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Abstract—The rapid expansion of the digital world introduces
complex challenges within the forensic and security domains. In
particular, the wide availability of online pornographic media is
a huge problem for applications that seek to prevent exposure to
inappropriate/undesired audiences, or that aim to automate the
detection of any illegal behavior. There is a thin veil separating
the definition of pornographic and non-pornographic media,
making it difficult, even for humans, to agree on a consistent
interpretation. Most of the available APIs for detecting NSFW
(not-safe-for-work) media are not able to infer clearly whether
a file contains pornographic content or not. In general, given an
input file, APIs return a set of probability scores, leaving the
responsibility of a final binary decision to the users. What is
more, NSFW APIs do not publicly share their training datasets.

Aiming to mitigate these issues, we introduce a novel dataset
of images: Pornographic and Explicit Dataset 376K (PEDA 376K),
which was labeled using a well-defined criteria, to aid the
development of machine learning for detecting whether an image
is pornographic or not. We also trained decision trees for trans-
forming the probabilistic output of standard APIs into binary
decisions. We conducted experiments with two datasets, PEDA
376K and RedLight, and found that when APIs are optimized
with decision trees, their average accuracies increase. Finally,
we propose a deep learning architecture trained directly on the
PEDA 376K dataset. When comparing this model against state-
of-the-art models and their corresponding optimized outputs, we
outperform five existing neural architectures, reaching an overall
accuracy of 99.2%.

Index Terms—Pornography Detection, Convolutional Neural
Networks, Computer Vision, Computer Forensics.

I. INTRODUCTION

As the amount of data being produced and shared online
is increasing at enormous rates, traditional techniques for
detecting pornographic content, such as keeping black lists
of file names or URLs [1], no longer scale. Computer vision
and deep learning technologies have become crucial for this
task, shifting the focus from metadata to the actual media
contents [2]. With recent advances, porn detectors can now
be embedded into applications to automatically filter sensitive
media, preventing exposure to inappropriate/undesired audi-
ences and environments [3], [4].

Although recent deep learning technologies are very pow-
erful in computer vision applications, researchers and engi-
neers have to deal with the presence of subjectivity in their
models. For example, a single media file can be deemed as
pornography or not by two different individuals [5]. This lack

of natural consensus in categorizing media can lead to a wide
variety of trained models. In practice, most of the state-of-the-
art NSFW APIs do not provide a binary decision as to whether
an image is pornographic or not. Rather, APIs return a set of
probabilities for certain features characterizing the media file,
leaving the final decision to the user.

In this paper, we introduce a pornographic dataset (PEDA
376K) carefully labeled using a set of well-defined rules
to determine whether an image is pornographic or not. We
performed extensive experiments involving the training of
convolutional networks to detect pornography, and compared
their results with five start-of-the-art NSFW APIs. Overall, the
contributions of this paper include:

• A novel image dataset (PEDA 376K), containing more
than 376, 000 images labeled into two categories: (i)
pornographic and (ii) non-pornographic, using an objec-
tive definition of pornography, mitigating the subjective
nature of each class;

• A neural network architecture trained from scratch for de-
tecting pornography using the novel PEDA 376K dataset;

• An approach for transforming probabilistic outputs from
state-of-the-art NSFW moderation APIs into binary deci-
sions.

The rest of this paper is distributed as follows: Section
II exposes related work about the evolution of pornography
detection. Section III describes the development of our dataset,
our proposed neural network architecture, and details about the
interpretation of the probabilistic outputs from NSFW APIs.
Section IV shows details about our experiments and results.
Section V highlights our major findings and final remarks.

II. RELATED WORK

Originally, porn detectors were based on the analysis of
skin features. These approaches focused on several techniques
to establish whether pixels in a given image belong to skin
or not [6], [7]. The least sophisticated porn detectors esti-
mated the proportion of skin pixels in the whole image and
used a threshold to classify the image. Subsequently, more
complex features were added, such as, the number of skin
regions or the area of the largest skin region. Thresholds for
classification were inferred empirically by experimentation and
observations [8]. In addition to skin features, other works
leaned on texture analysis and human geometry to mitigate
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false positives, as skin pixel values are sometimes similar to
ordinary pixels [9].

Over time, these “classifiers” became deprecated and were
replaced by machine learning models that could find better
thresholds compared to previous methods [10], [11]. For
example, models based on the bag-of-visual-words approach
achieved better results compared to naive models [2]. Although
these machine learning approaches were more powerful, just
looking for skin features may not be enough, as some porno-
graphic images may not always contain a large amount of skin
pixels, or some non-pornographic images may contain large
amounts of skin pixels [12].

More recently, the advent of deep learning allowed scientists
and engineers to improve machine learning models. In [14],
the authors compared different machine learning models us-
ing the TI-UNRAM Pornographic Image Dataset [13]. Such
models included convolutional neural networks (CNNs), bag-
of-visual-words methods, and traditional shallow machine
learning algorithms combined with manually extracted features
(i.e., local binary patterns, histogram of oriented gradients,
SIFT). A CNN, the ResNet architecture, achieved the best
accuracy compared to all other approaches.

Models based on a combination of skin detection and bag-
of-visual-words were compared to CNNs to detect pornogra-
phy in [2]. Using a private dataset of approximately 650, 000
images, the authors observed a superior accuracy of the
CNN, the AlexNet architecture [15], over the other tech-
niques. Another example of superior performance of CNNs
is presented in [16], where a bag-of-visual-words technique
was compared to a CNN. This time, the authors used a
GoogLeNet architecture [17], using a private and the public
NPDI Pornography [18] datasets for training and testing,
respectively. The GoogLeNet architecture was also used to
detect pornography in [16]. The authors introduced a novel
approach that uses Multiple Instance Learning (MIL). In this
approach, the model is trained to label arbitrary parts of an
image, and if one of these is considered pornography, the
entire image will also be. They used a private balanced dataset
containing about 234, 000 images.

Neural networks were also used to leverage ordinary
pornography detection to develop forensics applications. One
example is the detection of child sexual exploitation. Porn
detectors can help to find evidence on child pornography
investigations. To this end, in [12], five architectures trained to
detect pornography were evaluated in a new role, the detection
of child pornography. The highest accuracy was achieved by a
publicly available model, OpenYahoo [19], a 50-layer ResNet.
On a similar work, in [20] the authors explored different
transfer learning strategies for CNNs. Transfer learning allows
a particular model to be specialized, with little effort, on a
different domain or application.

III. METHODOLOGY

In this section, we introduce a novel dataset for pornography
detection and present details about the materials and methods
used in our experiments.

A. Pornographic and Explicit Dataset 376K

As a rule-of-thumb, when deep neural networks exhibit
a large number of parameters, a huge amount of data is
necessary for achieving satisfactory results. In practice, finding
huge amounts of annotated data may be difficult for several ap-
plication domains [1]. In the context of pornographic images,
this issue is magnified as there is no reliable and structured
dataset that is publicly available. Given the sensitive nature
of the materials, most of successful projects do not provide
their datasets [21], [1], [16], [22], and when they do, either
the amount of data may be insufficient or the labeling appears
subjective [12].

In this paper, we introduce a dataset1 that aims to address
the aforementioned limitations. Naturally, collecting this type
of data is daunting, as it involves downloading representative
examples according to an objective definition of pornography,
followed by a tedious manual inspection before labeling the
data. We decided to gather data from a social network, where
contents are already organized by topics [23], providing an
starting point for our manual inspection.

Images were scrapped from Reddit posts2 that contained
images under specific topics, denominated subreddits. Our
goal was to collect representative samples of current pornog-
raphy maximizing variety. To this end, we scraped images
with different photo angles, body shapes, distinct environ-
ments, ethnicities, gender, age, sexual modalities, number of
people, image quality, among others. For the non-pornographic
images, we collected images related to animals, arts, foods,
sports, places, memes, nature, objects, vehicles and people
in ordinary situations. It is worth noting that these ordinary
situations contemplate images that are hard to distinguish
from pornography. These examples include people wearing
swimsuits, or doing some kind of sports which involves less
clothes and/or physical contact between players.

Although images were scraped from explicit pornographic
subtopics, some images are not necessarily pornographic.
An objective rule to define pornography, based on [16] was
defined. Images were treated as pornographic if any of the fol-
lowing apply: (a) depicts a sexual act (regardless of clothing);
and (b) contains individuals showing a sexual organ, buttocks
or female breast. A graphical representation of our decision
process can be seen in Figure 1.

We also provide a split of the data for further experimen-
tation and reproducibility. The data is separated into training,
validation, test sets, as shown in Table I. Validation and test
sets are split in a way that each set includes 50% instances of
each class. Data instances were shuffled before splitting.

TABLE I: Data distribution for PEDA 376K splits.

Class All Train (95%) Val. (2.5%) Test (2.5%)
Pornography 150, 940 141, 540 4, 700 4.700

Non-pornography 225, 094 215, 694 4, 700 4, 700
Total 376, 034 357, 234 9, 400 9, 400

1Database available at https://sites.google.com/site/peda376k.
2http://www.reddit.com
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Is there any sexual act?

Are people fully dressed?

Yes

Yes No

No

Does it show any sexual organ? 

Does it show buttocks? 

Does it show female breast? 

Yes No

Pornography Non-pornography

For
Any

For
All

Fig. 1: Flowchart of the decision-making process for labeling an image as
pornographic or not.

B. NSFW Image Moderation APIs

With the spread of online media, mainly through social
networks, there has also been an increase on the number of
companies providing content filtering services. Most of these
services are cloud-based and aim to automatically identify
if a given image is appropriate or not, according to their
own criteria. These filtering services do not usually indicate
whether an image is pornographic or not, and most of the
times, return a set of probabilities related to specific features
characterizing the image (e.g., adult, explicit, nudity, partial
nudity, racy, suggestive, swimwear, etc).

In this context, when using these APIs, the decision for
labeling an image as pornographic or not is given to the
user. Furthermore, as the outputs of different services lack
standardization, comparing the performance of these models
is a difficult task. Our work aims to address the subjectivity
inherent to these APIs by incorporating a decision tree on top
of each API, transforming their outputs into binary decisions.
We conducted experiments using two different datasets, PEDA
376K and RedLight [26] to compare all services. We consid-
ered five different APIs in our experiments.

1) Amazon Rekognition [27]: Every prediction of this ser-
vice returns twenty-two probability values for an input image.
There is a total of eighteen labels divided into four categories.
For each category, the prediction includes one probability for
each label, and the maximum probability value within the
category. We discard the two unrelated categories: “Violence”
and “Visually Disturbing” and maintain the two remaining:
“Explicit Nudity” and “Suggestive”. Thus, we only use ten

labels, six from the first category (Nudity, Graphic Male
Nudity, Graphic Female Nudity, Sexual Activity, Illustrated
Nudity or Sexual Activity and Adult Toys) and four from
the second category (Female Swimwear or Underwear, Male
Swimwear or Underwear, Partial Nudity, Revealing Clothes),
for a total of twelve probabilities.

2) Clarifai [28]: This service provides two content filtering
modules: “NSFW” and “Moderation”. The first module returns
the probability of an input image having pornographic content.
The second module returns five likelihoods related to moder-
ation filtering: “Safe”, “Explicit”, “Suggestive”, “Gore” and
“Drug”, but we discarded the last two. In total, we consider
only four probability values.

3) Google Vision [29]: Using a different approach, the ser-
vice provided by Google returns categorical values instead of
probabilities. The possible values are: Very Unlikely, Unlikely,
Possible, Likely, and Very Likely, which are encoded as a
single numerical value: 1, 2, 3, 4 and 5, respectively. This
service provides five categories, from which we only used
two: “Adult” and “Racy”. The other three (Spoof, Medical
and Violence) were not related to pornography.

4) Microsoft Azure [30]: This services focuses on handling
pornography. For an input image, the service returns two
probability values: “Adult” and “Racy”. It is the only service
that also returns a boolean value for each label indicating if
the image has pornographic or racy content.

5) OpenYahoo [19]: OpenYahoo is a publicly available
neural network that has been trained to detect NSFW images.
The model returns a continuous probability value that indicates
whether an input image is pornographic or not.

C. CNN Proposed Model

Inspired by the massive transition of pornography detection
models to deep learning approaches [31], [21], [16], [2],
[32], [14], we decided to use convolutional networks with
PEDA 376K. We also aimed to provide a baseline for future
experiments using the same data.

As training training deep neural networks and making deci-
sions about their hyperparameters can be very time consuming,
we defined an strategy that avoids the exploration of the entire
search space of hyperparameters. Our methodology is fully
depicted in Figure 2 and is composed of three major steps,
that aim to greedily select the CNN architecture, the batch
size, and the optimizer, in that order.

1) Selecting the architecture: Based on results from
ILSVRC [33], we selected four architectures, each with a
variable number of layers (in parenthesis). All models are size
compatible with our image dataset (224x224 pixels).

• ResNet (18, 34, 50, 101, 152) [34]: This architecture was
developed in order to avoid the gradient vanishing in
deeper layers. It includes a residual block composed of
two convolutional layers connected also through a skip
connection. This CNN was developed in 2015 and won
the ILSVRC challenge in the same year;

• Wide ResNet (50, 101) [35]: This architecture is a vari-
ation of the ResNet and was developed in 2017. The
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ResNet (18, 34, 50, 101, 152)

Wide ResNet (50, 101)

ResNext (50, 101)

DenseNet (121, 161, 169, 201) 

STEP 1 (CNN Model, # layer)

25 26 27 28

STEP 2 (Batch size)
ASGD

STEP 3 (Optimizer, LR)

Adam SGD

AdaGrad RMSProp

Fig. 2: Steps performed for exploring the search space of hyperparameters. The learning rate (LR) is given by 2n

m
, where n and m values are different for

each optimizer.

original CNN was improved by doubling the number
of channels in every block, minimizing the bottleneck
caused by the lack of channels;

• ResNext (50, 101) [36]: This is an extension of the
ResNet architecture, which uses an split-transform-
aggregate strategy. Compared to a ResNet block, this
novel approach splits the convolutional layer path in a
determined cardinality C, generating new paths with the
same structure which are added together in the end.
The authors secured 2nd place in the ILSVRC 2016
classification task;

• DenseNet (121, 161, 169, 201) [22]: This architecture
proposes the use of a set of layers denominated Dense
blocks which concatenate each output layer with the
next output layer. This proposition results in L(L+1)

2
connections among the layers, instead of L connections
as we see in traditional deep networks with L layers. It
was developed in 2016 and received the Best Paper Award
at CVPR 2017.

2) Selecting the batch size: This hyperparameter sets the
number of samples to be used in forward and backward passes.
The batch size is usually set to powers of two (2n) due
to underlying architectural attributes. Based on this premise,
we explored a range of values to the batch size, where
n = {5, 6, 7, 8}:

3) Selecting the optimizer and learning rate: We adopted
five different optimization methods to evaluate our mod-
els: three adaptive methods, AdaGrad, RMSProp and Adam;
and two non-adaptive, Stochastic Gradient Descent (SGD)
and Asynchronous Stochastic Gradient Descent (ASGD). The
adaptive methods converge faster than the non-adaptive, and
are becoming very popular for training deep neural networks.
Speed-ups are due to the use of iteration history in the local
optimization [37].

In order to fine-tune the learning rate, we used the function
2n

m based on [37]. This approach uses a different range in a
power of two divided by a specific number for each optimizer.
The different values for m and n for each case are shown in
the Table II.

IV. EXPERIMENTS AND RESULTS

In this section, a detailed description of experiments, meth-
ods, and datasets is provided. Additionally, a summary of the

TABLE II: Learning rate exploration. For each optimizer a different set of
learning rate values was explored, according to the table below. Each value
is defined by 2n

m
.

Optimizer m n
AdaGrad 10 {−2,−1, 0, 1, 2}
RMSProp 100 {−5,−4,−3,−2,−1, 0, 1, 2}

Adam 100 {−6,−5,−4,−3,−2,−1, 0, 1}
SGD 1 {−2,−1, 0, 1, 2}

ASGD 1 {−2,−1, 0, 1, 2}

results and major findings is presented at the end.

A. Training a CNN

In order to find the “best” CNN, the first round of experi-
ments was conducted to decide the underlying architecture,
the batch size, and the optimizer/learning rate. All models
were trained with the PEDA 376K dataset and all models were
initialized with pretrained weights using ImageNet [38].

1) CNN architecture: For the purpose of finding the best
CNN architecture, models were training during 30 epochs with
early stopping. Training was interrupted if validation accuracy
showed no increase for 5 consecutive epochs. As a default
configuration, the AdaGrad optimizer was used with a learning
rate of 0.01 and a batch size of 128. Table III shows resulting
training and validation performance.

TABLE III: Training and validation accuracies of each CNN model with their
respective number of layers.

Model Layers Train Validation

ResNet

18 99.5% 97.6%
34 99.4% 97.7%
50 98.8% 97.4%

101 98.7% 97.3%
152 99.2% 97.7%

Wide ResNet 50 97.6% 97.2%
101 99.3% 97.4%

ResNext 50 99.2% 98.1%
101 99.4% 97.8%

DenseNet

121 99.4% 98.5%
161 99.5% 98.3%
169 99.6% 98.5%
201 98.6% 98.2%

For subsequent steps, the Densenets-121 was chosen as it
achieved the highest accuracy in the validation set: 98.5%.
Ties were broken by model complexity.
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2) Batch size: In this step, the same protocol for early
stopping was used. The goal now is to find a good batch-size.
Table IV presents the corresponding results.

TABLE IV: Training and validation accuracies when batch size is adjusted.

Batch size Train Validation
32 99.2% 98.1%
64 99.4% 98.4%

128 99.4% 98.5%
256 99.6% 98.4%

The model trained with a batch size of 128 showed the
highest accuracy: 98.5%. For the last step, the Densenet-121
with a batch size of 128 was selected.

3) Optimizer and learning rate: In this step, five optimizers
and their respective learning rates are evaluated. The learning
rate ranges are detailed in Table II. Additionally, if the best val-
idation accuracy was at one extreme of the ranges, the search
was expanded to consider values beyond the initial limits.
Table V shows the final training and validation performance.

TABLE V: Training and validation accuracies when varying the optimizer and
learning rate. The best learning rate for each optimizer is shown together with
their corresponding performances.

Optimizer Train Validation Learning Rate

AdaGrad 100% 98.6% 2−4

10

RMSProp 99.8% 99.1% 2−7

100

Adam 99.8% 99.1% 2−7

100
SGD 99.9% 99.2% 2−8

ASGD 99.9% 99.0% 2−5

The best configuration of hyperparameters found includes a
Densenet-121 with batch size of 128 trained with an SGD
optimizer and a learning rate of 2−8. This configuration
achieved 99.2% in the validation set. We also evaluated a
model trained with this configuration with a test set, reaching
an accuracy of 99.2%. Instances in the test set were never used
in any of the training/validation steps.

B. Combining Decision Trees and NSFW APIs

In order to transform the probabilistic output of image
moderation APIs into binary decisions, a number of decision
trees were trained. Experiments were performed using two
different datasets, as shown in Figure 3.

1) PEDA 376K: As NSFW APIs do not provide binary
outputs, we first defined a baseline (raw) model. In this
model, the PEDA 376K validation set is used to get the APIs’
outputs (h(x)), normalizing the values to the [0, 1] interval
when necessary. In this raw model no decision tree is used.
The inference of a final binary decision is rather a simple
thresholding function. For each API, the most representative
feature is selected. If the value for this feature is greater than
0.5 then the whole image is deemed as pornographic, and not
pornographic otherwise. This rule was not applied to Microsoft
Azure, as this is the only service providing a binary output.

The proposed approach for transforming probabilistic out-
puts into binary decisions involves training decision trees to
adjust API scores to our objective definition of pornography. In

this approach, M +
⌈
M−1
M

⌉
decision trees are trained for each

API, where M is the length of each API’s output. A binary
decision tree is trained for each feature separately and a final
tree is used to combine all other trees. Experiments were con-
ducted with 5-fold cross-validation and, to prevent overfitting,
the minimum number of samples required to split an internal
node was varied using an exponential range. This range was
given by 2n, where n = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}. For
each API and their respective decision trees, the test set was
use to assess performance.

It is worth noting that experiments were repeated twice by
switching the validation and test sets in order to achieve more
reliable results. The average accuracy and respective standard
deviations are reported in Table VI.

TABLE VI: Accuracies and standard deviations for the use of decision trees
(raw and optimized) and the CNN for each dataset.

Dataset Model Raw Optimized

PEDA 376K

Proposed 99.1 ± 0.1 -
Amazon [27] 96.9± 0.0 97.9± 0.0
Clarifai [28] 96.4± 0.0 97.4± 0.0
Google [29] 96.5± 0.1 96.7± 0.2

Microsoft [30] 93.6± 0.1 95.8± 0.1
Yahoo [19] 95.1± 0.1 96.1± 0.0

RedLight [26]

Proposed 95.2± 0.3 95.6± 0.3
Amazon [27] 95.3 ± 0.3 96.5 ± 0.3
Clarifai [28] 92.6± 0.3 93.0± 0.1
Google [29] 94.7± 0.2 95.1± 0.2

Microsoft [30] 94.4± 0.3 95.5± 0.2
Yahoo [19] 94.2± 0.3 94.2± 0.3

2) RedLight [26]: To exclude any possibility of biased
results introduced by the use of our dataset, we also exper-
imented with an external dataset. The RedLight dataset [26]
contains a set of non-pornographic and pornographic im-
ages which are further divided into several subcategories.
We disregarded the subtype information for all images and
only used their pornography label. Unreadable and duplicate
images were removed, leaving a filtered set of 25, 616 images
(10, 223 pornographic and 15, 393 non-pornographic). The
entire dataset was split into six partitions in order to perform
the same amount of experiments with a distinct combination of
train and test sets. Average accuracy and standard deviations
were calculated for all experiments. Similarly to PEDA 376K,
for RedLight, we collected results for both the baseline and
the optimized models trained with decision trees. In this case,
we also trained decision trees on top of our proposed CNN
architecture. This step was not necessary for the analysis of
PEDA 376K because the CNN was already trained with the
same data.

3) Analysis and discussion: For both datasets, the highest
accuracies were given by decision trees trained with all avail-
able features. As shown in Table VI, our proposed approach
increased the accuracy of all NSFW APIs, when compared
with their raw baselines. When considering only PEDA 376K,
the CNN architecture outperformed all APIs, including their
optimized versions. The second row in Table VI shows the
performance of the APIs and the CNN when using RedLight.
The CNN beats four of all five APIs in both the raw baseline
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Light
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Amazon
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Proposed*

Fig. 3: The diagram illustrates the use of decision trees to transform API’s outputs into binary decisions. (*) The proposed approach is only optimized over
the RedLight Dataset [26]

and their respective optimized versions. The Amazon API
achieved the highest accuracy in this evaluation.

In order to perform a fair evaluation of the performance of
optimized APIs versus the CNN using both datasets, we calcu-
lated a weighted accuracy based on the number of predictions
given for each dataset. We considered 18, 800 images from
PEDA 376K and 25, 616 from RedLight. Table VII shows
these results.

TABLE VII: Overall (weighted) accuracy for both datasets.

Model Overall accuracy
Proposed 97.1%

Amazon [27] 97.1%
Clarifai [28] 94.9%
Google [29] 95.8%

Microsoft [30] 95.6%
Yahoo [19] 95.0%

Finally, in order to analyze the behavior of our proposed
architecture over the PEDA 376K dataset, we fed the CNN
model with all the images in the test set and extracted features
from the last convolutional layer. As the dimensionality of
each feature set is 1, 568, we used a combination of PCA (prin-
cipal components analysis) and t-SNE (t-Distributed Stochastic
Neighbor Embedding) [39] to visualize all instances, as shown
in Figure 4. We can see two well-defined clusters, except for
a few misclassified instances which represent less than one
percent.

V. CONCLUSION

In this paper we introduced PEDA 376K, a novel dataset
for aiding the development of research and practice in the task
of automatic detection of pornographic images. Our dataset
is composed of approximately 400k images and provides
trainig/validation/tests splits, enabling comparative studies and
reproducibility of experiments. Additionally, we carefully an-
notated each image using an objective definition of pornogra-
phy.

We introduced a CNN architecture and conducted experi-
ments with our dataset, achieving an accuracy of 99.2% in
the test set. We also proposed a symbolic machine learning
approach using decision trees to compare our model to ex-
isting NSFW moderation APIs under different scenarios and
datasets. Our findings indicate that superior performance of the
CNN architecture over all state-of-the-art NSFW APIs, even
when using the decision tree optimization. Figure 5 shows a

random sample of misclassified images by all of the NFSW
APIs, but were correctly classified by our CNN.
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Fig. 4: The t-SNE projection showing the behavior of our proposed architecture over the PEDA 376K testset. The blue and green clusters are represented by
the true positives and negatives, respectively. The few orange and red dots represent the misclassified images, respectively the false positives and negatives.
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Fig. 5: Misclassified images by all optimized models that were correctly classified by our proposed model in evaluation using the PEDA 376K dataset. The
first row (a) shows the pornographic images misclassified as non-pornographic (False Negatives - FN). The second row (b) exhibits the non-pornographic
images misclassified as pornographic (False Positives - FP).
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