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Abstract—Following the weight of beef cattle is of great impor-
tance to the producer. The activities of nutrition, management,
genetics, health and environment can benefit from the weight
control of these animals. We explore different deep learning
models performance in the regression task of predicting cattle
weight. This is a hard problem since moving from 3-D space
to 2-D images presents a loss of information in object shape,
making weight prediction more difficult. A model that produces
good results in this problem could potentially be applied more
abstractly to similar problem spaces. We analyzed convolutional
neural networks, RNN/CNN networks, Recurrent Attention Mod-
els, and Recurrent Attention Models with Convolutional Neural
Networks, and show that convolutional neural networks achieve
the highest performance. Our top model averages a MAE of 23.19
kg. This is nearly half the error as previous top linear regression
models which reached an error of 38.46 kg.

Index Terms—deep learning, weight, cattle, attention based
models, convolutional neural networks, recurrent neural net-
works

I. INTRODUCTION

Monitoring and maintaining the weight history of cattle
allows for timely intervention of cattle diet, cattle health,
and for greater efficiency in genetic selection. Another great
advantage of tracking weight gain is to identify the best time
to market animals because animals that have already reached
the point of slaughter represent burden for feedlot.

Removing animals from paddocks and leading them to
scales is a costly and stressful activity for both the animal
and the herdsman. This process can cause injuries or even
weight loss [1] [2]. With this in mind, some companies have
been working on solutions to track the weight of feedlot
cattle and have tools such as GrowSafe (Calgary, Canada),
Intergado (Betim, Brazil) and the Bosch Precision Livestock
Platform (Gerlingen, Germany). These solutions consist of
weighing cell equipment that must be installed in passageways
or in front of feeders and drinkers. However these devices
need constant maintenance that may encumber the cost of
production. Still on weight measurement, some researchers
propose research where they relate measurements of body
parts of animals with their weight [3] [4] [5].

In addition, researchers have developed livestock-based ap-
plications based on image analysis through Computer Vision
[6]. These applications allow automation of some farm work
in key areas such as animal behavior, health and welfare
including nutrition management [7], locomotion [8], iden-
tification [9], body conditions [10] [9], diseases [11], and
cattle weighing [12] [13] [14]. To this end, equipment is
described for acquisition of these images and can be divided
into two large groups, the first for 2-D images such as RGB
cameras and thermal cameras, and the second for 3-D images
such as depth and Kinect sensors, stereo vision and stereo
photogrammetry according to the review by Nasirahmadi et
al. [15].

In addition to classical feature extraction techniques detailed
in the related work section, deep learning for computer vision
has stood out in the last decade. Deep learning architec-
tures are known to have often outperformed even humans
in classification problems [16] [17] [15] [18]. These same
architectures adapted to regression tasks can solve problems
aimed at predicting continuous values [19], such as estimating
head positions and detecting facial expressions [20] [21].

In this paper, we analyze convolutional neural networks,
recurrent convolutional neural networks, recurrent attention
models [22], and recurrent attention models with convolutional
neural networks [23]. We find that convolutional neural net-
works outperform all of the other tested models. We were able
to produce a model that nearly halved the error of a previous
regression model based on more traditional computer vision
techniques [24]. Our top model averaged a MAE of 23.19 kg
while the previous paper produced a top model who’s MAE
was 38.46 kg. This demonstrates that convolutional neural
networks vastly outperform models trained on hand picked
features for this task.

In our related work section we review work done on weight
calculation of animals, advancements and applications of
convolutional neural networks, and applications of Recurrent
Attention Models [22] with convolutional neural networks.
In our materials and methods section we describe how we
collected data and split it into train, validation, and test sets.
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In our models section we give an overview of different models
tested, and provide a table of results for those models. In our
analysis section we analyze the results of each model. In our
future work section we talk about where to move forward
with this problem based on problem areas in our models. We
summarize our results in our conclusion.

II. RELATED WORK

A. Weight Calculation of Animals

The use of computer vision techniques to predict weight of
cattle has been applied for both 2-D and 3-D images [15]. Mor-
phological characteristics such as rump height, rump width,
body size, rib height and contours [25] were automatically
measured and subsequently subjected to regression algorithms
or Fuzzy logic. [26].

Using 3-D images, features were extracted from 234 images
of Nellore beef cattle for regression algorithms and Artificial
Neural Networks (ANN) to estimate the live weight of cattle
[14]. The images were collected at various stages of the
animal’s life, namely: Weaning, Stocker, Beginning of Feedlot,
and End of Feedlot phase.

Although some authors describe that biometric measure-
ments extracted from 3-D images are highly correlated with
animal weight [14] [27], ease of access and costs, images from
ordinary cameras, such as security equipment for example, can
also considered.

The segmentation of animals in their natural environment
has been the subject of research and constitutes a challenging
task for automated animal body mass prediction systems
[27] [28]. Like segmentation, extracting frames with the best
positioning of the cattle is also a challenging task. Therefore,
deep learning techniques that can predict the weight of cattle
through 2-D images without the specific task of segmentation
and frame extraction seem promising.

B. Convolutional Neural Networks

Weight calculation in the 2-D space is difficult because there
is an implicit loss of information when migrating from 3-D to
2-D. Convolutional neural networks have been applied to tasks
facing similar problems with success, for example, 3-D pose
estimation using 2-D data [29]. Convolutional neural networks
have also been used to create 3-D point clouds from 2-D
images [30], an important example for our use case since it
provides a concrete example of a convolutional neural network
learning a mapping from 2-D to a 3-D space. These examples
demonstrate an ability of convolutional neural networks to
work effectively on 2-D images when the problem space lies
more in 3-D space, and make them a good candidate for weight
prediction.

C. Combination RNN/CNN Attention Networks

Attention based RNN/CNN networks have seen success in
several application domains. Some examples of this include
image captioning [31] and object detection [32]. Attention
based RNN/CNN networks have also seen use in a variety of
different regression based tasks. A RNN/CNN network with

attention was used to predict the price of precious metals [33].
A RNN/CNN network with attention was also used for fine-
grained visual emotion regression [34]. These successes, par-
ticularly those of regression tasks, make these more advanced
models a good candidate for testing in weight prediction. In
our implementation, we replace a fully connected layer in the
glimpse network for a CNN, and modify the action network
for a regression task. The structure of a RNN/CNN network
can heavily vary. For example, the model used for prediction
of precious metal prices additionally implements a Regulariza-
tion Self-Attention Mechanism, which improves performance
through the use of regularization functions. The model used for
fine-grained visual emotion regression implements channel-
wise attention maps, and spatial attention maps alongside a
novel polarity-consistent regression loss.

III. MATERIALS AND METHODS

A. Data collection

The images were collected from October 8 to October 20,
2018 at the Embrapa Beef Cattle in Campo Grande MS, Brazil.
As can be seen in the aerial image in Figure 1, 10 male Nellore
and 10 male Angus are distributed in two paddocks.

For the collection of images, the experiment included the
installation of a DVR set: MD-1004NS MD-DVR41 of MIDI
brand, cameras with AHD 720p image quality and a HD with
1Tb recording capacity. Two cameras shown in Figure 2 (b) of
the equipment were installed so as to be fixed in the structure
of the water trough shown in Figure 2 (a) of the equipment
known as Intergado ® (Intergado Ltd., Betim, Brazil), on an
adapted rod, so that each camera collects the image from
the dorsal area of the animal when drinking water in one
of the possible entries. Two other cameras shown in Figure
2 (c) were installed in the trough cover structure to acquire
the profile images of the animals moving to the trough. The
collected videos were stored in the DVR and later transferred
to computers for the purpose of preprocessing and extracting

Fig. 1. Aerial view of Embrapa beef cattle feedlot with 20 male Nellore and
Angus cattle distributed in two paddocks.
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Fig. 2. Embrapa Beef Cattle image acquisition system - (a, top left) Intergado
water trough, (b, top right) cameras installed on the water trough, (c, bottom
left) cameras installed on the feeding troughs to capture profile images, (d,
bottom right) aerial view of Embrapa Beef Cattle feedlot with the collection
system.

the frames that contained animal images, as shown in Figure
2.

This drinking system shown in Figure 2 (a) is part of the
Intergado equipment and allows individual identification of the
animal through an RFID antenna, and every time the cattle
moves to the water trough it is positioned on a platform
coupled to a weighing scale. Additionally, time and weight
data of the animals are transmitted via transmission antenna
to the company’s software. By relating the weighing time
indicated by the software with the video of the corresponding
drinker entrance it is possible to identify the animal that is in
the drinker and thus extract tables containing the image of the
cattle as can be seen in Figure 3 (a) and Figure 3 (b).

Fig. 3. Image of the dorsal area of bovine collected by the collection structure
in the Embrapa Beef Cattle feedlot (a). Sequence of frames extracted from
the bovine video in the water trough (b).

After the image collection was completed, they were vali-
dated to compose the ESTMASSABOV400 image database.

B. Train, Validation, and Test Set Split

Our data are video frames of individual cattle, moving from
one frame of a cow to the next frame in time. We want to avoid
training on data points that are nearly identical with data points
in our validation or test set in order to get a better gauge of how
our model performs on unique and unseen data. As a result
of this, we separate our datasets into unique cattle images.
Cattle present in the training dataset will not appear in the
test/validation dataset and vice versa. We separate 60% of the
unique cattle for training, 20% for validation, and 20% for test
set. The test set is used by retraining the model on both training
and validation and evaluating on test set, to avoid overfitting
hyperparameters. In order to provide confidence in our results,
we take our final models and train them on 5 seeded random
shuffles of training (training and validation set) (80%) and test
(20%) set. These results are available in Table 1. All weight
labels were scaled by using Equation 1.

x′ =
x

xmax
(1)

where x is the weight of a particular instance of cattle, xmax

is the largest cattle weight in our dataset, and x′ is the new
label. We do this in order to squash the range of labels to [0-1]
and avoid extremely large gradients in training. For our MAE
calculations, we average the difference between predictions
and real labels of all batches on a given set of data.

IV. MODELS

In this section, we detail the different types of networks
that were tested and training procedures for each of them. We
provide results for our models in Table 1.

A. Convolutional Neural Networks

We trained 3 different convolutional neural networks using
the Adam optimizer along with a learning rate of .0005. The
Adam optimizer has shown to work well in practice [35]
and is easily implemented through PyTorch. We used one
of the EfficientNet models [36], EfficientNet-B1 as well as
the ResNet18 [37]. Our reasoning for choosing EfficientNet
is that it provides a smaller yet high performing model when
trained on ImageNet, and better performing models on Ima-
geNet seem to correlate to better accuracy when transferred
to other problems [38]. We also tested out EfficientNet-B7
during our hyperparameter search but found it performed
worse than EfficientNet-B1 while taking substantially longer
to train (Approximately 4.5x). Our reasoning for choosing the
ResNet18 model is that it is a highly tested model and easily
implementable in PyTorch. All of our convolutional neural
networks were trained for 10 epochs. We limited our training
to 10 epochs due to excessive training time. For validation and
test set results, a batch size of 32 was used for our CNNS. We
increase this to 256 to speed up computational time for our 5
shuffles of the test set.
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TABLE I
MEAN AVERAGE ERROR (MAE) IN KILOGRAMS FOR EACH OF OUR TESTED MODELS. THE SECOND AND THIRD COLUMNS SHOW VALIDATION AND TEST

ERRORS RESPECTIVELY. THE THIRD COLUMN SHOWS MEAN AND STANDARD DEVIATION CALCULATED FROM 5 DIFFERENT SPLITS OF THE DATA INTO
TRAINING AND TEST. THE FOURTH COLUMN SHOWS RUNTIME AVERAGE AND STANDARD DEVIATION, IN SECONDS, FOR EVALUATING THE TEST SET

SPLITS. ALL RECURRENT MODELS USED A GLIMPSE SIZE OF 96X96 AND TOOK A TOTAL OF 6 GLIMPSES FOR A GIVEN IMAGE.

Model MAE Validation Set MAE Test Set MAE 5 Shuffles of Test Set Runtime
Combination RNN/CNN without attention (L1 Loss) 28.10 27.70 28.97 ± 3.94 147.69 ± 4.78
Combination RNN/CNN without attention (L2 Loss) 27.26 27.77 28.80 ± 4.36 146.68 ± 5.00
Recurrent Attention Model without CNN (L1 Loss) 38.31 30.00 30.17 ± 3.66 29.72 ± 0.79
Recurrent Attention Model without CNN (L2 Loss) 33.45 28.31 31.73 ± 3.65 30.52 ± 1.66
Combination RNN/CNN with attention (L1 Loss) 25.03 28.34 26.80 ± 2.52 162.10 ± 22.10
Combination RNN/CNN with attention (L2 Loss) 25.29 26.48 27.53 ± 2.37 154.63 ± 6.64
ResNet18 (L1 Loss) 23.36 24.51 25.15 ± 3.78 5.81 ± 0.38
ResNet18 (L2 Loss) 23.39 24.86 27.09 ± 3.91 5.66 ± 0.23
EfficientNetB1 (L1 Loss) 20.67 21.64 23.19 ± 1.46 25.62 ± 0.92
EfficientNetB1 (L2 Loss) 19.83 20.49 24.26 ± 3.01 25.57 ± 0.88
Previous Best Linear Regression 38.46

B. Recurrent Attention Model (RAM) without Convolutional
Neural Network

We trained a RAM model using the same hyperparameters
from our top performing RNN/CNN with attention model.
This network follows the same architecture as the RNN/CNN
with attention model but does not process glimpses through
a convolutional neural network, instead concatenating glimpse
scales together and processing it through a fully connected
layer. Our model replicates the RAM model specified in Re-
current Models of Visual Attention [22] with a few exceptions.

Our action network must reflect that of the regression task
at hand, therefore our action network is a fully connected layer
with input ht and output a single continuous value. Another
modification that was made to accommodate our change in
task was to the baseline network. Rather than using a rectifier
activation, we omit this from our baseline network. This is due
to how our reward is defined for the reinforcement loss in our
hybrid loss. Reward is defined by the following formula:

R = −1 ∗ |p− y|

where R is our reward, p is our prediction, and y is our label.
This is simply the absolute difference between our predicted
versus real labels. A smaller difference produces a greater
reward, with an exact match giving the highest reward of 0.

For this model, the RNN/CNN without attention model and
the RNN/CNN with attention model, we trained for up to
100 epochs and stopped training if validation accuracy did
not increase after 10 epochs. We allowed for more epochs in
these models because there is a degree of randomness added
in training when taking glimpses from the image. Random
noise is added to the predicted location of the model which
adds more uncertainty on whether the model has seen all of
the information present in the training dataset. We limited our
epochs to 10 for training on the 5 test set shuffles due to
computational constraints. We were able to use a batch size
of 256 for this model since it has a low memory foot print
comparative to our other models.

C. Combination RNN/CNN without attention model

In this model, we remove the attention portion of the RAM
with CNN and instead feed fixed locations to the model.
This is accomplished by removing the location and baseline
network from the Recurrent Attention Model. Since we do
not need to train a location network on this model, our loss
function for this network is simply L1 or L2 loss rather than
the hybrid loss used with attention networks. For this model
and the RNN/CNN with attention model, we used a batch size
of 32 during the validation and test set evaluation, but doubled
it to 64 to reduce computational time for our 5 shuffles of the
test set.

D. Combination RNN/CNN with attention

While the original RAM model concatenates glimpses to-
gether and processes it in a fully connected layer, we substitute
this fully connected layer with the EfficientNet-B1 CNN.
This adds more complexity to the function as well as better
extraction of features from the glimpses, as CNNs are known
to do.

The rest of the model is identical to the model specified in
the Recurrent Attention Model without Convolutional Neural
Network specified previously. Figures 4 and 5 show examples
of glimpse paths taken for the RNN/CNN with attention
networks using L1 and L2 loss.

V. RESULTS AND DISCUSSION

Our runtimes were calculated on a computer with 64 GB
of RAM, an AMD 3900x CPU, and a NVIDIA RTX 2080 TI
GPU. Our recurrent neural network models take a substantial
amount of time comparative to the CNNs.

Results for our convolutional neural networks are shown
in Table 1. Box plots versus real labels for our EfficientNet-
B1 model can be seen in Figures 9 and 10. After performing
a random search on our RNN/CNN with attention model
for which hyperparameters performed best on validation, we
found the highest performing was 6 glimpses, a patch size
of 96x96 pixels, and no additional scales. We took these
hyperparameters and retrained a model using both the training
and validation data, and tested on our held out test data. We
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Fig. 4. A random batch of seven cattle from the test set used in our RNN/CNN with attention model and the glimpses taken using using L1 Loss. The blue
dot is the starting location that the first glimpse is taken, generated from a random uniform distribution. The green line demonstrates the path taken as more
glimpses are taken until ultimately taking its final glimpse at the yellow box.

Fig. 5. A random batch of seven cattle from the test set used in our RNN/CNN with attention model and the glimpses taken using using L2 Loss. The blue
dot is the starting location that the first glimpse is taken, generated from a random uniform distribution. The green line demonstrates the path taken as more
glimpses are taken until ultimately taking its final glimpse at the yellow box.

evaluated the final error using both L1 and L2 loss metrics. A
box plot versus true value can be seen in Figures 7 and 8.

Our original intuition behind testing different variations of
recurrent models was inspired by a recent paper that shows that
CNNs trained on ImageNet prioritize textures versus object
shapes [39]. Since mass is much more closely related to the
object shape of the cattle rather than the textures of the cattle,
we thought that a network that incorporates a location policy
will be forced to give greater attention to object shape.

We tried different variations that attempted to exploit this
idea, the first being a close implementation of the original
recurrent models of visual attention [22]. This model did not
converge to a low enough MAE, and actually reached a MAE
close to that of the model trained on hand picked features.
This is most likely caused by a lack of ability to learn high
level features that a convolutional neural network knows to
exploit. We then attached the EfficientNet-B1 network to our
glimpse network to create a RNN/CNN with attention and
found that this reduced error a great deal, but still did not beat
the standalone EfficientNet-B1 network. Finally, we tested a
model that removed the attention portion of the model, and
found slightly degraded results over our attention module.

One possible explanation for these results could be that the
convolutional neural network always has full view of the image
from input to output, while the recurrent models are selecting
subsections of the image. This is a loss of information and
can negatively affect performance of the models. Another
potential explanation for the poor performance of these models
is that shapes of cattle are not very distinct between labels,
they follow the same oval shape rather than distinct paths of
the MNIST dataset that the original RAM paper was tested
on. This could mean that the location policy is ineffective
since all optimal location paths will be similar. The negligible
performance difference between our attention model and non
attention model seems to support this.

An interesting datapoint can be seen in our box plot versus
actual weight graphs for our models, shown in Figures 7-
10. There is a huge failure of each model of an instance
of cattle weighing 392.50 kg, where each model massively
overestimates the weight of the cattle. In the frames of the

data-points for this label, other cattle are entering and leaving
the frame, an example of which is shown in Figure 6. The
models could be learning to segment all areas of the picture
that have the texture of cattle, and are including the additional
cattle area contributed by these straying cattle that do not
belong. The only model that makes some predictions near the
actual weight of the cattle is the RNN/CNN network using
L1 loss. Since it does not observe the entire image, it may
have only taken glimpses in the area containing the cattle we
are attempting to predict on, leading to better results for some
predictions. This can be seen in Figure 7, where there are
a number of outlier predictions near the true label for that
instance of cattle. We detail why we believe these failures
occur and some methods that may combat it in our Future
Work section.

VI. FUTURE WORK

Our models fail to accommodate for images that have stray
cattle. It seems that the models have likely learned to simply
segment texture of cattle in an image. Some potential evidence
to support this theory is that some of the predictions made from
the RNN/CNN with L1 Loss were near correct in predicting
the mass, while most predictions were way larger than the

Fig. 6. A frame where other cattle can be seen in the upper right corner, as
well as the bottom right corner. This is potentially being picked up by the
networks and causing large error rates. We dive deeper into this in our Future
Work section.
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Fig. 7. Predictions for RNN/CNN network with attention using L1 loss. Actual weight values are plotted in sorted order in blue. Box plots of predictions
for that given weight are shown for that label, with outliers plotted in red.

Fig. 8. Predictions for RNN/CNN network with attention using L2 loss. Actual weight values are plotted in sorted order in blue. Box plots of predictions
for that given weight are shown for that label, with outliers plotted in red.

Fig. 9. Predictions for EfficientNet-B1 using L1 loss. Actual weight values are plotted in sorted order in blue. Box plots of predictions for that given weight
are shown for that label, with outliers plotted in red.

Fig. 10. Predictions for EfficientNet-B1 using L2 loss. Actual weight values are plotted in sorted order in blue. Box plots of predictions for that given weight
are shown for that label, with outliers plotted in red.

actual. Likely with some low probability the glimpses that the
network took never saw the stray cattle and did not include
this in its prediction. The models tested in this paper simply
lack the complexity to differentiate between the cattle being
predicted and those stray cattle entering the image. We propose
some methods below that may counteract this problem.

One potential point of interest would be a more advanced
attention module to accommodate for this, since ours was
able to predict fairly accurately on some occasions. This was
demonstrated by some near correct results for our CNN/RNN
model with L1 loss.

Another route that can be taken to tackle this would be
to exploit the format of the data. Since each unique cattle
instance are frames pulled from a video, a recurrent model

can be trained to integrate information over time (from frame
1...N ) and better segment the cattle we are actually trying to
predict on. Essentially the goal would be to “forget” frames in
which stray cattle were entering the image and “remember”
the good frames. An LSTM based model would be a good
candidate for this.

Finally, we could simply use more complex labels than
simply mass. We could train a semantic segmentation model to
learn to ignore these stray cattle [40]. This requires a great deal
of manual labeling, since our data would have to be manually
labeled with these segmentation maps.

VII. CONCLUSION

Producing an accurate model that is able to predict the
weight of cattle from raw 2-D images would be of great use
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to producers. Tracking weight is beneficial in cattle health,
genetic selection, and selecting correct point of slaughter for
cattle. Producing a model that is able to acheive this from
camera image rather than weighing cell equipment can help
to avoid the constant maintenance that these machines require,
lowering cost and saving time. Our experiments appear to
show that convolutional neural networks are high performing
on the task of weight calculation in 2-D images. However,
they are highly prone to bad data as shown in figure 6. While
we reached an error rate much lower than that of the models
trained on hand-picked features, there is still work to do to
eliminate the large errors that can occur from these bad data-
points as they are likely to occur when a model is implemented
in practical use.
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