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Abstract—Scale variation is one of the important challenges
in object detection. Many state-of-the-art objectors tackle this
problem by utilizing the feature pyramids. However, the current
methods of producing feature pyramids are still inefficient to
integrate the semantic information from other layers. In this
work, our motivation is to build a feature pyramid efficiently
with the selected contextual feature by integrating the informative
features and suppressing the useless ones. To achieve this goal, we
propose a novel single-stage detection network termed Selective
Feature Network(SFNet) which consists of a semantic-enhanced
module and a selective feature module. The semantic-enhanced
module improves the semantics of basic pyramids via a light-
weight architecture. In conjunction with that, a selective feature
module is employed to combine features across different channels
and scales by attention mechanism. The resulting contextual
feature is then injected into the pyramidal features. Compre-
hensive experiments are performed on PASCAL VOC and MS
COCO datasets. Results demonstrate that, with a VGG16 based
SFNet, our approach obtains significant improvements over the
competitors without losing real-time processing speed.

Index Terms—component, formatting, style, styling, insert

I. INTRODUCTION

In recent years, with the emergence of convolutional neural
networks(CNNs), the great success has been achieved in the
compute vision tasks such as image classification [1], [2],
object detection [3], [4] and semantic segmentation [5], [6].
With a wide range of applications, the object detection as a
fundamental task has been extensively studied. Currently, these
CNN-based object detection frameworks can be divided into
two categories: the one-stage methods such as SSD [7] or
YOLO [4] and the two-stage methods such as Faster-RCNN
[8] or R-FCN [9].The two-stage methods extract proposals
first and then perform classification and regression on them.
The one-stage methods directly predict the bounding boxes by
dense grids on the input image. Generally, two-stage methods
have the advantage of being more accurate while one-stage
methods obtain a real-time processing speed but compromise
on performance. However, scale variation is one of the key
challenges for both methods.

To solve this issue, a traditional way is to build multi-scale
image pyramids as shown in Figure 1(a). This intuitive way has
been applied for both CNN-based methods [10] and methods
along with hand-crafted features. Nevertheless, this kind of
approaches are quite inefficient and infeasible for practical
applications due to the increase of inference time.

*Corresponding author.

Fig. 1. Different strategies for constructing feature pyramid. (a) Using an
images with various sizes to build a feature pyramid. (b) Pyramidal feature
hierarchy computed by a ConvNet as if it were a featurized image pyramid.
(c)Feature pyramid network utilizes the features generated by top-down
pathway and lateral connections for prediction. (d) Our proposed Selective
Feature Network(SFNet) builds a feature pyramid effectively by selecting
informative features via attention mechanism.

We focus on the CNN-based methods which can approxi-
mate the image pyramids with less computation consumption.
SSD is one of the first attempts exploring the feature pyramids
in the deep learning era. SSD takes a truncated VGG16 as
base network and adds a series of convolutional networks to
generate further feature maps. Based on that, several object
detection feature maps with varying sizes are built. Given a
single input image, SSD utilizes multi-scale feature maps to
conduct independent predictions (Figure 1(b)). Shallow layers
with high-resolution feature maps are responsible for small
objects while deep layers with high-level semantic information
are for large objects. However, the original SSD struggles
to tackle the scale variation problem since the former layers
fail to capture the rich semantics. This impedes SSD from
detecting small instances so SSD still lags behind the-state-
of-art detectors in terms of accuracy.

To tackle the problem mentioned above in SSD, many recent
works [11], [12] integrate semantic information at all scales to
improve the performance of small object detection and make
the framework more robust to object scales. In Figure 1(c),
Feature pyramid network(FPN) [13] and RetinaNet [41] enrich
the former layers with features through lateral connections in
top-down pathway. The lateral connections pass the high-level
semantic information from deep features to shadow features
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Fig. 2. Overall architecture of our one-stage detector based on VGG. It mainly consists of three components: backbone network, semantic-enhanced module
and selective feature module. Semantic-enhanced module is designed to improve the semantics of low level pyramid. Selective feature module is added to
inject the informative features into pyramid across different spatial locations and scales via attention mechanism, shown in the low half.

layer by layer until the finest resolution map is generated.

FPN reuses multi-scale features maps within a single net-
work and enriches the semantic information via lateral connec-
tions to boost the performance of object detection. However,
the shallow layers in FPN only focus more on adjacent
resolution but less on others. As a result, the deeper layers fail
to integrate with the shallower layers. Our experimens shows
that shallow layers are also helpful to improve the accuracy.
Further, shallow layers take in other features entirely without
selection, which leads to the important features covered up by
the useless ones.

In this paper, we aim at solving the obstacles discussed
above by designing two modules, a semantic-enhanced module
and a selective feature module. Our motivation is to strengthen
the prediction layers with the most useful semantic infor-
mation generated by attention mechanism. To be specific,
the semantic-enhanced module is employed to improve the
nonlinearity of the low level features and change the number
of channels. Further, to enable the network select more sig-
nificant semantic information in a flexible way, we introduce
a selective module as is shown in Figure 1(d). For varying
size of input image, this module utilizes attention mechanism
to emphasize the favorable information from different scales
and spatial locations. Then, the resulting contextual feature
is formed and instilled into the original pyramid layers for
prediction. As a result, every layer obtains strong semantics
from all layers not only the adjacent one. Compared to the
previous works such as standard SSD and FPN frameworks,
our approach have three advantages over them: (1) our method
introduces the global semantics for low-level pyramids; (2)
meanwhile, this effective method prunes out the useless in-
formation and generate the appropriate semantics for scale
variation of input images; (3) the contextual semantics are

integrated into all scales simultaneously, which is efficient than
the lateral connections.

We do comprehensive experiments upon the diverse feature
pyramid strategies using VGG16 base network and the results
demonstrate that our approach is more competitive in aspects
of accuracy and speed.

We summarize our contributions as follows:
• 1) We introduce a effective feature pyramid strategy

consisting of semantic-enhanced module and selective
feature module to enrich the pyramids with the appro-
priate contextual semantics.

• 2) We compare some popular feature pyramid strategies
with our method within the standard SSD architecture
in terms of accuracy, efficiency or parameter size, and
the experimental results show that our method has an
advantage over them.

• 3) Our time efficient method improves the performance
compared with popular single-stage detectors by a large
margin on both PASCAL VOC and MS COCO datasets.

II. RELATED WORK

Deep object detectors.General object detection is a fun-
damental task in the domain of computer vision and has
been extensively studied. Recently, the object detectors based
on deep learning have obtained dramatical improvement in
both accuracy and speed. In terms of architecture, CNN-based
object detectors can be divided into two types. The first type
is two-stage detectors. These detectors generates a pool of
object proposals and refine them. Particularly, RCNN [15]
employs Selective Search [16] to generate region proposals
and then do classification and regression on the cropped pro-
posals independently. To avoid extracting feature repeatedly
for a single image, SPP-Net [17] and Fast R-CNN do feature
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extraction only once upon the whole input image. These two
methods employ spatial pyramid pooling or ROI pooling to
generate region features and allow the reuse of the feature
maps. Further, Faster R-CNN [8] proposes Region Proposal
Network(RPN) sharing the network with the detection back-
bone network to replace the time-consuming region proposal
step. And Faster R-CNN is a complete end-to-end detection
framework. R-FCN proposes a fully convolutional network for
object detection. The second type is one-stage detectors. To
speed up the inference, YOLO and SSD are proposed. These
detectors eliminate the proposal generation step and directly do
classification and bounding box regression on the pre-defined
anchors. In this paper, we base our approach on standard SSD
due to its speed/accuracy tradeoff compared with two-stage
detectors.

Feature pyramids for tackling scale variation.As one of
the key challenges in computer vision tasks, scale variation
has received lots of attention. To tackle this problem, SSD
generates default boxes at different depth layers and perform
object detection at multiple features without fusion. This
conduction leads to limited semantic information in shallow
layers to detect small instances. Many published literature
[18], [19]and [20] solve this issue by extracting better features
or exploiting contextual information. A very popular strategy
is to build top-down feature pyramid presentation and utilize
lateral connections to convey the high-level semantics to
former layers. After that, PANet [21] builds a bottom-up
pathway to inject the low-level information into deep layers.
Recently, a reconfiguration architecture is proposed to combine
low-level representations with high-level semantic features in a
highly-nonlinear way [22]. And the method in [23] strengthens
the multi-level features using the balanced semantic features
instead of lateral connections.

Attention for visual tasks.Attention has been incorpo-
rated in feed-forward convolutional neural networks. Gen-
erally speaking, visual attention mechanism enforces model
to adaptively focus on the more important features. In the
image classification domain, the Squeeze-and-Excitation block
in SENet [24] can be considered as the channel attention and
it is developed to model interdependencies between channels.
The SKNet [25] can be regarded the kernel attention to yield
different sizes of receptive fields. There are many meaningful
works introducing attention into object detection networks.
DFPR [22] applies the Squeeze-and-Excitation block as the
basic module to emphasize useful features and suppress less
useful ones. CBAM [26] sequentially applies channel attention
and spatial attention for emphasizing meaningful features.
Further, HAR-Net [27] proposes hybrid attention modules
consisting of channel attention, spatial attention and aligned
attention for single-stage object detection.

Most of above-mentioned methods apply attention mecha-
nism in the backbone network. To the best of our knowledge,
it is far from development to build more effective pyramid fea-
tures via attention mechanism. Our proposed method utilizes
attention mechanism to adaptively select useful features from
multiple layers to build feature pyramid.

III. METHOD

Here, we will introduce the overall architecture of the
proposed method and describe the semantic-enhanced module
and the selective feature module. The overall of our approach,
named SFNet, is illustrated in Figure 2. SFNet mainly con-
sists of there parts: a base network for feature extraction,
a semantic-enhanced(SE) module and a selective feature(SF)
module to produce feature pyramid representation.

We employ VGG16 architecture as in [7]. To deal with the
problems discussed previously, the semantic-enhanced module
add non-linearities to improve the representation power first.
Then the SF module prunes out the useless information of
features produced by SE module and enables model to focus
on the most useful semantic information for object detection.
Finally, the selected feature is fused with the previous pyra-
midal features. The resulting feature pyramid captures rich
semantic information for detection.

A. Backbone Network

We build our method on the standard SSD system due
to its better accuracy-vs-speed tradeoff. The standard SSD
detector employs a VGG16 as the backbone network. From
original VGG16 architecture, SSD uses the conv4 3 layer and
converts the fc 7 to convolutional layer for detection. For a
given input size of 300×300, the above layers generate 38×38
feature map and 19×19 feature map which have low-level
semantic information for object detection. Based on that, to
detect instances from small to large, SSD truncates the last
fully connected layer of original VGG16 and builds a series
of conv layers. The additional prediction layers are conv8 2,
conv9 2, conv10 2 and conv11 2 with feature map size of
10×10, 5×5, 3×3, 1×1, respectively. Meanwhile, SSD spreads
out anchors with different scales and aspect ratios to multiple
layers of different depths. It forms the pyramidal hierarchical
structure where former layers are responsible for small objects
while later layers for large objects.

Following the original SSD[7], we utilize six prediction
layers for 300×300 input images size and seven for 512×512
input images size, instead of reduced layers in [39]. Decreasing
the prediction layers will lead to the performance degraded in
our model.

B. Micro Semantic-enhanced Module

To select appropriate feature for building pyramidal feature
structure, the precondition is that the pool for selecting has
enough information. Nevertheless, the basic feature maps
generated by backbone network have low level semantic
information. To improve the semantics to be learned, we
utilize the lightweight 1×1 conv layer as in [33]. It takes
the low level detection feature maps produced by backbone
network and outputs the enhanced feature maps for each
original layer respectively, as showed with yellow-box in
Figure 2. Meanwhile, the SE module also changes the channel
dimensions of the input layers. We set k=256 in this paper, so
each pyramidal layer have 256 channels after undergoing the
SE module.
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Mathematically, given an input image, the outputs of back-
bone network are expressed as:

Xb = x1, x2, ..., xn (1)

where n denotes the number of features in pyramid. Then
the enhanced features Xe obtained after undergoing the SE
module, is formulated as:

Xe = f1×1(Xb) (2)

where f1×1 denotes the convolutional layer with kernel size
of 1x1 followed by Batch Normalization [28] and ReLU.
We have experimented with more sophisticated blocks (e.g.,
using multi- layer residual blocks [33]) but not observed better
results.

It’s worth noting that the SE module is the solo additional
layer to inject non-linearities into the pyramids. Simple but
effective, the SE module improve the semantics to be learned
of the basic pyramids.

IV. SELECTIVE FEATURE MODULE

Given the feature hierarchy, the goal of selective feature
module is to select the most useful features for the pyramids
by assigning a big weight to the informative feature and a
small weight to useless one. In this paper, the SF module is
inspired by Selective Kernel Convolution [25] which consists
of three parts: Split, Fuse and Select. Here, we have obtained
the feature maps with different sizes so our SF module only
consists of the later two parts: Fuse and Select, as highlighted
with grey-box in Figure 2 where a two-feature case is shown.

In the previous section, we have obtained pyramidal features
with the same channel-dimension but different sizes. Before
fusion, we first reshape the pyramids to the same spatial size.
The pyramid with uniform resolution is expressed as:

U = u1, u2, ..., un (3)

where, ui ∈ RH×W×C denotes the spatial dimension and C
denotes the channel dimension.

The motivation of this paper is to select the informative
features via attention mechanism. To achieve this aim, the
generation of weights need to synthesize information from all
input features. So, the fused feature is obtained by integrating
all input features (two in Figure 2) via element-wise addition:

F =
∑
i

ui (4)

Then, the global information is generated by a global
average pooling(GAP) operation on each channel of F :

Sc =
1

H ×W

H∑
i=1

W∑
j=1

Fc(i, j) (5)

where Sc is the cth value of S ∈ RC and Fc(i, j) denotes the
value of each element at cth channel.

Further, a fully connected layer is followed to reduce the
dimension for better efficiency and precise selection. The low-
dimension feature is created:

z = δ(σ(W1S) (6)

where δ is the ReLU function, σ is Batch Normalization
and W1 ∈ Rd×C .In this paper, d is set to 32 to make
dimensionality-reduction.

In the select stage, to select informative features for detec-
tion, a series of fully connected layers are employed to produce
the primary weight vector for each original feature:

ai =W2iz i = 1, 2, ..., n (7)

where ai refers to the i th weight vector, W2i ∈ Rd×C .
Then, softmax operation is performed on the same index of

every primary weight vector to adaptively select features from
different branches:

Qij =
eaij∑
i e

aij
j = 1, 2, ..., k (8)

where, Qi is the final weight vector for the ith feature in
pyramid, j specifies jth element of the ith weight.

To obtain the weighted feature, we perform channel-wise
multiplication on final weights and features of uniform size.
After that, the contextual feature G is produced:

G =
∑
i

Qi ⊗ Ui (9)

where ⊗ refers to channel-wise multiplication.
The contextual feature integrates the informative features

and suppress the useless ones via attention mechanism. To
instill contextual feature into low level features of different
resolution, G is reshaped into corresponding size with different
depth of pyramid. The reshaped features form the contex-
tual pyramid expressed as {G1, G2, . . . , Gn]}. In the end,
the prediction layers L are produced through element-wise
summation on contextual pyramid and low level pyramid:

li = Gi + ui (10)

It should be noted that the original selective kernel convo-
lution is developed to enable the neurons to adaptively adjust
their receptive fields sizes for image classification task. In
contrast, we apply it to select informative features and suppress
useless feature for object detection. Given a low level feature
pyramid, the selective kernel convolution helps to pick out the
meaningful features. Our method is also different from the
approach in [22] which applies the Squeeze-and-Excitation
block [24] as the basic module. Result (click ”Generate” to
refresh) Copy to clipboard

V. EXPERIMENTS

We conduct comprehensive experiments on two widely used
datasets: PASCAL VOC [29] and MS COCO [30]. In this sec-
tion, we first introduce the datasets and give an implementation
details of our method. Then we make comparison with existing
object detectors and provide ablation study on the PASCAL
VOC2007 dataset.
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TABLE I
PER-CLASS COMPARISON ON THE PASCAL VOC 2007 TEST SET. ALL MODELS ARE TRAINED ON VOC2007 TRAINVAL AND VOC2012 TRAINVAL. THE

FIRST SECTION CONTAINS SOME REPRESENTATIVE TWO-STAGE DETECTORS WITH LARGE INPUT SIZE. THE SECOND SECTION AND THE LAST SECTION
CONTAIN THE RESULTS OF SINGLE-STAGE DETECTOR WITH DIFFERENT SIZES INPUT IMAGES. SFNET300 INDICATES THE INPUT IMAGE DIMENSION IS

300 × 300.

Method Backbone mAP aero bike bird boat bottlebus car cat chair cow tabledog horse mbike person plant sheep sofa train tv
Faster [8] VGG16 73.2 76.5 79.0 70.9 65.5 52.1 83.1 84.7 86.4 52.0 81.9 65.7 84.8 84.6 77.5 76.7 38.8 73.6 73.9 83.0 72.6
Faster [33] ResNet101 76.4 79.8 80.7 76.2 68.3 55.9 85.1 85.3 89.8 56.7 87.8 69.4 88.3 88.9 80.9 78.4 41.7 78.6 79.8 85.3 72.0
R-FCN [9] ResNet101 80.5 79.9 87.2 81.5 72.0 69.8 86.8 88.5 89.8 67.0 88.1 74.5 89.8 90.6 79.9 81.2 53.7 81.8 81.5 85.9 79.9
SSD300 [7] VGG16 77.5 79.5 83.9 76.0 69.6 50.5 87.0 85.7 88.1 60.3 81.5 77.0 86.1 87.5 83.9 79.4 52.3 77.9 79.5 87.6 76.8
STDN300 [34] DenseNet 78.1 81.1 86.9 76.4 69.2 52.4 87.7 84.2 88.3 60.2 81.3 77.6 86.6 88.9 87.8 76.8 51.8 78.4 81.3 87.5 77.8
DSSD321 [11] ResNet101 78.6 81.9 84.9 80.5 68.4 53.9 85.6 86.2 88.9 61.1 83.5 78.7 86.7 88.7 86.7 79.7 51.7 78.0 80.9 87.2 79.4
DFPR300 [22] VGG16 79.6 84.5 85.5 77.2 72.1 53.9 87.6 87.9 89.4 63.8 86.1 76.1 87.3 88.8 86.7 80.0 54.6 80.5 81.2 88.9 80.2
DES300 [35] VGG16 79.7 83.5 86.0 78.1 74.8 53.4 87.9 87.3 88.6 64.0 83.8 77.2 85.9 88.6 87.5 80.8 57.3 80.2 80.4 88.5 79.5
SFNet300(ours) VGG16 79.9 84.5 87.2 78.7 73.9 56.2 88.2 87.2 87.7 63.4 85.9 77.4 86.5 88.6 87.8 80.7 57.3 79.6 80.2 88.1 78.3
SSD512 [7] VGG16 79.5 84.8 85.1 81.5 73.0 57.8 87.8 88.3 87.4 63.5 85.4 73.2 86.2 86.7 83.9 82.5 55.6 81.7 79.0 76.6 80.0
SSD513 [7] ResNet101 80.6 84.3 87.6 82.6 81.6 59.0 88.2 88.1 89.3 64.4 85.6 76.2 88.5 88.9 87.5 83.0 53.6 83.9 82.2 87.2 81.3
DSSD513 [11] ResNet101 81.5 86.6 86.2 82.6 74.9 62.5 89 88.7 88.8 65.2 87 78.7 88.2 89 87.5 83.7 51.1 86.3 81.6 85.7 83.7
STDN513 [34] DesnseNet 80.9 86.1 89.3 79.5 74.3 61.9 88.5 88.3 89.4 67.4 86.5 79.5 86.4 89.2 88.5 79.3 53.0 77.9 81.4 86.6 85.5
DFPR512 [22] VGG16 81.1 90.0 87.0 79.9 75.1 60.3 88.8 89.6 89.6 65.8 88.4 79.4 87.5 90.1 85.6 81.9 54.8 79.0 80.8 87.2 79.9
SFNet512(ours) VGG16 81.6 87.8 87.6 84.7 74.7 65.3 88.4 88.9 88.4 65.7 88.4 75.8 86.3 89.1 86.4 84.0 57.9 84.6 78.4 86.9 81.7

TABLE II
PASCAL 2012 DETECTION RESULTS. NOTE THAT ALL MODELS IN THIS TABLE ARE TRAINED ON VOC2007 TRAINVALTEST AND VOC2012 TRAINVAL.

Method Backbone mAP aero bike bird boat bottlebus car cat chair cow table dog horse mbike person plant sheep sofa train tv
Faster [33] ResNet101 73.8 86.5 81.6 77.2 58.0 51.0 78.6 76.6 93.2 48.6 80.4 59.0 92.1 85.3 84.8 80.7 48.1 77.3 66.5 84.7 65.6
R-FCN [9] ResNet101 77.6 86.9 83.4 81.5 63.8 62.4 81.6 81.1 93.1 58.0 83.8 60.8 92.7 86.0 84.6 84.4 59.0 80.8 68.6 86.1 72.9
ION [36] VGG16 76.4 87.5 84.7 76.8 63.8 58.3 82.6 79.0 90.9 57.8 82.0 64.7 88.9 86.5 84.7 82.3 51.4 78.2 69.2 85.2 73.5
SSD300 [7] VGG16 75.8 88.1 82.9 74.4 61.9 47.6 82.7 78.8 91.5 58.1 80.0 64.1 89.4 85.7 85.5 82.6 50.2 79.8 73.6 86.6 72.1
SSD321 [7] ResNet101 75.4 87.9 82.9 73.7 61.5 45.3 81.4 75.6 92.6 57.4 78.3 65.0 90.8 86.8 85.8 81.5 50.3 78.1 75.3 85.2 72.5
DES300 [35] VGG16 77.1 88.5 84.4 76.0 65.0 50.1 83.1 79.7 92.1 61.3 81.4 65.8 89.6 85.9 86.2 83.2 51.2 81.4 76.0 88.4 73.3
DSSD321 [11] ResNet101 76.3 87.3 83.3 75.4 64.6 46.8 82.7 76.5 92.9 59.5 78.3 64.3 91.5 86.6 86.6 82.1 53.3 79.6 75.7 85.2 73.9
DFPR300 [22] VGG16 77.5 89.5 85.0 77.7 64.3 54.6 81.6 80.0 91.6 60.0 82.5 64.7 89.9 85.4 86.1 84.1 53.2 81.0 74.2 87.9 75.9
SFNet300(ours) VGG16 77.6 89.9 85.3 76.4 64.1 52.7 83.9 79.3 91.7 61.2 83.7 66.5 90.5 87.7 86.4 83.9 53.9 82.3 73.7 86.5 73.3
SSD512 [7] VGG16 78.5 90.0 85.3 77.7 64.3 58.5 85.1 84.3 92.6 61.3 83.4 65.1 89.9 88.5 88.2 85.5 54.4 82.4 70.7 87.1 75.6
SSD512 [7] ResNet101 79.4 90.7 87.9 78.3 66.3 56.5 84.1 83.7 94.2 62.9 84.5 66.3 92.9 88.6 87.9 85.7 55.1 83.6 74.3 88.2 76.8
DSSD513 [11] ResNet101 80.0 92.1 86.6 80.3 68.7 58.2 84.3 85.0 94.6 63.3 85.9 65.6 93.0 88.5 87.8 86.4 57.4 85.2 73.4 87.8 76.8
DFPR512 [22] VGG16 80.0 89.6 87.4 80.9 68.3 61.0 83.5 83.9 92.4 63.8 85.9 63.9 89.9 86.2 56.3 84.4 75.5 89.7 78.5 89.7 78.5
RefineDet [37] VGG16 80.1 90.2 86.8 81.8 68.0 65.6 84.9 85.0 92.2 62.0 84.4 64.9 90.6 88.3 87.2 87.8 58.0 86.3 72.5 88.7 76.6
SFNet512(ours) VGG16 80.3 90.9 87.7 80.6 67.5 61.9 85.6 85.3 92.2 64.4 86.2 65.3 90.7 90.5 88.7 87.7 57.9 85.4 72.2 88.4 76.9

A. Dataset

The PASCAL VOC dataset contains 20 different object
classes. For VOC 2007, training is performed on the union
of VOC 2007 trainval and VOC 2012 trainval and we use
VOC 2007 test set for evaluating. For VOC 2012, models are
trained on the union of VOC 2007 trainval, 2007 test and 2012
trainval and evaluated on VOC2012 test. For evaluation, the
standard mean average precision(mAP) is used.

The COCO dataset is more challenging consisting of natural
images from 80 object categories. For COCO, we use a
popular split where training is performed on trainval35k,
validating on minival with 5k images and we evaluate our
method on the official test-dev 2017 evaluation server.

B. Implementation Details

We implement our SFNet detector based on Pytorch frame-
work [27]. We follow most settings as SSD, including scales
and aspect ratios of the defaults boxes, data augmentation
and loss functions. The warm-up strategy is adopted that the
learning rate linearly increases from 10-6 to 4×10-3 at the first

5 epochs. Then, the learning rate is divided by 10, for PASCAL
VOC dataset at 150 and 200 epoch, and for MS COCO dataset
at 90 and 120 epoch. The total numbers of training epochs are
250 and 140 for VOC dataset and COCO dataset, respectively.
We set weight decay to 0.0005, momentum to 0.9 and batch
size to 32 for all of experiments. We initialize all new layers
with the MSRA method [32]. For VGG16 backbone, we
choose the spatial size of conv8 2 as the uniform size in SF
module.

C. PASCAL VOC

We compare our method with the baseline SSD and other
existing detectors. Table I shows the per-class results for
varying input image sizes on the PASCAL VOC 2007 test set.
SSD uses features with different depths performing detection
independently and achieves a score of 77.5 for low resolution
and 79.5 for high resolution. For the images resolution,
SFNet300 scores 79.9%, 2.4% higher than that of SSD300
and 2.1% higher than that of SSD512. As the upgraded
version of SSD, DSSD [11] replaces the backbone network
with deep residual network [33], which will yield features
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TABLE III
DETECTION RESULTS ON COCO 2017 TEST-DEV

Method Backbone AP AP50AP75APS APM APL

Faster [8] VGG16 21.9 42.7 - - - -
R-FCN [9] ResNet101 29.2 51.5 - 10.3 32.4 43.3
SSD300 [7] VGG16 25.1 43.1 25.8 6.6 25.9 41.4

RON384++ [12] VGG16 27.4 49.5 27.1 - - -
SSD321 [7] ResNet101 28.0 45.4 29.3 6.2 28.3 49.3

FSSD300 [18] VGG16 27.1 47.7 27.8 8.7 29.2 42.2
DSSD321 [11] ResNet101 28.0 46.1 29.2 7.4 28.1 47.6
STDN300 [34] DenseNet 28.0 45.6 29.4 7.9 29.7 45.1
SFNet300(ours) VGG16 28.1 47.6 29.1 10.3 29.9 42.7

SSD512 [7] VGG16 28.8 48.5 30.3 10.9 31.8 43.5
SFNet512(ours) VGG16 31.7 52.5 33.4 15.1 34.6 44.8

with high-level semantics. Our method performs better than
DSSD for various sizes of input images. SFNet300 provides
a gain of 1.3% in terms of mAP, over DSSD321. It is worth
mentioning that DFPR [22] shares the same motivation with
our method but SFNet is 0.5% better than it with an input
image size of 512×512. Furthermore, SFNet still achieves a
significant improvement compared with other popular single-
stage detectors.

All the results demonstrate that SFNet has integrated more
useful information. As shown in Table II, the same conclusion
can be drawn for VOC 2012 test set.

D. MS COCO

We also evaluate the performance of our method on the
MS COCO dataset. Table III shows the comparison results on
COCO test-dev 2017 from the official evaluation server. Com-
pared to baseline SSD, our detector obtains better performance
on all of the metrics.

With the same input image size, SFNet300 achieves a
significant improvement of 12% on the over-all detection
performance, from 25.1 to 28.1. For small objects, our method
outperforms the baseline SSD300 with a large margin. This
again demonstrates that the prediction layers especially the
shallow layers capture the useful information from SF module.
It is noteworthy to mention that, with input image size of
321×321, SSD321 and its variation DSSD321 scores 28.0%
mAP based on ResNet101 backbone and our SFN300 out-
performs them with a shallower backbone VGG and lower
image resolution. For the image size of 512×512, our method
improves the initial SSD from 28.8 to 31.7.

VI. DISCUSSION

A. Ablation Study on PASCAL VOC 2007

To better understand the effectiveness of our detector, we
conduct an ablation study on the VOC2007 test dataset based
on our SFNet300. All of models in this section are trained on
VOC2007 trainval and VOC2012 trainval.

The impact of the proposed modules. As can be seen
in Table IV,the baseline SSD300 scores 77.5% mAP and the
semantic-enhanced module(SE) improves the result by 1.3%.
With the selective feature(SF) module added, the result can be
further improved to 79.7%, which is 2.2% better than baseline.

TABLE IV
ABLATION RESULTS ON VOC 2007 TEST DATASET. SE IS

SEMANTIC-ENHANCED MODULE. SF IS SELECTIVE FEATURE MODULE.

Method mAP
Baseline SSD300 77.5

SSD300+SE 78.8
SSD+SE+SF 79.7

SSD+SE+SF(mul) 79.6
SSD+SE+SF(add/only scales) 79.3

SSD+SE+SF(add) 79.9

TABLE V
ALTERNATIVES FOR FEATURE PYRAMID STRATEGIES. FOR SSD, WE

RE-IMPLEMENT THE MODEL IN PYTORCH 0.4.0.

Method Backbone FPS mAP
SSD(ours-re) VGG16 106.4 77.5
SSD+lateral VGG16 94 78.3
SSD+sum VGG16 99 79.3
SFNet300 VGG16 98 79.9
SFNet512 VGG16 50.3 81.6

The results confirm our intention that building feature pyramid
by selective feature contributes to a better detector.Then, we
switch the integration strategy from summation to element-
wise product in (9), but it can’t achieve better performance,
illustrated in the fifth row of Table IV. Further, we investigate
another two popular strategies to construct the feature pyramid.
The forth column of Table V shows the comparison in terms of
accuracy when using different feature pyramid strategies. The
strategy as in [23], which strengthens the multi-level features
via summation of original pyramids, obtains a detection mAP
score of 79.3 without refinement operation, illustrated in the
forth row of Table V. The table also shows the result of SSD
with lateral connections. As is shown in the table, our strategy
surpasses the alternatives.

To validate that SF module gathers features across two di-
mensions: spatial locations and scales, we design a experiment
where each channel in a feature with specific scale shares the
same weight. It means that there is only one weight to be
learned for each feature in pyramid. The second line from the
bottom of Table IV shows that the model only gets 79.3%
mAP without channel-wise weight.

Further, we investigate another two popular strategies to
construct the feature pyramid. TABLE V shows the compari-
son in terms of accuracy when using different feature pyramid
strategies. The strategy as in [23], which strengthens the multi-
level features via summation of original pyramids, obtains a
detection mAP score of 79.3 without refinement operation. The
table also shows the result of SSD with lateral connections. As
is shown in the table, our strategy surpasses the alternatives.

Number of feature maps for selecting.To validate how
the number of feature maps influences the model performance
with SF module plugged in, we design a group of experiments
by setting different numbers of feature maps for selecting. To
reduce the number of combinations, the middle two layers for
prediction, consisting of conv8 2 and conv9 2, are involved
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TABLE VI
ALTERNATIVES FOR FEATURE PYRAMID STRATEGIES. FOR SSD, WE

RE-IMPLEMENT THE MODEL IN PYTORCH 0.4.0.

Feature Size mAPcon6 2 fc7 con10 2 conv11 2 5 10 19
SSD 77.5
(a) X X X X 79.4
(b) X X X X 79.6
(c) X X X 79.2
(d) X X X X 79.8
(e) X X X X 79.5
(f) X X X 79.5
(g) X X X X X 79.5
(h) X X X X X 79.9
(i) X X X X X 79.9

TABLE VII
RESULTS USING MOBILENET AS THE BACKBONE

Method Backbone mAP Size(M)
SSD(ours-re) MobileNet v1 69.7 5.69

ours MobileNet v1 71.3 6.39

in all experiments and they are not shown in the TABLE VI.
The experiments show that every layers in the table is essential
for boosting the results especially the deeper layers. With the
absence of conv11 2 layer, the accuracy drops by a large
margin(-0.5%). With more deeper feature maps absent, the
score further decreases. As a summary, each layer in feature
pyramid contributes to obtaining a better selective feature in
SF module.

Different sizes for integration. Different sizes for integra-
tion. In the pipeline of SF module, each layer is reshaped to
a uniform size for integration. Here, we design a group of
experiments to integrate feature pyramid into different sizes.
The last three lines in TABLE VI show the results. We find
that it has no influence with a large version of integration
size while using a small size drops accuracy from 79.9% to
79.5%. We think the difference is that when most of shallow
layers reshaped to a small size, the useful information is lost.
With the same result for sizes of 19×19 and 10×10, we choose
smaller one in consideration of efficiency.

Applied to lightweight backbone. We use reduced VGG16
as our backbone, but it still has more parameters compared
with the lightweight network, e.g., MobileNet [14] and Shuf-
fleNet [38]. To further validate the generalization ability of
our method, we apply our method to MobileNet-SSD. Here,
we choose the spatial size of conv 13 as the uniform size in
SF module. TABLE VII shows that our method improves the
performance significantly with the limited additional parame-
ters. This implies that our method has potential applications
for mobile devices.

B. Inference Speed

To quantitatively test the speed, we run all models in Table
V using an Nvidia 1080Ti, cuda 8.0 and cuDNN v7 with Inter
Xeon Silver 4110@2.10GHz.

Fig. 3. Detection examples on VOC 2007 test. Left: SSD300. Right:
SFNet300.

To make fair comparison, the speed is evaluated with the
same batch size. We reimplement SSD using Pytorch and
the accuracy is the same as reported in [7]. All results are
shown in the third column of TABLE V. SFNet300 has
an FPS of 98 with an accuracy of 79.9. Compared with
lateral connections, our method obtains higher accuracy and
faster speed. This is mainly due to the fact that the feature
pyramid is generated serially with lateral connections . It is
more efficient to built pyramids simultaneously in our model.
At high resolution, SFNet512 achieves 81.6% mAP without
losing real-time speed.

C. Detection Examples

Figure 3 shows some detection examples on VOC 2007 test
set for SSD300 and SFNet300. We show ‘person’ in the first
row and animals(cows&sheep) in the last two rows. Each color
is associated with an object category in that image. From the
results, we can see that our method can prune out the false
positives which are incorrectly viewed as dining table and
person categories in the first row. Compared with baseline, our
model is also better at detecting small objects and occluded
objects like small cows and occluded sheep.

VII. CONCLUTION

In this paper, we propose a novel single-stage method
named Selective Feature Network(SFNet). To build a feature
pyramid effectively for addressing the multiscale problems, we
introduce a lightweight semantic-enhanced module to improve
the semantics and a selective feature module to focus on the
useful features and suppress the useless ones via attention
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mechanism. A selected contextual feature, obtained by inte-
grating features across different scales and spatial locations, is
then injected into low level detection layers. Comprehensive
experiments demonstrate that our method has an advantage
over competitors. We believe that our approach can also be
applied to two-stage detectors or deeper backbones and we
take this as our future work.
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