
DeepConsensus: Consensus-based Interpretable
Deep Neural Networks with Application to

Mortality Prediction
Shaeke Salman*1, Seyedeh Neelufar Payrovnaziri*2, Xiuwen Liu1, Pablo Rengifo-Moreno3 and Zhe He2

1Department of Computer Science, Florida State University, FL 32306, USA
2School of Information, Florida State University, FL 32306, USA
3College of Medicine, Florida State University, FL 32306, USA

{salman, liux}@cs.fsu.edu, spayrovnaziri@fsu.edu, paren@southern-med.com, zhe.he@cci.fsu.edu

Abstract—Deep neural networks have achieved remarkable
success in various challenging tasks. However, the black-box
nature of such networks is not acceptable to critical applications,
such as healthcare. In particular, the existence of adversarial
examples and their overgeneralization to irrelevant, out-of-
distribution inputs with high confidence makes it difficult, if not
impossible, to explain decisions by such networks. In this paper,
we analyze the underlying mechanism of generalization of deep
neural networks and propose an (n, k) consensus algorithm which
is insensitive to adversarial examples and can reliably reject out-
of-distribution samples. Furthermore, the consensus algorithm is
able to improve classification accuracy by using multiple trained
deep neural networks. To handle the complexity of deep neural
networks, we cluster linear approximations of individual models
and identify highly correlated clusters among different models
to capture feature importance robustly, resulting in improved
interpretability. Motivated by the importance of building ac-
curate and interpretable prediction models for healthcare, our
experimental results on an ICU dataset show the effectiveness
of our algorithm in enhancing both the prediction accuracy and
the interpretability of deep neural network models on one-year
patient mortality prediction. In particular, while the proposed
method maintains similar interpretability as conventional shallow
models such as logistic regression, it improves the prediction
accuracy significantly.

I. INTRODUCTION

Cardiovascular diseases (CVDs) cause severe economic and
healthcare related burdens not only in the United States but
worldwide [1]. Acute myocardial infarction (AMI) is a type
of CVD which is defined as “myocardial necrosis in a clinical
setting consistent with myocardial ischemia”, or heart attack
in simple words [2]. AMI is the leading cause of death
worldwide [3]. Identifying risky patients in Intensive Care Unit
(ICU) and preparing for their health needs are crucial to ap-
propriately managing AMI and employing timely interventions
to reduce mortality [4].These facts motivate recent efforts on
building mortality prediction models for ICU patients with
AMI [5]. Electronic health records (EHRs) with rich data
of patient encounters present unprecedented opportunities for
critical clinical applications such as outcome prediction [6].

* Equal contributions

However, medical data are typically heterogeneous and build-
ing machine learning models using this type of data is more
challenging than using homogeneous data like images. The
necessity of dealing with heterogeneous data is not limited
to medical applications, but it is shared among many other
applications of machine learning [7].

Unlike traditional machine learning approaches, deep learn-
ing methods do not require feature engineering [8]. Such
networks have demonstrated significant successes in many
challenging tasks and applications [9]. Even though they have
been employed in numerous real-world applications to enhance
the user experience, their adoption in healthcare and clinical
practice has been slow. Among the inherent difficulties, the
complexity of these models remains a huge challenge [10] as
it is not clear how they arrive at their predictions [11]. In
medical practice, it is unacceptable to only rely on predictions
made by a black-box model to guide decision-making for
patients. Any incorrect prediction such as erroneous diagnosis
may lead to serious medical errors, which is currently the third
leading cause of death in the United States [12]. This issue
has been raised and the necessity of interpretable deep learning
models has been identified [13]. However, it is not clear how
to improve the interpretability and at the same time retain the
accuracy of deep neural networks. Deep neural networks have
improved application performance by capturing complex latent
relationships among input variables. To make the matter worse,
these models are typically overparameterized, i.e., they have
more parameters than the number of training samples [14].
Overparametrization simplifies the optimization problem for
finding good solutions [15]; however, the resulting solutions
are even more complex and more difficult to interpret. Con-
sequently, interpretability enhancement techniques would be
difficult without handling the complexity of deep neural net-
works.

Recognizing that commonly-used activation functions
(ReLU, sigmoid, tanh, and so on) are piece-wise linear or can
be well approximated by a piece-wise linear function, such
neural networks partition the input space into (approximately)
linear regions. In addition, gradient-based optimization results
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Fig. 1. The workflow of the study (Icons made by https://www.flaticon.com).

in similar linear regions for similar inputs as their gradient
tends to be similar. By clustering the linear regions, we can
reduce the number of distinctive linear regions and at the same
time improve robustness. To further improve the performance,
we train multiple models and use consensus among the models
to reduce their sensitivity to adversarial examples with small
perturbations and also reduce overgeneralization to irrelevant
inputs of individual models. We demonstrate the effectiveness
of deep neural network models and the proposed algorithms on
one-year mortality prediction in patients diagnosed with AMI
or post myocardial infarction (PMI) in MIMIC-III database.
The workflow of this study is depicted in Fig. 1. Furthermore,
the experimental results show that the proposed method im-
proves the performance as well as the interpretability.

The paper is organized as follows. In the next section, we
present generalization and overgeneralization in the context of
deep neural networks and the proposed deep (n, k) consensus-
based classification algorithm. After that, we describe a
consensus-based interpretability method. Then, we illustrate
the effectiveness of the proposed algorithms in enhancing one-
year mortality predictions via experiments. Finally, we review
recent studies that are closely related to our work and conclude
the paper with a brief summary and plan for future work.

II. GENERALIZATION AND OVERGENERALIZATION IN
DEEP NEURAL NETWORKS

Fundamentally, a neural network approximates the under-
lying unknown function using f(x; θ), where x is the input,
and θ is a vector that includes all the parameters (weights and
biases). Given a deep learning model and a training dataset,
there are two fundamental problems to be solved: optimiza-
tion and generalization. The optimization problem deals with
finding the parameters θ by minimizing a loss function on the
training set. Overparametrization [16] in deep neural networks
makes the problem easier to solve by increasing the number
of good solutions exponentially [17].

Since there are numerous good solutions, understanding
their differences and commonalities is essential to developing
more effective multiple-model based methods. Toward a sys-
tematic understanding of deep neural network models in the
input space, one must consider the behavior of these models
in case of typical, irrelevant and adversarial inputs (the inputs
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Fig. 2. Left: Bar plot that shows how the five models trained on the MNIST
dataset agree on the overgeneralized samples (e.g., dog samples of the
CIFAR-10 dataset). Right: Bar plot that shows how the five models classify
the adversarial examples generated by one of the models (m3); the bars
denote the classification of the samples to true labels, adversarial labels and
other labels, respectively.

that are “computed” intentionally to degrade the system per-
formance) [18]. As a representative example, we have trained
five different deep neural networks on the MNIST dataset [19]
and used images from the CIFAR-10 dataset [20] as irrelevant
images since they do not contain valid handwritten digits; we
have cropped the images and converted them to the same input
format of MNIST. Fig. 2(left) shows how the five models agree
on irrelevant samples by showing the maximum number of
models that agree with each other over the same classification
label for samples. It shows that the models respond (almost)
randomly to such irrelevant inputs.

We have also generated adversarial examples using the fast
sign algorithm [18] as the direction to find the minimum
step size required to change the class label to another class.
By perturbing the inputs using one of the models (m3), we
investigate how the other models respond to those perturbed
inputs, i.e., adversarial examples. Fig. 2(right) shows the
classification results of the five models on the adversarial
images which are generated by m3. Clearly, the other four
models recognize the adversarial examples correctly for most
of the perturbed examples.

A. Deep (n, k) Consensus Algorithm

As all the models classify training samples accurately, they
generate similar linear regions and should behave similarly at
training samples. In Fig. 3, the models (trained on the one-
year patient mortality prediction dataset) generalize perfectly
along the path of the same class even though they differ in
details. We find this is a representative behavior, the main
reason why multiple DNN models mostly agree with each
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Fig. 3. Outputs from the penultimate layer for model 1, 2, 3, 4 and 5 respectively centered at a training sample of the one-year patient mortality prediction
dataset, along the direction to another sample in the same class.
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Fig. 4. Outputs from the penultimate layer for model 1, 2, 3, 4 and 5 respectively centered at a training sample of the one-year patient mortality prediction
dataset, along the direction to another sample in the other class.
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Fig. 5. (to be viewed in color) Percentage of classified overgeneralized samples
with (5,5) consensus. The samples are out-of-distribution inputs for the one-
year patient mortality prediction dataset.

other to meaningful inputs and can filter out adversarial
and irrelevant samples. While individual approximations are
sensitive to adversarial examples, consensus can be used to
capture the underlying common structures in training data,
not accidental features. Similar to Fig. 3, Fig. 4 shows that
along the path to other class, all models behave similarly
in that the decision boundaries occur around 0.5 and there
is no significant oscillation between class 0 and 1 samples.
Therefore, consensus between the models makes sense.

We propose to use consensus among different models
to differentiate extrinsically classified samples from intrin-
sically/consistently classified samples (CCS). Samples are
considered to be consistently classified if they are classified
by multiple models with a high probability in the same class.
In contrast, extrinsic factors such as randomness of weight
initialization or oversensitiveness to accidental features are
responsible for the classification of extrinsic samples. As such
random factors cannot happen consistently in multiple models,
we can reduce them exponentially by using more models.

To tolerate accidental oversensitiveness of a small number of
models, we propose deep (n, k) consensus algorithm1, which
is given in Algorithm 1. Note that Pmin is a vector with one
value for each class as it is computed class-wise. Essentially,
the algorithm requires consensus among k out of n trained
models in order for a sample to be classified; pt, a threshold
parameter, is used to decide if the prediction probability of a
model is sufficiently high.

To illustrate the effectiveness of the proposed algorithm,
Fig. 5 shows the results on the irrelevant samples, generated

1While a preliminary version of the algorithm was introduced in [21], no
justification was provided.

Algorithm 1 Deep (n, k) consensus-based classification

Require: Trained models M1, M2,. . . , Mn, input x, and
parameter pt

1: Apply each of the models to classify x and retain the
probabilities for each class as PMi

2: Compute Pmin by finding the class-wise minimal among
top k PMi

3: If max(Pmin) > pt,
4: Classify x as the class with maximum max(Pmin)
5: Else
6: Reject to classify x (mark it as ambiguous)
7: Endif

using randomized values. Majority of the irrelevant samples
are rejected using a (5, 5) consensus algorithm as shown in
Fig. 5; note that a (5,4) algorithm would also be effective even
though it could not reject the ones where four models agree
accidentally.

As a whole, the deep network models generalize in a
similar way for the intrinsic features. These models behave
consistently for the samples that are supported by the train-
ing set, however, their behavior can differ in terms of the
exact direction that leads to adversarial examples. Therefore,
consensus among the models should also be able to reduce
adversarial examples. We have conducted systematic exper-
iments to illustrate that with MNIST dataset, where after
generating adversarial examples using one model, most of the
other models are able to reject them. Fig. 8 shows that by
using a (5,4) consensus algorithm we can classify most of the
adversarial examples correctly; the only ones are rejected due
to that model m5 misclassified several samples. Clearly, as
model m3 is oversensitive to the adversarial examples, a (5,
5) algorithm will reject all the adversarial images.

The proposed algorithm is different from ensemble meth-
ods [22], which are used to improve the performance of
multiple models via voting. The proposed consensus algorithm
is based on the distinctive behaviors of deep learning models
demonstrated in Fig. 3 and Fig. 4. Since they are trained
on the same data, intrinsically they will behave similarly as

978-1-7281-6926-2/20/$31.00 ©2020 IEEE



they generalize to new samples in a similar manner. Ensemble
methods, while using multiple (deep learning) models, assume
different models behave differently and the results based on
votes will be more accurate. In other words, the consensus
method is possible only because deep learning models use the
same underlying mechanism for generalization while ensemble
methods can be applied to any multiple models; since there
is no general underlying mechanism, agreements among the
models cannot be attributed to underlying reasons. Similarly, in
applications (such as data mining) where a set of samples need
to be classified by possibly multiple classifiers at the same
time, correlations between different classes can be utilized
to create multiple labels for similar objects by maximizing
agreements among the assigned labels to the objects (e.g.,
[23]). However, these methods can not recognize and re-
ject adversarial and out-of-distribution samples, while our
algorithm is designed to handle those samples via inherent
consensus of the multiple deep neural network models. In
addition, the proposed consensus-based algorithm is not trying
to force or maximize the consensus among the models for
the classification task, rather because the consensus exists
naturally in deep networks for the samples they can generalize.

III. A CONSENSUS-BASED INTERPRETABILITY METHOD

With a robust way to handle irrelevant and adversarial
inputs, we propose a novel method to interpret decisions by
trained deep neural networks, based on that such networks
behave linearly locally and linear regions form clusters due to
weight symmetry.

The linear approximation reveals rich deep neural network
model behavior in the neighborhood of a sample. Interesting
characteristics of the model can be uncovered by walking
along certain directions from that sample. For example, ad-
versarial examples are evident along the direction shown in
Fig. 4, where the classification changes quickly outside ε = 0
(where the given training sample is). On the other hand, Fig.
3 shows robust classification along this particular direction.

More formally, under the assumption that the last layer in a
neural network is a softmax layer, we can analyze the outputs
from the penultimate layer (i.e., the layer before the softmax
layer). Using the notations introduced earlier, the outputs can
be written as the following:

O = f(x, θ), (1)

where O is the vector-valued function. Since the model is
locally close to linear, if we perturb an input (e.g., x0) by a
small value ∆x (i.e., x = x0 + ∆x), then the Equation 1 can
be approximated using the first order Taylor expansion around
input x0.

O ≈ f(x0, θ) + J∆x (2)

Here, J is the Jacobian matrix of function O, defined as
Ji,j = ∂Oi

∂xj
. Note that the gradient or the Jacobian matrix,

in general, has been used in a number of methods to enhance
interpretability (e.g., [24], [25]).

However, the Jacobian matrix only reflects the changes
for each output individually. As classification is inherently
a discriminative task, the difference between the two largest
outputs is locally important. In the binary case, we can write
the difference of the two outputs as:

o2 − o1 = f2(x0, θ)− f1(x0, θ) + (J1,: − J0,:)∆x, (3)

where J0,: and J1,: are the first and second row of J. In
general, for multiple class cases, we need to analyze the
difference between the top two outputs locally. For example,
we can focus on the difference between the top 2 classes, even
though there are 10 classes in case of MNIST dataset [19]. In
general, we can apply pairwise difference analysis; however,
most pairs will be irrelevant locally. The differences between
bottom classes are likely due to noisy.

The Jacobian difference vector essentially determines the
contributions of changes in the features, i.e., the feature
importance locally. This allows us to explain why the deep
neural network model behaves in a particular way in the neigh-
borhood of a sample. Note that the first part of Equation 3,
i.e., f2(x0, θ)−f1(x0, θ) is important to achieve high accuracy.
However, the local Jacobian matrices, while important, are not
robust. To increase the robustness of interpretation and at the
same time reduce the complexity, we propose to cluster the
difference vectors of Jacobian matrices.

The Jacobian difference vectors can be clustered using K-
means or any other clustering algorithm. In this paper, we
identify consistent clusters using the correlation coefficients
of the Jacobian difference vectors of the training samples.
To create a cluster, we first identify the pair that has the
highest correlation. Then, we expand the cluster by adding
the sample with the highest correlation with all the samples in
the cluster already. This can be done efficiently by computing
the minimum correlations to the ones in the cluster already
for each remaining sample and then choosing the one with
the maximum. We add samples iteratively until the maxi-
mum correlation is below a certain threshold. To avoid small
clusters, we also impose a minimum cluster size. We repeat
the clustering process to identify more clusters. Due to the
equivalence of local linear models, the number of clusters is
expected to be small. Our experimental results support this.
Note that neural networks still have different biases at different
samples, enabling them to classify samples with high accuracy
with a small number of linear models.

We do clustering for each of the models first. The clusters
from different models can support each other with strong
correlations between their means and can also complement
each other by capturing different aspects of the data. There-
fore, we group highly correlated clusters to get more robust
interpretations. Note that different subsets of clusters have
different interpretations based on the correlations among the
clusters.

Given a new sample (e.g., validation sample), we need to
check if that sample can be classified correctly by the models
at first. If the sample is rejected by the deep (n, k) consensus
algorithm, we do not interpret such sample for which models
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(d)
Fig. 6. (to be viewed in color) Change of accuracy and percentage of CCS samples with deep (n, k) consensus on the one-year patient mortality prediction
dataset. (a) shows the increase of intrinsic accuracy while (5,5) consensus. (b) shows the percentage of CCS samples while (5,5) consensus. (c) shows the
increase of intrinsic accuracy while (5,4) consensus. (d) shows the percentage of CCS samples while (5,4) consensus.
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Fig. 7. (to be viewed in color) Average of the Jacobian difference vector of
highly correlated cluster set. The thicker smooth curve depicts the average
on the whole set. The other curves show the average on each cluster of that
particular set. Left: First cluster subset. Right: Second cluster subset.

are not confident. In contrast, if the sample can be classified,
we estimate the Jacobian difference for each of the models
and then compare that with the cluster means (by consensus
of multiple models) to identify the clusters that provide the
strongest support. This allows us to check that the new sample
is not only classified correctly but also its interpretation is
consistent with the interpretation for training samples.

IV. EXPERIMENTAL RESULTS ON ONE-YEAR MORTALITY
PREDICTION

A. Dataset

The Medical Information Mart for Intensive Care III
(MIMIC-III) database is a large database of de-identified and
comprehensive clinical data which is publicly available. This
database includes fine-grained clinical data of more than forty
thousand patients who stayed in critical care units of the Beth
Israel Deaconess Medical Center between 2001 and 2012. It
contains data that are associated with 53,432 admissions for
patients aged 16 years or above in the critical care units [26].

In this study, only those admissions with International
Classification of Diseases, Ninth Revision (ICD-9) code of
410.0-411.0 (AMI, PMI) or 412.0 (old myocardial infarction)
are considered. These criteria return 5436 records. We use
structured data to train the deep neural network models.
Structured data includes admission-level information about ad-
mission, demographic, treatment, laboratory and chart values,
and comorbidities. More details on the features used in this
work can be found in a recent work [27].

B. Results from Individual Models

Five different deep neural network models are trained for
the purpose of this work. Each of these models consists of
three dense layers and a softmax layer for classification. Table
I provides implementation details of these models.

The five models are trained using the same 90% of the
records in the dataset that were randomly selected and evalu-
ated on the remaining 10%. All the values are normalized to
between 0 and 1. The evaluation results of the five models are
provided in Table II. The overall accuracy, while varying from
model to model, is in general agreement with other methods.

C. Results from the deep (n, k) Consensus Algorithm

Here we illustrate the results using the proposed deep (n,
k) consensus algorithm. Fig. 6 illustrates its effectiveness on
one-year mortality prediction task. It depicts the comparison
between the results from individual models and the consensus
of the models. Fig. 6(a) and 6(b) show that when the threshold
is low (e.g., pt < 0.5), (5,5) consensus achieves around 86%
accuracy which is substantially higher than any single model,
with around 67% of the test samples classified. We also check
the effect of the (5,4) and (5,3) versions on the same dataset
and observe that (5,4) consensus (i.e., Fig. 6(c) and 6(d)) works
well also for this one-year mortality prediction dataset. For
pt < 0.5, it provides around 81% accuracy with around 88%
of the test samples classified. In all the (n, k) cases, we observe
that the number of correctly classified samples among all the
consistently classified ones increases with the threshold.

For DNN models, as they generalize similarly, the result is
not sensitive to the choice to k (in most cases, n-1 or n should
work well). In general, for DNNs, k should be close to n and
pt should be 0.5 or higher. Different values of the parameters
do allow one to fine-tune the trade-off between accuracy and
percentage of classified samples. One can choose these two
parameters based on how much one would like to emphasize
more: accuracy or robustness. What percentage of samples
should be retained, that should be as large as possible, while
the accuracy should be as large as possible.

D. Interpretability Models

To systematically examine the proposed method, we first
compute the Jacobian of the training samples and then com-
pute the pairwise correlations. As described in section III, we
group highly correlated clusters to achieve more robust inter-
pretations. On this dataset, we have considered two subsets
of highly correlated clusters among 8 representative clusters
by our clustering algorithm. Fig. 7 depicts the averages of
these subsets along with individual cluster averages. The
higher values (i.e., extreme values - leftmost negative or
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(d)
Fig. 8. (to be viewed in color) Change of accuracy and percentage with deep (n, k) consensus when adversarial examples created by model-3 on the MNIST
dataset. (a) Accuracy of the models with (5,5) consensus. (b) Percentage of the classified samples with (5,5) consensus. (c) Accuracy of the models with (5,4)
consensus. (d) Percentage of the classified samples with (5,4) consensus.

TABLE I. IMPLEMENTATION DETAIL OF FIVE INDIVIDUAL MODELS.

Specification Model 1 Model 2 Model 3 Model 4 Model 5

Neurons 200 200 250 250 300

Activation relu tanh relu tanh tanh

Optimization SGD Adamax Adadelta Adamax Adagrad

Bias zeros ones costant ones random normal

Weights random uniform random uniform random normal random uniform random normal

TABLE II. EVALUATION RESULT OF FIVE INDIVIDUAL MODELS.

Model Accuracy ROC Precision Recall F-measure

1 0.7421 0.6906 0.5849 0.5568 0.5705
2 0.7679 0.7259 0.6242 0.6167 0.6204
3 0.7348 0.6953 0.5657 0.5928 0.5789
4 0.7513 0.7006 0.6012 0.5846 0.5846
5 0.7495 0.6993 0.5974 0.5688 0.5828
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Fig. 9. (to be viewed in color) Percentage of classified overgeneralized samples
with (5,5) consensus. The samples are from the CIFAR-10 dataset, i.e., out-
of-distribution inputs for the MNIST dataset.

rightmost positive ones) of the average vector correspond
to the most relevant and important features. Since they are
highly correlated, we notice similar behavior to the average
on the subset for each of the clusters. Based on the sorted
average of the first subset, we observe that leftmost features
in the list have negative impact and rightmost features have
positive impact on the positive class (“died within a year”).
For the second subset, we notice almost identical features
with the positive and negative impact on the positive class.
To interpret validation samples, we look at the correlations
with each subset. As a result, we have found that a specific
set of features contributes positively to the “died within a year”
class while some other set of features contributes positively to
the “did not die within a year” class. Also, some features
show neutral behavior to the classification task, which are
placed in the middle of the spectrum with slight tendencies
towards either positive or negative ends of the spectrum. Due
to space limitations, we illustrate the contributions of only

selected features. We have excluded ethnicity and religion-
related features since most of them show neutral effect on the
prediction outcome. Table III shows some examples of the
most positive, negative features contributing to the positive
class.

Note that the proposed algorithm is inherently scalable.
Computing Jacobian is done implicitly by backpropagation;
as such, the Jacobian difference vectors can be computed
similarly to training the models for one epoch using mini
batches. Furthermore, datasets of billion vectors can be clus-
tered efficiently using product and residual vector quantization
techniques (e.g., [28]).

E. Interpretability Evaluation

Any interpretability enhancement method for black-box
models has to be rigorously evaluated. Measuring interpretabil-
ity is not a straightforward process as there is no agreed-upon
definition of interpretability in machine learning yet [29]. We
base our evaluation of interpretability on the work of Yang et
al. [30], considering three criteria: generalizability, fidelity, and
persuasiveness. Also, we compare the interpretability of our
model with two conventional machine learning models, i.e.,
support vector machine (SVM) and logistic regression (LR),
as the baseline methods.

1) Evaluation On Generalizability: The proposed inter-
pretability method in this paper is based on the intrinsic
characteristics of the activation functions used in each indi-
vidual deep model (either ReLU or tanh). These activation
functions either show locally linear or approximately linear
behavior. Thus we consider this model to be semi-intrinsically
interpretable. Yang et al. [30] define the generalizability eval-
uation of intrinsic interpretability task to be equivalent to
the model evaluation using performance evaluation metrics
such as accuracy, precision, and recall. According to the
aforementioned results, the proposed consensus-based model
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TABLE III. SOME EXAMPLES OF POSITIVELY AND NEGATIVELY CONTRIBUTING LAB FEATURES TO POSITIVE CLASS.

Feature Level of Contribution Stand dev Mean Median Minimum Maximum

sodium 46.54 3.32 138.63 138.73 97 160.27

glucose 19.74 43.6023 141.4247 130.47 51 543

bicarbonate -25.60 3.61 24.82 25 7 47.57

chloride -28.29 4.29 103.81 103.91 80.42 125.61

TABLE IV. COMPARISON OF THE SIMILARITY OF RESULTING FEATURE-IMPORTANCE LIST FROM INTRINSICALLY INTERPRETABLE MODELS AND
PROPOSED CONSENSUS-BASED DEEP MODEL.

n-features
(top n/2 pos, top n/2 neg) 10 20 30 40 50 60 70 80 90 100

SVM 0.8 0.7 0.8 0.725 0.68 0.683 0.728 0.762 0.777 0.8

LR 0.9 0.7 0.766 0.675 0.62 0.683 0.7 0.762 0.766 0.78

TABLE V. COMPARING THE PERFORMANCE OF LR, SVM, AND CSVM
WITH CONSESNSUS-BASED MODEL.

Model Accuracy ROC Precision Recall F-measure

LR 0.7845 0.7162 0.6923 0.5389 0.6060
SVM 0.7826 0.7066 0.7024 0.5089 0.5902

CSVM 0.7794 0.7257 0.6577 0.5868 0.6202
Consensus 0.8623 0.87 0.7631 0.6516 0.7030

significantly outperforms shallow models as well as the 5
individual deep-learning-based models.

2) Evaluation On Fidelity: In a previous section, we
demonstrate how the proposed consensus-based algorithm can
effectively reject irrelevant samples. To further examine this
capability of the proposed algorithm, similar experiments
are conducted on the MNIST image dataset. The proposed
algorithm can successfully reject adversarial (e.g., Fig. 8) and
irrelevant samples (e.g., Fig. 9) in the case of image dataset
too.

3) Evaluation On Persuasiveness: The validity of the in-
terpretability method in this paper is evaluated by a medical
expert in a real-world setting. These evaluations show that if
a patient has issues with other organ systems, he/she is at
higher risk for developing a positive outcome (“die within a
year”) with the exception of infection and endocrinology. In
general, this indicates that a patient with issues with other or-
gans is more susceptible to complications (i.e., comorbidities)
along with AMI. Anemia diagnosed by hematocrit seems to
significantly increase the risk of one-year mortality (positive
outcome). Anemia defined by hemoglobin seems to be weakly
predictive of one-year mortality. Liver and kidney dysfunction
seem to be indicative of significant increased risk of one-year
mortality, which is consistent with the fact that the patient
is generally sicker and has more critical conditions. Also, a
cluster of procedures performed on patients decreases the risk
of one-year mortality. This suggests that invasive procedures
can decrease such a risk. An observation to note is that some
of the features that are strongly indicative of higher risk of
one-year mortality seem to have an average within the normal
range across the population. However, a closer look at their
distribution profile in each class suggests that a slight deviation
from the normal range associated with these features can
enhance the risk for one-year mortality.

4) Comparisons with Baseline Evaluations: Linear SVM
and LR are considered to have intrinsic interpretability [31]
and are quite popular for health data analysis [32]. We also
try the clusters of SVM (CSVM) by Gu and Han [33] to check
if this ensemble method improves the performance of the
shallow learner for this particular classification task. We set the
number of clusters to 10 and observe that increasing it does not
significantly enhance the model performance. Table V includes
a comparison of the performance of LR, SVM, CSVM, and the
proposed consensus-based algorithm. To compare the feature-
importance list as a result of interpretability enhancement of
the consensus-based model to that of baseline models, we
group features into top-n-features from n=10 to n=100 with
step-size=10 and then calculate the percentage of similarity
(] features ranked with same priority by both models/n). The
detailed comparison is provided in Table IV. On average, the
proposed consensus-based model shows 0.73 agreement with
LR and 0.74 agreement with SVM on the feature-importance.
These results confirm the fact that the proposed model shows
linear behavior in local regions.

V. RELATED WORK

The lack of interpretability of deep neural networks is a
limiting factor of their adoption by healthcare and clinical
practices. Existing interpretability enhancement methods can
be categorized into integrated and post-hoc approaches [13].
The integrated methods utilize intrinsically interpretable mod-
els [34] but they usually suffer from lower performance com-
pared to deep models. In contrast, the post-hoc interpretation
methods attempt to provide explanations on an uninterpretable
black-box model [35]. Such techniques can be further grouped
into local and global interpretation categories. The local inter-
pretation methods (e.g., LIME [36] and SHAP [37]) determine
the importance of features regarding a specific instance. This
is different from the global interpretability approach (e.g., this
paper), which provides a certain level of transparency on the
model considering the whole data [38]. Our method relies on
the local Jacobian difference vector to capture the importance
of input features. At the same time, clusters of the difference
vectors capture robust model behavior supported by multiple
training samples, reducing the complexity while retaining high
accuracy.
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VI. CONCLUSION AND FUTURE WORK

In this paper, we have proposed an interpretability method
by clustering local linear models of multiple models, capturing
feature importance compactly using cluster means. Using
consensus of multiple models allows us to improve classi-
fication accuracy and interpretation robustness. Furthermore,
the proposed deep (n, k) consensus algorithm overcomes
overgeneralization to irrelevant inputs and oversensitivity to
adversarial examples, which is necessary to be able to have
meaningful interpretations. For critical applications such as
healthcare, it would be essential if causal relationships between
features and the outcomes can be identified and verified using
existing medical knowledge. This is being further investigated.
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