
Learning Transferable Domain Priors for Safe
Exploration in Reinforcement Learning

Thommen George Karimpanal*, Santu Rana, Sunil Gupta, Truyen Tran, Svetha Venkatesh
Applied Artificial Intelligence Institute

Deakin University
Geelong, Australia

*thommen.karimpanalgeorge@deakin.edu.au

Abstract—Prior access to domain knowledge could significantly
improve the performance of a reinforcement learning agent. In
particular, it could help agents avoid potentially catastrophic
exploratory actions, which would otherwise have to be expe-
rienced during learning. In this work, we identify consistently
undesirable actions in a set of previously learned tasks, and
use pseudo-rewards associated with them to learn a prior
policy. In addition to enabling safer exploratory behaviors in
subsequent tasks in the domain, we show that these priors are
transferable to similar environments, and can be learned off-
policy and in parallel with the learning of other tasks in the
domain. We compare our approach to established, state-of-the-art
algorithms in both discrete as well as continuous environments,
and demonstrate that it exhibits a safer exploratory behavior
while learning to perform arbitrary tasks in the domain. We
also present a theoretical analysis to support these results, and
briefly discuss the implications and some alternative formulations
of this approach, which could also be useful in certain scenarios.

Index Terms—safe exploration, domain priors, reinforcement
learning

I. INTRODUCTION

Reinforcement learning (RL) [1] has proven to be a versatile
and powerful tool for effectively dealing with sequential
decision making problems. In addition to requiring only a
scalar reward feedback from the environment, its reliance on
the knowledge of a state transition model is limited. This has
resulted in RL being successfully used to solve a range of
highly complex tasks [2, 3, 4, 5].

However, RL algorithms are typically not sample efficient,
and desired behaviors are achieved only after the occurrence
of several unsafe agent-environment interactions, particularly
during the initial phases of learning. Even while operating
within the same domain, commonly undesirable actions (such
as bumping into a wall in a navigation environment) have to
be learned to be avoided each time a new task (navigating to
a new goal location) is learned. This can largely be attributed
to the fact that in RL, behaviors are generally learned tabula-
rasa (from scratch) [6], without contextual information of the
domain it is operating in. This lack of contextual knowledge
is usually a limiting factor when it comes to deploying RL
algorithms in real world systems, where executing sub-optimal
actions during learning could be highly dangerous to the agent
or to elements in its environment. Providing RL agents with
domain-specific contexts in the form of suitable initializations

and/or domain-specific, reusable priors could greatly help
mitigate this problem.

The challenge of addressing the issue of avoiding undesir-
able actions during learning has been the primary focus of the
field of safe RL [7], and consequently, a number of methods
have been proposed to enable RL agents to learn to solve tasks,
with due consideration given to the aspect of safety. These
methods aim to bias RL agents against such actions, broadly,
by means of modifying either the optimization criterion or
the exploration process [7]. In either case, the nature of the
bias is to directly or indirectly equip the agent with prior
information regarding its domain, which is subsequently used
to enable safer learning behaviors. Safe RL approaches where
such prior knowledge is extracted from already learned tasks
in the domain share similarities with the ideology of transfer
learning [8], in the sense that they both reuse previously
acquired knowledge to achieve a specific behavior. Perhaps the
main distinction between the two is that the former focuses on
using domain-specific knowledge to achieve safe behaviors,
whereas the focus of the latter is more generally, to reuse
previously acquired task knowledge to achieve good learning
performance on a new task. Previous works [9, 10, 11] have
explored the idea of exploiting known task knowledge for
improving learning performance, but ignore aspects relating
to safety. Other approaches which were specifically designed
to enable safe exploration [12, 13, 14] were based on strong
assumptions such as the availability of a safe baseline policy
or the explicit specification of a constraint function. Although
the idea of excluding unsafe actions during learning has been
explored in previous works [15, 16], they too are reliant on
explicit domain or safety specifications. In addition, previous
works that incorporate safe behaviors in RL agents have not
considered the issue of the ease of adaptation of the safe policy
in new, but related domains.

In this work, we propose an approach to learn a transferable
domain prior for safe exploration by incrementally extracting,
refining and reusing common domain knowledge from already
learned policies, an approach consistent with the ideology of
continual learning [17]. The reward function used for learning
this prior is constructed by approximating rewards from the Q-
functions of the previously learned tasks for state-action pairs
consistently associated with undesirable agent behaviors. Un-
like other safe RL approaches, our approach does not require

978-1-7281-6926-2/20/$31.00 ©2020 Crown

the explicit specification of a safety or constraint function to
encode safe behaviors, or prior access to a safe policy. The
focus is to instead, extract knowledge from previously learned
tasks to learn a safety prior, which is subsequently used to
bias an agent’s exploratory behavior while it learns arbitrary
tasks in the domain. The intuition behind this approach is that
for a given domain, there exist behaviors that are commonly
undesirable for any arbitrary task in that domain. As the prior
is stored in the form of a Q- function, it can be learned off-
policy [18], in parallel with an arbitrary task that the agent is
learning, without the need for additional interactions with the
environment. The prior can also be transferred or reused, and
is capable of quickly adapting to other similar environments,
under the assumption that there exists a considerable overlap
in the set of undesirable actions in the two environments. We
demonstrate this claim in a simple tabular environment, while
also demonstrating the effectiveness of the proposed approach
in more complex environments with continuous states and/or
continuous actions. We also quantify the effectiveness of our
approach in enabling safe exploration in tabular domains by
analytically deriving an expression that relates the probability
of executing unsafe actions using our approach, relative to an
ε-greedy exploration strategy, for a given degree of correctness
of the learned priors.

In summary, the main contributions of this work are:
• A novel framework for learning domain priors from

previously known tasks.
• A theoretical relation between correctness of a prior and

the relative probability of unsafe exploratory actions.
• Experimental results in both discrete as well as continu-

ous environments, validating the benefits of learning and
using the described priors.

• Experimental results in the tabular setting, demonstrating
the transferability of the learned priors to other similar
environments.

II. RELATED WORK

The goal of our approach is to achieve safe exploratory
actions during the learning process by making use of existing
knowledge of other tasks in the domain, an ideology that
is typical of many transfer RL [8] frameworks. Specifically,
we consider the case where the tasks differ only in the
reward functions [19, 20]. In one of the popular approaches
[9] that addressed this case, past policies were reused based
on their similarity to the task being solved. In addition to
being able to effectively reuse past policies, the approach
was also shown to be capable of extracting a set of “core”
policies to solve any task in a given domain. A recent method
by Li and Zhang [10] improved this policy reuse approach
by optimally selecting the source policies online. However,
these approaches, along with several others [21, 22] are only
concerned with the problem of reusing past policies to achieve
quicker learning in the target task, without consideration to
the cost of executing poor exploratory actions during learning.
More recent works [13, 23] have emphasized this problem in
greater detail, with accompaying environments that demon-
strate the distinction between reward-maximization behavior
and safety performance for a range of tasks.

Most approaches that are directly concerned with achieving
safe behaviors during learning, do so by incorporating domain
knowledge, and biasing the actions of the learning agent by
modifying either the optimization criterion or the exploration
process. A detailed summary of such approaches can be
found in Garcia and Fernandez [7]. Among these, a few
consider the problem of safety at the policy level [24, 25],
while others aim to improve safety at the level of states
and actions, much like the approach described in the present
work. The PI-SRL approach by Garcia and Fernandez [14]
avoids the exploration of unsafe states by using a known safe
baseline policy, coupled with case-based reasoning. However,
the maintenance of their case-base of known states is based on
a Euclidean similarity metric, which may not be a useful mea-
sure in many situations, and hence limits the generalizability
of the approach. Additionally, their assumption regarding the
availability of a safe baseline policy may not be reasonable in
many practical circumstances. The Lagrangian and constrained
policy optimization approaches [12, 13] greatly improve safety
performance. However, they require the explicit specification
of a safety performance metric or a constraint function, which
may not always be available.

The idea of achieving safe learning behaviors by biasing
against certain actions has also been proposed in other recent
work. Zahavy et al. [16] proposed the approach of action
elimination deep Q-networks [3], which essentially eliminates
sub-optimal actions, and performs Q-learning on a subset of
the state-action space. The elimination of actions is based
on a binary elimination signal which is computed using a
contextual bandits framework. Similar to this, the idea of
shielding was proposed by Alshiekh et al.[15], where unsafe
actions were disallowed based on a shielding signal. The
authors synthesize the shield separately, from a safety game
between an environment and a system player. Akin to these
approaches, the basis of our approach is to bias the agent
against certain actions that are considered to be undesirable, as
per a learned prior policy. However, the key idea is to obviate
the need for domain-specific safety constraints, and instead,
learn a safety prior from a set of previously learned tasks, in
an online and off-policy manner, without the requirement of
additional interactions with the environment.

III. METHODOLOGY

We consider the objective of learning a prior policy πP
by learning the corresponding Q-function QP in a domain
D =< S,A, T >, where the tasks M =< D,R > share a
common state-space S, action-space A and state-transition
function T , and differ solely in the reward function R. The
purpose of this prior is to bias the agent against exploratory
actions that have a high degree of undesirability , which we
define as follows:

Definition 1. The undesirability of an action a is the absolute
value of the optimal advantage A∗(s, a) for that action, where
A∗(s, a) = Q∗(s, a)−max

a′∈A
Q∗(s, a′).

The optimal advantage function A∗(s, a) [26] measures the
deviation of the Q -value for a particular state-action pair (s, a)

from the maximum Q -value associated with the state s. Thus,
|A∗(s, a)| is indicative of how much worse action a is, in
relation to the best action in that state.

In order to learn QP , we assume that we know the opti-
mal Q -functions corresponding to N arbitrary tasks in the
domain D. For the sake of argument, let us consider the
case where N > 1, which implies there exist at least a few
tasks M = {M1...Mi...MN} whose optimal Q- functions
Q∗ = {Q∗1...Q∗i ...Q∗N} are known. In the proposed approach,
QP corresponds to a pseudo-task MP =< D,RP > that is
learned off-policy by sampling state-action pairs in the given
domain, for example, by executing random exploratory actions
in the environment. More practically, they are sampled as
per a behavior policy πB corresponding to an arbitrary task
MΩ =< D,RΩ > , that is being learned in parallel. Although
in general, any off-policy approach could be used to learn QP ,
for simplicity, we show the learning of QP using Q-learning
[27].

The basis of our approach is to construct the pseudo-reward
function RP based on state-action pairs that are consistently
undesirable across the N known tasks. We infer rewards that
would likely be associated with such state-action pairs and
construct RP as a weighted sum of these inferred rewards.
Once RP is constructed, QP is learned off-policy, and is
subsequently used to bias the exploratory actions of the
agent. Corresponding to this description, our methodology is
composed of the following steps:

A. Identification of Suitable State-Action Pairs

The first step in our approach is to identify state-action
pairs that are consistently associated with undesirable agent
behaviors. Once a state-action pair (s, a) has been sampled
using the agent’s behavior policy πB , for each taskMi of the
N known tasks, we measure the undesirability wi(s, a) of the
action as a quantity proportional to the action’s undesirability,
as per Definition 1. In order to appropriately scale these values
, we measure the scaled undesirability wi(s, a) as:

wi(s, a) =

∣∣∣∣∣∣ A∗i (s, a)

max
a′∈A

Q∗i (s, a
′)

∣∣∣∣∣∣ (1)

We repeat this procedure for each of the N tasks, and store
the obtained measures in a sequence W (s, a) as follows:

W (s, a) = {w1(s, a), ...wi(s, a), ...wN (s, a)} (2)

The overall consensus on the undesirability of action a in
state s, as per the N known tasks can then be measured by
quantifying the consistency in the values stored in W (s, a).
We do this by converting W (s, a) into a probability distri-
bution W

′
(s, a) and then measuring the normalized entropy

H(W
′
(s, a)) associated with it:

H(W ′(s, a)) = −
∑N
i=1 w

′
i(s, a) log(w

′

i(s, a))

log(N)
(3)

where W
′
(s, a) = {w′1(s, a), ...w

′

i(s, a), ...w
′

N (s, a)}, and
w
′

i(s, a), the ith element of W
′
(s, a), is computed using the

softmax function:

w
′

i(s, a) =
ewi(s,a)∑N
i=1 e

wi(s,a)
(4)

In order to construct the pseudo-reward function RP ,
we select state-action pairs which are associated with high
values of wi(s, a), as well as a high normalized entropy
value H(W

′
(s, a)). The former criterion, quantified by the

mean µ(W (s, a)) =
∑N
i=1 wi(s,a)

N of the values in W (s, a),
prioritizes state-action pairs that are highly undesirable. The
latter criterion H(W

′
(s, a)) quantifies the consistency of the

undesirability of the state-action pair across the known tasks.
To account for both these criteria, we use a threshold t, and
select state-action pairs for which:

H(W ′(s, a)) ∗ µ(W (s, a)) > t (5)

The general idea is to select state-action pairs associated
with highly and consistently undesirable behaviors across the
known tasks in the domain. The selection of state-action pairs
using Equation 5 depends heavily on the choice of a suitable
threshold value t, for which a rough guideline can be obtained
by considering the ranges of H(W ′(s, a)) and µ(W (s, a)).
H(W ′(s, a)) lies in the range [0, 1], while the range of

µ(W (s, a)) depends on that of the function
∣∣∣∣ A∗(s,a)
max
a′∈A

Q∗(s,a′)

∣∣∣∣, or

equivalently, using Definition 1,
∣∣∣∣Q∗(s,a)−max

a′∈A
Q∗(s,a′)

max
a′∈A

Q∗(s,a′)

∣∣∣∣. The

minimum value of this function is 0, which corresponds to
the case when a = argmax

a′∈A
Q∗(s, a′). The maximum value

corresponds to the case when Q∗(s, a) is as low as possible,
and max

a′∈A
Q∗(s, a′) is as large as possible. If rmin and rmax

represent the lowest and highest possible rewards in the
domain, then using the lower and upper bounds of rmin

1−γ
and rmax

1−γ for the Q- function, the maximum possible value

of
∣∣∣∣ A∗i (s,a)
max
a′∈A

Q∗i (s,a′)

∣∣∣∣ would be:
∣∣∣ rmin−rmaxrmax

∣∣∣. Hence, threshold

t must be selected to be in the range [0,
∣∣∣ rmin−rmaxrmax

∣∣∣]. In
general, a lower threshold value results in a larger number of
state-action pairs being selected for the construction of RP ,
possibly leading to a more conservative prior.

B. Constructing Pseudo-rewards and Learning QP
The next step is to use the identified state-action pairs to

construct a safety prior. Consider an arbitrary task M in the
domain for which the policy is learned using Q- learning. The
corresponding standard update equation is given by:

Q(s,a) Q(s,a) + α[r(s, a, s′) + γ max
a′∈A

Q(s′,a′)−Q(s,a)]

(6)
Here, s and a represent the current state and action, γ is the

discount factor (0 ≤ γ ≤ 1), s′ is the next state, and r(s, a, s′)
is the reward associated with the transition.

When the optimal Q-function Q∗ is learned, the tempo-
ral difference (TD) error: [r(s, a, s′) + γ max

a′∈A
Q∗(s′, a′) −

Q∗(s, a)] would reduce to 0. Using this fact, we can infer
the original reward r(s, a, s′) associated with the transition:

r(s, a, s′) = Q∗(s, a)− γ max
a′∈A

Q(s′, a′) (7)

In reality, the above equality seldom holds, as the TD error
may not be exactly 0. However, the inferred reward may still
be a reasonable approximation if the Q-function is close to
optimal (Q ≈ Q∗). With this assumption in mind, we apply
Equation 7 to each of the known tasks, and construct the
rewards associated with those state-action pairs (sc, ac) which
satisfy the condition in Equation 5. The pseudo-reward rP is
computed as a sum of these inferred rewards, weighted by the
corresponding elements of W ′(sc, ac):

rp(sc,ac,s
′
c)=

N∑
i=1

w′i(sc,ac)[Q
∗
i (sc,ac)− γ max

a′∈A
Q∗i (s

′
c,a
′)]

(8)
rP is capped to have a maximum absolute value of 1,

and for state-action pairs that do not satisfy Equation 5, rP
is set to a default value of 0. rP is then used to update
the Q- function QP via the standard Q- learning update
equation (Equation 6). By continuously sampling state-action
pairs, determining the corresponding pseudo-reward rP and
updating QP , the optimal Q- function Q∗P , is learned. It is
worth mentioning that QP is updated using what ever state-
action pairs are sampled by the behavior policy πB . Hence,
no additional interactions with the environment are required
for its computation. However, learning Q∗P is subject to the
condition that πB sufficiently explores the state-action space.
The additional requirements for learning a prior policy are
the additional memory and computations corresponding to
inferring rP , and storing and updating QP . The overall process
of updating QP is summarised in Algorithm 1.

C. Biasing Exploration Using Q∗P
Following the construction of the domain priors, the final

step is to use these priors to bias the exploratory behavior
of the agent. Q∗P is learned based on a reward function RP ,
which is specifically constructed using state-action pairs that
are consistently associated with undesirable actions. Hence,
in order to avoid catastrophic actions during learning, we
simply bias the agent’s behavior against taking undesirable
actions, as determined by Q∗P . If such an action happens to be
suggested by the agent during learning, with a high probability
ρ, we disallow it from being executed, and force the agent to
pick an alternative action whose Q∗P value is at least equal
to the mean value of Q∗P over all actions. The threshold
of mean

a′∈A
Q∗P (s, a′) was chosen, simply to ensure that better-

than-average actions are executed during exploration. More
conservative (higher) or radical (lower) threshold values could
also be considered, although it must be noted that choosing
a very high threshold would limit the extent of exploration,
while a very low threshold would fail to leverage the safe

Algorithm 1 Algorithm for updating prior Q-function QP
1: Input:
2: Set of N optimal Q- functions Q∗ = {Q∗1...Q∗i ...Q∗N},

Estimate of prior Q-function QP , maximum number of
steps per episode H , behavior policy πB , threshold t

3: Output: updated estimate of QP
4: for H steps do
5: Execute behavior policy πB to take action a from state

s, and obtain next state s′

6: Initialize W (s, a) as an empty set
7: for each task i of the N known tasks do
8: Compute A∗i (s, a) = Q∗i (s, a)−max

a′∈A
Q∗i (s, a

′)

9: wi(s, a) =

∣∣∣∣ A∗i (s,a)
max
a′∈A

Q∗i (s,a′)

∣∣∣∣
10: W (s, a) = W (s, a) ∪ wi(s, a)
11: end for
12: Normalize W (s, a) using Equation 4 to obtain

W
′
(s, a) = {w′1(s, a)...w

′

i(s, a)...w
′

N (s, a)}
13: Compute H(W

′
(s, a)) (Equation 3)

14: Compute µ(W (s, a)) = 1
N

∑N
i=1 wi(s, a)

15: Initialize pseudo-reward rP (s, a, s′) as 0
16: if µ(W (s, a)) ∗ H(W

′
(s, a)) > t (threshold) then

17: rP (s, a, s′)
=
∑N
i=1 w

′
i(s, a)[Q∗i (s, a)− γ max

a′∈A
Q∗i (s

′, a′)]

18: end if
19: QP (s, a)←− QP (s, a)

+α[rP (s, a, s′) + γmax
a′∈A

QP (s′, a′)−QP (s, a)]

20: end for

exploratory behaviors enabled by Q∗P . Algorithm 2 outlines the
process of biasing the agent against undesirable exploratory
actions.

Algorithm 2 Biasing against undesirable exploration
1: Input:
2: Proposed exploratory action a0, state s, optimal Q- func-

tion of prior Q∗P , probability of using priors ρ
3: Output: selected action a
4: With a probability ρ:
5: while Q∗P (s, a) < mean

a′∈A
Q∗P (s, a′) do

6: Pick random action from A : a0 = random(A)
7: end while
8: a = a0

IV. THEORETICAL ANALYSIS

Biasing the exploratory actions as described would, in an
ideal case, help avoid unsafe actions. However, the effective-
ness of using the learned priors to bias against these actions
is highly dependent on how correct the priors are. In this
section, we consider the discrete actions setting, and derive a
relation between the correctness of a prior and the probability
of taking unsafe actions using our approach, relative to an ε-
greedy exploration policy. We first define the terms ‘unsafe
actions’ and ‘correctness of a prior’ for the purpose of our
analysis, as follows:

Definition 2. An action a is considered unsafe in a state s if
Q∗P (s, a) < mean

a′∈A
Q∗P (s, a′) in that state.

Definition 2 was chosen to be consistent with the biasing
criteria used in Algorithm 2.

Definition 3. The correctness CQP ,D of a prior QP , with
respect to a domain D is the probability with which it avoids
deeming an action to be safe, when it is actually unsafe.

CQP ,D = 1− nFN
nI−nFP+nFN

where nFP and nFN are respectively the number of false
positives (cases where the action has been incorrectly classified
by QP as unsafe) and false negatives (cases where the action
has been incorrectly classified by QP as safe), and nI is the
number of unsafe actions identified by QP . It is worth noting
that only the false negative cases affect the probability of
encountering truly unsafe actions. The effect of false positives
would be to simply slow down learning. The extent to which
the correctness CQP ,D affects the probability of encountering
unsafe actions, relative to the case of ε-greedy exploration, is
presented in the following theorem:

Theorem 4. If a prior QP with a correctness of CQP ,D, is
used to bias the exploratory actions with a probability of ρ,
then relative to the case of standard ε-greedy exploration, the
probability of executing unsafe exploratory actions in a given
state is reduced by a factor of 1 − ρ(|A|CQP,D−U)

|A|−U , where A
is the action space associated with the domain, and U is the
number of unsafe actions associated with that state.

Proof: For the case of standard ε−greedy exploration, the
agent takes exploratory actions with a probability of ε, in each
instance of which, the probability of picking an unsafe action
is U
|A| . Hence, the probability of unsafe exploratory actions for

an ε− greedy strategy is: pε−greedy = εU
|A|

Now, in the case of biased exploration, exploratory actions
occur with a probability of ε, and are biased using the priors,
with a probability ρ. When the bias is used, the agent elim-
inates unsafe actions (as determined by QP), and uniformly
and randomly selects from the remaining |A| − U actions.
However, the selected action may still be unsafe due to the
presence of false negatives, which occur with a probability
of 1 − CQP ,D. With the remaining probability of (1 − ρ),
exploration occurs exactly as in the ε−greedy case. Hence, the
total probability of unsafe actions occuring during exploring
is: ppriors =

εUρ(1−CQP)

|A|−U + εU(1−ρ)
|A| . The ratio ppriors

pε−greedy
can

then be simplified to: 1− ρ(|A|CQP−U)

|A|−U

This implies that fewer unsafe actions can be expected when
CQP ,D and ρ have values close to 1. Although a large value of
ρ is favorable, in order to maintain a non-zero probability of
visiting every state-action pair (and thus ensure convergence),
it is set to be slightly lesser than 1. For the continuous action
case, the relation can be rewritten as 1− ρ(CQP−U/|A|)

1−U/|A| , which
then reduces to 1− ρCQP as |A| → ∞.

V. RESULTS

Benchmark Environments and Baselines

In order to test the learning and safety performance of the
described approach, we chose three different environments.
The first is a classical navigation environment shown in Figure
1(a), first introduced by Fernandez and Veloso [9], where
the state and action spaces are discrete. For this tabular
environment, we use OPS-TL[10], PRQL[9], PI-SRL[14] and
Q- learning[27] as baselines for performance comparison.

Next, we show the agent’s performance in a safety grid
world ‘Island Navigation’ environment, shown in Figure 1(b),
which was first introduced by Leike et al. [23] as a benchmark
designed to evaluate safe exploration performance. The choice
of baselines for this environment was A2C[28], SARSA[1] and
DQN[3].

Lastly, we demonstrate the performance of our approach on
a safe exploration task, shown in Figure 1(c), in the ‘Safety
Gym’ environment, a continuous action environment recently
introduced by Ray et al. [13]. For this environment, the chosen
baselines were PPO[29], PPO-Lagrangian (a version of PPO
with explicit constraints[13]) and DDPG[30].

We chose to validate our approach using these selected
environments, as typical RL tasks in environments such as
Atari [31] or OpenAI Gym [32] are set up largely with a focus
on learning performance, without much consideration given to
aspects relating to safety.

A. Classical Navigation Environment

We first demonstrate extensive results from our approach
on a classical 21 × 24 grid-world navigation environment
shown in Figure 1(a), before proceeding to more complex
and continuous environments in Sections V-B and V-C. The
environment settings are consistent with those reported in [9].
Here, each state is represented by a 1 × 1 grid cell, with
darker colored cells representing obstacles, and other cells
representing free positions. The agent’s state is represented
by its (x, y) coordinates, and at each state, it is allowed to
take one of four actions - moving up, down, left or right.
Following the execution of an action, the agent moves to a
new state, which is noised by random values sampled from a
uniform distribution in the range (-0.2,0.2).

When the agent executes an action that causes it to bump
into an obstacle, it retains its original state, without moving
and receives a reward of −1. Goal states are terminal, and
transitions leading into them are associated with a reward of
1. For all other transitions, the agent receives a small negative
reward of −0.1. This penalises behaviors such as moving back
and forth between two non-goal states.

For each task, the agent is allowed to interact with the
environment for K episodes. Each episode starts with the agent
in a random, non-goal state, following which, it could execute
upto H actions to try and reach the terminal goal state. The
performance W of the agent is evaluated by computing the
discounted sum of rewards per episode as follows:

W =
1

K

K∑
k=0

H∑
h=0

γhrk,h (9)

(a) (b) (c)

Figure 1. (a) shows the classical navigation environment, with goal locations Ω1,Ω2,Ω3,Ω4 of the known tasks, and goal location ΩT of the task to be
learned. (b) shows the agent ‘A’, the goal ‘G’ and the ‘water’ locations in blue in the island navigation environment and (c) shows a task in the Safety Gym
PointGoal environment, where the green area is the navigation target, and the purple areas represent hazards which need to be avoided by the agent (in red).

where rk,h is the reward received from the environment at
step h of episode k. We use the same metric to evaluate the
performances in the continuous environments.

In order to obtain source policies, the agent is initially
trained to learn the tasks MΩ1

,MΩ2
,MΩ3

and MΩ4
,

corresponding to the navigation target locations Ω1,Ω2,Ω3

and Ω4. The label ΩT in Figure 1(a) marks the goal location
of the target task MΩT , which the agent aims to learn.

The prior is learned using the optimal Q-functions of tasks
MΩ1 ,MΩ2 ,MΩ3 and MΩ4 , as described in Algorithm 1.
Figure 2 depicts the set of consistently undesirable actions
identified using these known tasks, which is then used for
learning the prior QP . The red, green, blue and orange arrows
represent actions that move the agent up, right, down and left
respectively. As observed in Figure 2, most of the identified
actions correspond to those that would cause collisions with
obstacles in the environment. The taskMΩT is then learned by
biasing the exploratory actions of the agent using the learned
prior, as described in Algorithm 2.

Figure 2. Identified set of consistently undesirable actions extracted from
known tasks for the environment in Figure 1(a).

Figure 3 shows the average performance over 10 trials, of
different algorithms, evaluated using Equation 9. The shaded
regions represent the standard errors of the mean performances
for the 10 trials. The common learning parameters were set
as follows: α = 0.05, γ = 0.95, H = 500,K = 2000,
and the probability of exploration ε was set to be decaying
from an initial value of 1, as in [9]. Two of the performance
curves in Figures 3 and 4 were obtained by combining the
described approach with: a) standard Q-learning [27], and b)
PRQ-learning (PRQL) [9](ψ = 1, ν = 0.95). The parameters

specific to our approach were chosen to be: t = 0.35, ρ = 0.95.
As observed from the figure, these curves exhibit a superior
learning and safety performance compared to their correspond-
ing counterparts, in which the learning occurs without the
use of domain priors. In particular, the use of learned priors
enables a significant increase in the initial performance of the
agent, due to fewer unsafe exploratory actions during the initial
phases of learning. This is supported by the results in Figure
4, which depicts the trend in the number of obstacle collisions
per episode in each of the tested approaches. The overall
performance of the agent is also superior to that of other
approaches such as OPS-TL [10](c = 0.0049) for selecting
source tasks, and the PI-SRL approach [14] (k = 6, σ = 0.5),
in which safe exploratory actions are chosen based on case-
based reasoning. Although the latter approach has a marginally
better initial performance as seen in Figure 3, the learned
policy is very conservative, as indicated by the negligible
improvement in its performance across the episodes. From
these figures, it is evident that the use of domain priors
brings about improvements in both safety as well as learning
performance.

0 400 800 1200 1600 2000
Number of episodes

6

4

2

Di
sc

ou
nt

ed
 re

tu
rn

 p
er

 e
pi

so
de

 (W
)

OPS-TL
PRQL
PI-SRL
Q-learning
Domain priors+Q-learning
Domain priors+PRQL

Figure 3. The average discounted returns per episode (W), computed over 10
trials, for different learning methods in the classical navigation environment.

B. Continuous State Environment

The results from Section V-A demonstrate the effectiveness
of the proposed method in simple tabular domains. Although

0 400 800 1200 1600 2000
Number of episodes

0

10000

20000

30000

Cu
m

ul
at

iv
e

nu
m

be
r o

f o
bs

ta
cle

 c
ol

lis
io

ns
OPS-TL
PRQL
PI-SRL
Q-learning
Domain priors+Q-learning
Domain priors+PRQL

Figure 4. The cumulative number of obstacle collisions, computed over 10
trials, for different learning methods in the classical navigation environment.

the nature of the task in the non-tabular ‘Island Navigation’
domain [23] considered in this section is roughly similar to
that in Section V-A, there exists a fundamental difference
between the two, in that the states are now represented using
features. The goal in this environment is for the agent to
navigate to the target location using a set of discrete actions
(moving left,right,up and down) without stepping into the
‘water’ locations. In order to obtain the source policies to
construct the priors, we first solved a set of 4 random tasks
using Deep Q-learning (DQN) [3] by randomly generating the
target locations. Consistent with the implementation in Leike
at al. [23], both the A2C as well as the DQN implementations
used a 2 layered multi-layer perceptrons with 100 nodes each,
trained with inputs that consisted of a matrix encoding the
current configuration of the environment. The architecture for
SARSA was kept identical to that for DQN, and varied only in
the value function update rule. For A2C, we used an entropy
penalty parameter of 0.05, which linearly decayed to 0 at the
end of each trial. For optimization, we used Adam[33] with a
learning rate of 5e−4 and a batch size of 64. For each task, the
agent was trained for 2000 episodes, each consisting of up to
100 steps. The other parameters used were: a discount factor
of 0.99, an initial exploration parameter of 1, which decayed
exponentially to a minimum of 0.1 (with a decay factor of
0.95), a replay buffer of size 2000, a threshold t = 0.25 and
ρ = 0.95.

Using the obtained source policies, we implemented our
approach described in Section III, and tested the performance
of the agent on a new task, while its exploration was biased
using the learned priors, as described in Algorithm 2. Figures
5 and 6 depict the performance of various approaches, aver-
aged over 15 trials. As observed, our method of biasing the
exploration using the learned priors was able to improve the
agent’s learning performance, while simultaneously achieving
a fewer visits to the ‘water’ locations, thereby also improving
the safety performance.

Our method for learning domain priors naturally scales
to such non-tabular environments, fundamentally because the
process of inferring rP (Equation 8) does not explicitly depend
on the state complexity, and only depends on the Q-values
of the N tasks for the specific transition (sc,ac,s

′
c) under

0 400 800 1200 1600 2000
Number of episodes

20

5

10

25

40

Di
sc

ou
nt

ed
 re

tu
rn

 p
er

 e
pi

so
de

 (W
)

A2C
SARSA
DQN
Domain priors+DQN

Figure 5. The average discounted returns per episode (W), computed over
15 trials, for different learning methods in the island navigation environment.

0 400 800 1200 1600 2000
Number of episodes

0

100

200

300

400

500

Cu
m

ul
at

iv
e

nu
m

be
r o

f t
im

es
 st

ep
pe

d
in

 w
at

er

A2C
SARSA
DQN
Domain priors+DQN

Figure 6. The cumulative number of times stepped in water, computed over
15 trials, for different learning methods in the island navigation environment.

consideration. This can be obtained with a maximum of N |A|
queries to the stored Q-networks, which depends only on |A|
and N , and is independent of the size of the state space.

C. Continuous Action Environment

The ‘Safety Gym’ [13] environment consists of both con-
tinuous states and actions. To implement our approach in such
as setting, we chose a version of the PointGoal1 environment,
‘PointGoal1-12’, where the number of ‘hazards’ were set to
12, making it a more unsafe environment than the original
PointGoal1 environment. The aim of the agent in this envi-
ronment is to navigate to the goal location while avoiding the
‘hazard’ locations. Each of the 1000 episodes are run for 1000
steps. As in the case of the other environments, we initially
obtained source policies by separately training a DDPG [30]
agent on 3 tasks. Using these source policies, we implemented
our described approach for safe exploration. For the DDPG
implementation, the critic and target networks were multi-layer
perceptrons with 3 and 2 layers respectively, with the former
having 1024, 512 and 300 nodes in its three layers, and the
latter with 512 and 128 nodes in its layers. The learning rates
for both networks were set to 1e − 4, the soft target update
parameter τ was set to 1e− 2, the discount factor was set to
0.99 and the replay buffer size was set to be 100000. For PPO,

the hyperparameters used were consistent with those used in
Ray et al. [13]. The hyperparameters specific to the approach
described here are ρ = 0.95 and threshold t = 0.1.

0 200 400 600 800 1000
Number of episodes

10

0

10

20

30

Di
sc

ou
nt

ed
 re

tu
rn

 p
er

 e
pi

so
de

 (W
)

PPO
PPO-lagrangian
DDPG
Domain priors+DDPG

Figure 7. The average discounted returns per episode (W), computed over
3 trials, for different learning methods in the PointGoal1-12 Safety Gym
environment.

0 200 400 600 800 1000
Number of episodes

0

20000

40000

60000

80000

Cu
m

ul
at

iv
e

ha
za

rd
 v

io
la

tio
ns

PPO
PPO-lagrangian
DDPG
Domain priors+DDPG

Figure 8. The cumulative number of obstacle collisions, computed over
3 trials, for different learning methods in the PointGoal1-12 Safety Gym
environment.

As the environment contains a continuous action space,
biasing the exploration exactly as described in Algorithm 2
is infeasible. In order to circumvent this issue, we randomly
sampled 100 actions from a uniform distribution in the al-
lowable range of actions, (−1, 1), essentially discretizing the
action space. Following this, we proceeded to bias the actions
as per Algorithm 2. The actions were biased with a probability
proportional to an exploration bias factor, which started with
an initial value of 1, and decayed exponentially by a factor of
0.95 at the end of each episode.

As depicted in Figures 7 and 8, the use of priors helps
improve both learning as well as safety performance. As also
noted in Ray et al. [13], although the learning performance
of the PPO-Lagrangian approach is poor, it exhibits a much
superior safety performance. However, it must be pointed out
that this method has explicit access to a constraint violation
function, while our approach does not.

D. Prior Adaptation to Modified Environments

As shown in Sections V-A,V-B and V-C, learned priors can
effectively help avoid undesirable exploratory actions while
learning an arbitrary task in the domain. However, if the
environment was to undergo a change in configuration, the set
of actions associated with unsafe agent behaviors would not
remain the same. Nevertheless, provided these changes are not
too drastic, the priors learned from the original environment
could still serve as a useful initialization for learning the corre-
sponding priors in the modified environment. In other words,
the priors may be transferable to the modified environments.
This is an advantage that is specific to our approach, and
is enabled by the fact that our priors are adaptive, and are
inherently tied to the structure of the domain. In addition,
the adaptive nature of the priors ensures that in time, they
become well-suited to the modified environment, the with
the adaptation time depending on the degree of dissimilarity
between the two environments.

Here, we design experiments in the tabular environment in
Section V-A, to demonstrate this transferability to modified
versions of the original environment in Figure 1(a), shown in
Figures 9(a)-(d). Obstacles were either added or removed from
the original environment (Figure 1(a)) to obtain the modified
environments in Figures 9(a)-(c), whereas the environment in
Figure 9(d) was created by offsetting most obstacles 2 units
upwards and to the right. The consistently undesirable actions
for the original environment in Figure 1(a) are overlayed
on top of the modified environments in Figures 9(a)-(d),
whereas the correct set of consistently undesirable actions
for the modified environments are shown in Figures 9(e)-
(h). Despite the differences between the undesirable actions
of the original and modified environments, there exists some
structural similarity between them. Hence, it is reasonable to
expect the priors learned in the original environment to be
at least partially transferable to the modified environments.
Specifically, we posit that the learned prior for the original
environment forms a reasonable initial estimate for learning
the corresponding priors in the modified environments, as long
as the differences between the two are not drastic.

In order to test this hypothesis, the priors for the modified
environments were learned with and without these initial
estimates. In both cases, the associated absolute TD errors
decrease, as shown in Figures 9(i)-(l), which demonstrates
the capability of the priors to adapt to different environments.
Figures 9(i)-(k) suggest that initialization of the priors could
lead to significantly lowered initial absolute TD errors com-
pared to the case of learning the priors from scratch (without
initialization). However, initializing the priors in this manner
was not found to be useful for the environment in Figure 9(d),
where the effect of the initialization was to slightly increase
the initial absolute TD error, as depicted in Figure 9(l). This is
due to the fact that the nature of the differences in the obstacle
configuration in Figure 9(d) and Figure 1(a) renders the prior
learned in the latter ineffective with respect to learning the
prior in the former. These experiments demonstrate that while
the prior learned using the described approach is transferable
to some extent, it is not transferable in general.

(a)

(i)

(b) (c) (d)

(e)

(j) (l)(k)

(f) (g) (h)

Figure 9. (a)-(d) show the consistently undesirable actions corresponding to the original environment in Figure 1(a), overlayed on top of four modified
environments. (e)-(h) show these environments, with actions that are actually undesirable in them. (i)-(l) show the absolute TD errors associated with the
learning of QP for these environments, with and without prior initialization.

VI. DISCUSSION

The proposed methodology allows RL agents avoid unde-
sirable actions during learning by making use of a learned
prior policy. Although our approach as described, deals with
avoiding undesirable actions, it can be easily adapted to sce-
narios where there exist actions that are commonly desirable
across the tasks in the domain. Such an adaptation would
involve replacing the advantage A∗i (s, a) with B∗i (s, a) =
Q∗i (s, a)−min

a′∈A
Q∗i (s, a

′), in addition to replacing Equation 1

with wi(s, a) =

∣∣∣∣ B∗i (s,a)
max
a′∈A

Q∗i (s,a′)

∣∣∣∣. The resulting prior could then

simply be used to guide exploration, by taking exploratory
actions that are greedy with respect to Q∗P with a high
probability. Such an approach appeared to be successful in
versions of the tabular environment (Section V-A) where a
non-goal, rewarding state was introduced into all tasks in the
domain. Although the approach is useful for such specific
situations, in general, exploring the state-action space by
greedily exploiting the prior in this manner could lead to poor
learning performances, as it may limit the agent’s exploration.
Hence, achieving safe learning behaviors is a more practical
use-case for the approach described in this work.

The ability to avoid undesired actions during learning
makes the proposed approach potentially useful for real-
world systems which are often intolerant of poor actions.
Our approach would thus be useful in scenarios where the
associated marginal increase in memory and computational
costs are outweighed by the costs of executing unsafe actions.

Although we only consider cases where tasks vary solely

in the reward function, this could lay the foundation for more
general work, where tasks vary in other aspects such as the
representation, transition function or the state-action space.

VII. CONCLUSION

We presented a method to extract priors from a set of known
tasks in the domain. The prior is learned in the form of a Q-
function, and is based on inferred rewards corresponding to
consistently undesirable actions across these tasks. The effec-
tiveness of the prior in enabling safe learning behaviors was
demonstrated in discrete as well as continuous environments,
and its performance was compared to various baselines. This
was further supported by our theoretical analysis, which sug-
gests that the use of these priors helps reduce the probability
of taking unsafe exploratory actions. In addition to leading
to safer learning behaviors for arbitrary tasks in the domain,
the priors were shown to be transferable to some extent, and
capable of adapting to changes in the environment.

ACKNOWLEDGEMENTS

This research was partially funded by the Australian Gov-
ernment through the Australian Research Council (ARC). Prof
Venkatesh is the recipient of an ARC Australian Laureate
Fellowship (FL170100006). The authors would also like to
thank Siyuan Li for providing support for the implementation
of OPS-TL [10].

REFERENCES

[1] R. S. Sutton and A. G. Barto, “Reinforcement learning:
An introduction,” 2011.

[2] G. Tesauro, “Temporal difference learning and
td-gammon,” Commun. ACM, vol. 38, no. 3,
pp. 58–68, Mar. 1995. [Online]. Available:
http://doi.acm.org/10.1145/203330.203343

[3] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Ve-
ness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K.
Fidjeland, G. Ostrovski et al., “Human-level control
through deep reinforcement learning,” Nature, vol. 518,
no. 7540, p. 529, 2015.

[4] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre,
G. Van Den Driessche, J. Schrittwieser, I. Antonoglou,
V. Panneershelvam, M. Lanctot et al., “Mastering the
game of go with deep neural networks and tree search,”
Nature, vol. 529, no. 7587, pp. 484–489, 2016.

[5] A. Y. Ng, H. J. Kim, M. I. Jordan, and S. Sastry, “Inverted
autonomous helicopter flight via reinforcement learning,”
in International Symposium on Experimental Robotics.
MIT Press, 2004.

[6] R. Dubey, P. Agrawal, D. Pathak, T. Griffiths, and
A. Efros, “Investigating human priors for playing video
games,” in International Conference on Machine Learn-
ing, 2018, pp. 1348–1356.

[7] J. Garcıa and F. Fernández, “A comprehensive survey
on safe reinforcement learning,” Journal of Machine
Learning Research, vol. 16, no. 1, pp. 1437–1480, 2015.

[8] M. E. Taylor and P. Stone, “Transfer learning for re-
inforcement learning domains: A survey,” Journal of
Machine Learning Research, vol. 10, no. Jul, pp. 1633–
1685, 2009.

[9] F. Fernández and M. Veloso, “Probabilistic policy
reuse in a reinforcement learning agent,” in
Proceedings of the fifth international joint conference
on Autonomous agents and multiagent systems.
ACM, 2006, pp. 720–727. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1160762

[10] S. Li and C. Zhang, “An optimal online method of select-
ing source policies for reinforcement learning,” in Thirty-
Second AAAI Conference on Artificial Intelligence, 2018.

[11] A. Barreto, D. Borsa, J. Quan, T. Schaul, D. Silver,
M. Hessel, D. Mankowitz, A. Žídek, and R. Munos,
“Transfer in deep reinforcement learning using succes-
sor features and generalised policy improvement,” arXiv
preprint arXiv:1901.10964, 2019.

[12] J. Achiam, D. Held, A. Tamar, and P. Abbeel, “Con-
strained policy optimization,” in Proceedings of the 34th
International Conference on Machine Learning-Volume
70. JMLR. org, 2017, pp. 22–31.

[13] A. Ray, J. Achiam, and D. Amodei, “Benchmarking safe
exploration in deep reinforcement learning.”

[14] J. Garcia and F. Fernández, “Safe exploration of state
and action spaces in reinforcement learning,” Journal of
Artificial Intelligence Research, vol. 45, pp. 515–564,
2012.

[15] M. Alshiekh, R. Bloem, R. Ehlers, B. Könighofer,
S. Niekum, and U. Topcu, “Safe reinforcement learning
via shielding,” in Thirty-Second AAAI Conference on
Artificial Intelligence, 2018.

[16] T. Zahavy, M. Haroush, N. Merlis, D. J. Mankowitz, and

S. Mannor, “Learn what not to learn: Action elimination
with deep reinforcement learning,” in Advances in Neural
Information Processing Systems, 2018, pp. 3562–3573.

[17] M. B. Ring, “Continual learning in reinforcement en-
vironments,” Ph.D. dissertation, University of Texas at
Austin Austin, Texas 78712, 1994.

[18] M. Geist and B. Scherrer, “Off-policy learning with
eligibility traces: a survey.” Journal of Machine Learning
Research, vol. 15, no. 1, pp. 289–333, 2014.

[19] A. Barreto, W. Dabney, R. Munos, J. J. Hunt, T. Schaul,
H. P. van Hasselt, and D. Silver, “Successor features for
transfer in reinforcement learning,” in Advances in neural
information processing systems, 2017, pp. 4055–4065.

[20] C. Ma, J. Wen, and Y. Bengio, “Universal successor rep-
resentations for transfer reinforcement learning,” arXiv
preprint arXiv:1804.03758, 2018.

[21] S. Schmitt, J. J. Hudson, A. Zidek, S. Osindero, C. Doer-
sch, W. M. Czarnecki, J. Z. Leibo, H. Kuttler, A. Zisser-
man, K. Simonyan et al., “Kickstarting deep reinforce-
ment learning,” arXiv preprint arXiv:1803.03835, 2018.

[22] B. Spector and S. Belongie, “Sample-efficient reinforce-
ment learning through transfer and architectural priors,”
arXiv preprint arXiv:1801.02268, 2018.

[23] J. Leike, M. Martic, V. Krakovna, P. A. Ortega, T. Everitt,
A. Lefrancq, L. Orseau, and S. Legg, “Ai safety grid-
worlds,” arXiv preprint arXiv:1711.09883, 2017.

[24] A. Cohen, L. Yu, and R. Wright, “Diverse exploration
for fast and safe policy improvement,” in Thirty-Second
AAAI Conference on Artificial Intelligence, 2018.

[25] H. B. Ammar, R. Tutunov, and E. Eaton, “Safe policy
search for lifelong reinforcement learning with sublinear
regret,” in International Conference on Machine Learn-
ing, 2015, pp. 2361–2369.

[26] L. C. Baird, “Advantage updating,” Wright Lab Wright-
Patterson AFB OH, Tech. Rep., 1993.

[27] C. Watkins, “Learningfrom delayed rewards,” PhDthesis,
Cambridge University, Cambridge, England, 1989.

[28] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap,
T. Harley, D. Silver, and K. Kavukcuoglu, “Asynchronous
methods for deep reinforcement learning,” in Interna-
tional Conference on Machine Learning, 2016.

[29] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and
O. Klimov, “Proximal policy optimization algorithms,”
arXiv preprint arXiv:1707.06347, 2017.

[30] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez,
Y. Tassa, D. Silver, and D. Wierstra, “Continuous con-
trol with deep reinforcement learning,” arXiv preprint
arXiv:1509.02971, 2015.

[31] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves,
I. Antonoglou, D. Wierstra, and M. Riedmiller, “Playing
atari with deep reinforcement learning,” arXiv preprint
arXiv:1312.5602, 2013.

[32] G. Brockman, V. Cheung, L. Pettersson, J. Schneider,
J. Schulman, J. Tang, and W. Zaremba, “Openai gym,”
arXiv preprint arXiv:1606.01540, 2016.

[33] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” arXiv preprint arXiv:1412.6980, 2014.

