting, some domain-specific characteristics are embedded in
the small amount of available data in the target rating matrix.
To reveal these idiosyncrasies of the target domain, we amend
feature representations of the target rating matrix to make
the model fit better to the task in target rating matrix. The
representation regulation is achieved through an optimization
problem. The cost function is:

Jr(u, v) = ‖It ◦ (Xt −U
(1)
t uSt(V

(1)
t v)T )‖F (7)

The tuning factors can be learned through optimizing

min
u,v

Jr(u,v)

s.t. u ≥ 0, v ≥ 0

The optimization problem is solved by alternatively estimating
tuning factors u and v. For more details, see [7].

5) Step 5: Recommendation in the target domain: The
recommendation in target domain is given by Equation (8).

X̂t = (U
(1)
t u)S(V

(1)
t v)T (8)

where X̂t is the reconstructed user-item rating matrix for
prediction, u, v are user and item tuning factors for target
domain, S is the consistent knowledge, U (1)

s , U (1)
t are user

and item feature matrixes for the target domain after subspace
alignment obtained from the above steps.

V. EXPERIMENTS

In this section, the proposed method CDR-MS is evaluated.
First, the datasets and evaluation metrics used is introduced,
followed by experimental settings and the baseline methods.
The results of the experiments are presented. The parameter
analysis is in the end.
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A. Datasets and Evaluation Metrics

To test our proposed method, we need to choose data
from similar data so that transfer learning is meaningful, but
divergence still exists between the source and target domains.
Our experiments comprise nine cross-domain recommendation
tasks on three categories. Five real-world datasets were used:
EachMovie1, Movielens1M2, LibraryThing3, Amazon Book4

and YahooMusic5. Each is publicly available and has been
used to test recommender systems in a variety of scenarios
for recommender systems in single domain. But tests on these
datasets in cross-domain setting, particularly on multi-domain
setting are lacking. For AmazonBooks, we removed all users
who had given exactly the same rating for every book, as
these data are not effective for constructing a recommender
system [7]. EachMovie and LibraryThing were normalized to
the range of {1, 2, 3, 4, 5} before conducting experiments.

The statistical information for original datasets is provided
in Table I.

Across all the datasets, 1000 items that had been rated more
than 10 times were randomly chosen. We then filtered out the
users who had given less than a total of 20 ratings. For the
source domain data, we randomly selected 500 users to be
regular customers of the site. The source domain data were
controlled to be more dense than the target domain data. For
the target domain data, we randomly selected 300 users to be
regular customers of the site, and another 200 users to be new
customers. For new users, five observed ratings were given,
and the rest of the ratings were used for evaluation. In the
end, the rating matrixes for both the source and target domains
were all 500× 1000 matrixes. The details of the final datasets
are summarized in Table II.

Mean absolute error (MAE) and root mean square error
(RMSE) were used as the evaluation metrics:

MAE =
∑

u,v,Xuv∈Y

|X̂uv −Xuv|
|Y |

RMSE =

√√√√ ∑
u,v,Xuv∈Y

(X̂uv −Xuv)2

|Y |

where Y is the test set, and |Y | is the number of test ratings.

B. Experimental Settings and Baselines

The rating average is a very important statistics of the data
which we used in our experiments to represent whether data in
two domains are of high similarity or not. According to Table
II, we can see a big divergence in the rating average between
the source domain data and the target domain data. This fits
to our problem setting in Section III that data in the source
domain and the target domain are similar but divergence still
exists.

1http://www.cs.cmu.edu/∼lebanon/IR-lab/data.html#intro
2http://grouplens.org/datasets/movielens/1m/
3https://www.librarything.com
4http://jmcauley.ucsd.edu/data/amazon/
5https://webscope.sandbox.yahoo.com/catalog.php?datatype=r

Three non-transfer learning methods and two cross-domain
methods were chosen as comparisons for the proposed method.
The non-transfer learning methods were: Pearson’s correlation
coefficient (PCC) [21], FMM [18] and single value decompo-
sition (SVD) [17]. The cross-domain methods were: CBT [9],
RMGM [10] and CIT [7]. PCC uses user-based CF, and the
number of neighborhoods was set at 50. For SVD, the latent
feature number was fixed at 40, the regularization factor was
set to 0.015, and the learning rate was set to 0.003. For FMM,
CBT, RMGM and CIT, the user group number and item group
number were both set to 40. For the proposed method, CDR-
MS, the user and item group number were both set to 40.
λs,λu ,λv and λt are trade-off parameters for the regularization
in CDR-MS. They are adjusted with grid search and by a
validation set within the range of 0.0001, 0.001,0.005, 0.01,
0.05. Further analysis of the parameters is provided later. All
the methods (except for PCC) need to initialize the factorized
matrix randomly, we ran 10 random initializations and report
the averaged results and standard deviations.

C. Results

The experiment results of our proposed CDR-MS compared
with the other six baselines on two accuracy metrics are
presented in Table III, IV and V. Overall, CDR-MS has
the best performance in recommendation tasks on the three
categories. These results indicate that CDR-MS can extract
knowledge from source sources that can help increase the
recommendation accuracy in the target domain. Our analysis
of the results revealed the following observations:

1) Comparison with recommendation methods in a single
target domain. The performance of non-transfer learning
methods was relatively poor on sparse data. As the basis
of CBT and RMGM, FMM was designed to predict
ratings for users with little available data. But in our
experiment results, the performance of FMM in the
target domain is greatly affected by data sparsity. In
some severe setting, PCC fail to generate useful recom-
mendations, e.g. in the book recommendation. In all the
experiment results, KerKT significantly outperformed all
the non-transfer learning recommendation techniques.

2) Comparison with cross-domain recommendation meth-
ods with one source domain. CBT, RMGM and CIT are
three cross-domain recommendation methods that use
knowledge from one source domain. CBT and RMGM
showed improved precision in recommendations over its
basis, FMM, but sometimes the improvement was not
significant (see Table V) or sometimes suffered from
negative transfer (see Table IV). CIT is the state-of-
art method and it avoids negative transfer on the three
categories, due to its advantage of effective knowledge
transfer. Except for MAE in the music category, CDR-
MS outperforms each of these methods, proving that the
knowledge extracted by CDR-MS from multiple sources
is more effective in assisting the recommendation in
the target domain. Experiments are conducted on CBT,
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TABLE I: Statistical Information on the Original Datasets

EachMovie Movielens 1M LibraryThing AmazonBook YahooMusic 1 YahooMusic 2
#user 72916 6040 7279 8026324 200000 200000
#item 1628 3900 37232 2330066 136736 136736
#rating 2811983 1000209 749401 22507155 78344627 78742463
sparsity 97.63% 95.75% 99.72% 99.99% 99.71% 99.71%
range 0-1 1-5 0.5-5 1-5 1-5 1-5

TABLE II: Description of Data Subsets in Three Categories

Data type Dataset Domain Sparsity Average
Movie EachMovie source 96.00% 4.32

Movielens1M target 98.50% 2.91
Book LibraryThing source 87.43% 3.97

AmazonBook target 99.69% 3.12
Music YahooMusic 1 source 95.70% 4.14

YahooMusic 2 target 99.00% 2.70

RMGM and CIT on two source data respectively. The re-
sults of cross-domain recommendation are affected when
the source data are different. It shows that CDR-MS is
not relying on one source data but takes advantages of
data from both sources, as CDR-MS outperforms each
cross-domain recommendation with one source domain.

TABLE III: Recommendation Results on the Movie Target
Domain

Methods Source Data MAE RMSE
Single- PCC − 1.2123 1.5722
Domain FMM − 1.3543±0.0171 1.6767±0.0201

SVD − 1.0935±0.0036 1.3542±0.0057
Cross- CBT book 1.1785±0.0198 1.4659±0.0317
Domain music 1.2234±0.0096 1.5452±0.0181

RMGM book 1.2966±0.0193 1.6284±0.0226
music 1.2394±0.0145 1.5453±0.0162

CIT book 1.0185±0.0033 1.2291±0.0020
music 1.0176±0.0021 1.2279±0.0027

Multiple CDR-MS book&music 1.0014±0.0023 1.2206±0.0013

TABLE IV: Recommendation Results on the Book Target
Domain

Methods Source Data MAE RMSE
Single- PCC − - -
Domain FMM − 1.5426±0.0219 1.8730±0.0214

SVD − 1.0417±0.0057 1.2839±0.0078
Cross- CBT movie 1.2259±0.0311 1.5487±0.0272
Domain music 1.1110±0.0089 1.4147±0.0216

RMGM movie 1.2911±0.0198 1.6167±0.0223
music 1.2426±0.0154 1.5585±0.0207

CIT movie 0.9969±0.0085 1.2086±0.0085
music 0.9931±0.0038 1.2061±0.0050

Multiple CDR-MS movie&music 0.9810±0.0014 1.2034±0.0014

D. Parameter Analysis and Complexity Analysis

We analyzed how the parameters K and L affect the
performance of CDR-MS. Due to the space limitation, only
the result on the movie category is presented. To analyze K
and L, grid search is used with evaluation metrics of both
MAE and RMSE as shown in Fig. 1. Since the performance
of other baselines is not comparable with the ones in Fig.

TABLE V: Recommendation Results on the Music Target
Domain

Methods Source Data MAE RMSE
Single- PCC − 1.7936 2.2436
Domain FMM − 1.4717±0.0211 1.8185±0.0219

SVD − 1.3426±0.0053 1.5663±0.0062
Cross- CBT movie 1.7635±0.0211 2.1091±0.0220
Domain book 1.5963±0.0153 1.8764±0.0227

RMGM movie 1.4972±0.0194 1.8216±0.0263
book 1.4648±0.0305 1.7623±0.0352

CIT movie 1.3243±0.0092 1.5104±0.0096
book 1.3309±0.0101 1.5168±0.0090

Multiple CDR-MS movie&book 1.3379±0.0020 1.5004±0.0016

1, they are omitted. The result of analysis shows that the
performance of SVD, CIT and CDR-MS is not greatly affected
by these parameters. However, the complexity of the method
will significantly increase with the increase of K and L. The
time consumed by different K is shown in Table VI. For
simplicity, the setting of L is set to be the same as K. The
time consumption shown in Table VI is for 10 iterations of the
proposed method. For fair comparison with other baselines, we
choose 40 for both K and L for CDR-MS in our comparison
experiments. The total complexity of CDR-MS is O(n).

TABLE VI: Time consumption with different settings of K

K MAE RMSE Time(s)
K = 10 1.0139 1.2297 200.00
K = 20 1.0022 1.2208 321.34
K = 30 1.0008 1.2206 515.72
K = 40 1.0014 1.2207 759.87
K = 50 1.0014 1.2203 1051.55
K = 60 1.0002 1.2194 1751.07
K = 70 1.0006 1.2195 2385.67
K = 80 1.0002 1.2194 2977.87
K = 90 1.0002 1.2194 3527.90
K = 100 1.0001 1.2192 4687.98

VI. CONCLUSION AND FUTURE WORK

In this paper, we develop a cross-domain recommendation
method with multiple sources named CDR-MS, to improve
recommendation performance in a sparse target domain. To
address two challenging issues: 1) group-level knowledge
inconsistency and 2) group-level knowledge insufficiency, a
domain adaptation method and a matrix factorization method
with flexible constraints are developed. In this way, CDR-MS
ensures the effectiveness of the group level knowledge extrac-
tion and adaptation from multiple sources with domain shift
existed. With the virtue of knowledge extracted from multiple
source domains, CDR-MS alleviates the data sparsity problem

978-1-7281-6926-2/20/$31.00 ©2020 IEEE



(a) Parameter analysis on MAE

(b) Parameter analysis on RMSE

Fig. 1: Parameter analysis with different setting on K.

and increases the prediction accuracy in cross-domain recom-
mendation. Experiments on five real-world datasets with three
categories demonstrate that our method CDR-MS achieves the
best performance compared with six baselines including both
single-domain and cross-domain recommendation methods.

In the future, we will solve the problem of cross-domain
recommendation with multiple target domains together with
multiple source domains. We will also try to develop active
learning strategies for cross-domain recommender system with
multiple sources, which is necessary when the number of
source domains increases.
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