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Abstract—Semantic representations of words have been suc-
cessfully extracted from unlabeled corpuses using neural network
models like word2vec. These representations are generally high
quality and are computationally inexpensive to train, making
them popular. However, these approaches generally fail to ap-
proximate out of vocabulary (OOV) words, a task humans
can do quite easily, using word roots and context clues. This
paper proposes a neural network model that learns high quality
word representations, subword representations, and context clue
representations jointly. Learning all three types of representations
together enhances the learning of each, leading to enriched word
vectors, along with strong estimates for OOV words, via the
combination of the corresponding context clue and subword
embeddings. Our model, called Estimator Vectors (EV), learns
strong word embeddings and is competitive with state of the art
methods for OOV estimation.

Index Terms—Deep learning, Natural language processing,
Knowledge representation

I. INTRODUCTION

Semantic representations of words are useful for many
natural language processing (NLP) tasks. While there ex-
ists many ways to learn them, models like word2vec [13]
and GloVe [17] have been shown to be very efficient at
producing high quality word embeddings. These embeddings
not only capture similarity between words, but also capture
some algebraic relationships between words. These models,
though, also have some downsides. One major drawback
is that they can only learn embeddings for words in the
vocabulary, determined by the corpus they were trained on.
Although common words are typically captured, most existing
approaches are unable to learn the meaning of new words,
known as out of vocabulary (OOV) words, a task humans can
do easily. Unknown words could be new words or domain
specific words, both of which could be very important for
NLP tasks. Therefore, finding good representations for these
words poses a relevant challenge. Some attempts have been
made to estimate representations of OOV words, generally
based on how humans learn a new word. One way is to use
external auxiliary information, like definitions of the word [2].
One downside of this is that it requires external information,
which may not be accessible. Another way that gets around
this problem is to estimate OOV word representations using
word roots or subwords [3], [19]. This approach can work well,

but struggles on words that have less meaningful word roots.
Another strategy is to use the context the OOV word appears in
(in human learning, these are known as context clues). These
methods estimate OOV representations by adding the context
word representations [8], [11] or by training the representation
with these words [7]. Context words are generally good for
estimating an unknown word, but these methods can strug-
gle with weighing the important context clues over the less
important ones.

In this paper, we propose Estimator Vectors (EV), a new
neural network approach that learns three types of embed-
dings: word, context clue, and subword embeddings. The word
embeddings are similar to other word embedding methods,
while the context clue and subword ones are used to estimate
word embeddings when they are encountered. This approach
learns the embeddings jointly, enhancing the quality of each.

The major contribution of this work is a novel and effective
approach (Estimator Vectors, or EV) to word embedding and
out-of-vocabulary estimation with the following distinctive
features: (1) EV learns and uses three sets of vectors, context
clue embeddings, subword embeddings, and word embed-
dings, each for its own specific purpose; (2) EV learns the
embeddings at the same time, in order to learn the three
sets of vectors effectively. EV learns context clue embeddings
and subword embeddings such that their individual averages
estimate the representation of the target word. At the same
time, it uses the target estimate in the target context pair to
learn word embeddings. The interplay of the three embeddings
enhances the learning of all three, leading to strong estimates.

The rest of the paper is organized as follows. Section II
discusses the background and related work. Section III defines
EV in detail. Section IV describes the experimental setup, and
Section V discusses the results. Finally, Section VI concludes
the paper.

II. RELATED WORK

In this section we discuss relevant previous work. First, we
discuss word embeddings in general, then focus on strategies
for estimating OOV words.
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A. Word Embeddings

Word2vec [13] is a popular approach for computing seman-
tic representations of words. It relies on training a shallow
neural network model based on predicting the context of
words, using backpropagation. The original model had two
versions; continuous bag of words, which uses the context of
a word to predict the word itself, and skipgram, which uses
the word to predict its context [13]. Both of these models
input a 1-hot encoding of each word, and output a softmax
probability distribution over the vocabulary. The word vectors
are the first layer weights connected to a word’s index. Due
to the large amount of calculations needed to compute the
softmax distribution over the entire vocabulary (usually a very
large number), Mikolov et al. [14] proposed a more efficient
method, known as negative sampling. Instead of calculating the
probability of every word in the vocabulary, negative sampling
tries to maximize the probability of a target word co-occurring
with its context words, while also minimizing the probability
of the target word co-occurring with randomly selected words,
known as negative samples. In the negative sampling version
of the skipgram model, the probability of a target word wt

and a context word wc occurring together is calculated as:

σ(uwt
· vwc

) (1)

where σ(x) = 1/(1 + e−x) is the logistic function, uwt is the
word vector representation for the target word wt, and vwc

is
the word vector representation for the context word wc. In this
formulation, target context pairs with similar representations
will have high dot products, leading to a high value (closer to
1), while different representations will have a low dot product,
leading to low values (closer to 0). The overall loss function
for negative sampling with the skipgram model is the negative
log likelihood:

E = −logσ(uwt
· vwc

)−
∑
n∈N

logσ(−uwt
· vn) (2)

where N is the set of negative samples.
To demonstrate how the skipgram model is trained, we use

the example sentence “The yellow car sped up quickly”. If
the target word wt was “car”, one context word wc could be
“sped”. Skipgram learns a representation such that σ(ucar ·
vsped) is a large value, while the probability of co-occurrence
with negative samples, like σ(ucar · vcoffee), is small.

Continuous bag of words also has a negative sampling
version [14]. Continuous bag of words pairs the sum of the
context vectors with the target vector, and learns a probability
that is high when the sum of the context is paired with its target
and low when paired with negative samples. The probability
is calculated as:

σ(
∑
c∈C

vwc
· uwt

) (3)

where C is the set of all the context words for the target.
Continuous bag of words trains all the context words at

once. For the example “The yellow car sped up quickly”,
continuous bag of words learns representations such that

σ((vthe + vyellow + vsped + vup) · ucar) is a large value,
while with a negative sample like “coffee”, σ((vthe+vyellow+
vsped + vup) · ucoffee) is a small value.

Both the skipgram model and the continuous bag of words
model learn embeddings on a subsampled version of the
training corpus, in order to reduce the influence of overly
frequent words. Mikolov et al. [14] found that removing
some instances of very frequent words improves the general
quality of the word embeddings. Therefore, word instances
are removed with a probability based on their frequency,
where more frequent words have a higher probability of being
removed.

B. Out-Of-Vocabulary Embeddings

Models like word2vec lead to effective word representa-
tions, but only for words in the vocabulary of the original
training corpus. Therefore, models using word2vec represen-
tations struggle when encountering OOV words. There have
been attempts to estimate OOV words’ vector representations.
These approaches tend to mirror human strategies for learning
new words; by using the word’s roots/subwords or using the
context the word was found in.

1) Subword Based Approaches: One way to estimate an
OOV word’s embedding is to use its subword information.
Bojanowski et al. [3] train both word vectors and subword
vectors at the same time, such that the sum of the subwords’
vectors approximates the target word. Their model, known as
fastText, uses a similar approach to the negative sampling
skipgram model, but replaces the target representation uwt

with the sum of its n-gram vectors, so the probability (of wt

and wc co-occuring) becomes:

σ(
∑

g∈Gwt

zg · vwc) (4)

where Gwt
is the set of character n-grams (the subwords) of

the target word wt, and z is the embedding of the subwords.
The subword model is similar to skipgram, except it esti-

mates the target word’s embedding with the sum of its subword
vectors. In the recurring example, if n = 2 for the character n-
grams, the probability σ(ucar · vsped) of skipgram is replaced
with σ((z<c+zca+zar+zr>+z<car>)·vsped), where the “<”
and “>” denote the beginning and end of a word respectively,
and “<car >” is a special token added to the subword set.

Subword methods are powerful, but do have some flaws.
They struggle with words that have weak or unknown word
roots. For example, subword methods may struggle with
foreign words, as they may not learn the subwords required
for a good estimate.

2) Context Based Approaches: Other methods use the con-
text of an OOV word to estimate its representation. Some
methods simply sum the existing context word embeddings to
get an estimate of the OOV word [8], [11]. This summation
method works due to the algebraic property of word2vec,
which states that simple algebraic operations can be applied
to word vectors in order to mimic the operation semanti-
cally (for example, u(“King”) - u(“Man”) + u(“Woman”) ≈
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u(“Queen”)) [13]. This suggests that adding relevant words
like the context words should give a good estimate of the OOV
word representation, which is demonstrated in [8], [11]. Other
OOV estimation methods refine the estimate using various
techniques. Nonce2vec [7] trains the estimate in the existing
skipgram model using a very high learning rate. Another
technique, à la carte, [10] refines the estimate with a linear
transformation learned from the original training corpus and
set of word vectors.

The above models do have limitations when it comes to
estimating OOV embeddings. They tend to be based on the
summation of their word embeddings, which may have weak-
nesses, depending on the original embedding method. The
word2vec models only focus on learning word embeddings,
which may hinder their ability to estimate OOV words. The
skipgram model learns with one target context pair at a time,
and therefore is not capable of learning how multiple context
words relate to each other in terms of impact, nor what each
context word says about the target word relative to the others.
This means when the context words are summed to estimate
an OOV word embedding, the estimate will be less accurate,
as each words’ relative importance (how much it affects the
summed vector) and relative contribution (what it adds when
being summed with other context words) are not captured by a
skipgram model. The continuous bag of words model, on the
other hand, does learn how word vectors relate to each other
by summing the context words, as it is trained on this sum.
However, it does not learn infrequent words’ embeddings well
[16]. This is because it learns all of its vectors at once (the sum
of the context vectors, being paired with the target), diluting
infrequent words (as the model does not learn infrequent words
individually, decreasing how much it learns per target word).
This may interfere with how well the sum of context words
can estimate an OOV word, as we expect less frequent words
to be informative for an OOV word.

3) Combined Approaches: The Form-Context model [22]
combines subwords and context words to estimate OOV
words. This approach takes previously trained word embed-
dings and a text corpus, and trains a model that can estimate an
OOV word embedding using subword information and context
information. For the subword representation (which they call
the form representation), it learns a subword embedding for
each character ngram, similar to fastText [3]. For the context
representation, it takes the average of the context words, and
learns a linear transformation to estimate the OOV word,
similar to à la carte [10]. It then combines the embeddings in
a weighted sum:

v = α · vcontext + (1− α) · vform (5)

where α decides how much to weigh the context estimate
against the subword estimate. Schick and Schütze [22] pro-
pose two different ways to calculate α. The first approach,
known as single parameter, simply learns α as one value for
every subword context pair. The second approach, known as

the gated model, learns parameters to calculate α with the
following function:

α = σ(wT [vcontext, vform] + b) (6)

where σ is the sigmoid function, and w ∈ R2k and b ∈ R
are learnable parameters (k is the embedding dimensionality).
The gated model learns to weigh how important the context
is compared to the subwords in each scenario.

Other combined approaches use attention mechanisms in or-
der to enhance the context estimates of OOV words. Attention
is used to help the model decide which contexts (when there
are multiple) to weigh more when approximating an unknown
word. One such model is Attentive Mimicking [21]. Atten-
tive Mimicking is an extension of the Form-Context model
mentioned above. While the Form-Context model weighs each
context equally, Attentive Mimicking weighs contexts based
on how much they agree with other contexts of the OOV word.
The more similar each context is to the others, the higher
the weight towards that context is (as it is more likely to be
relevant).

Another attention based approach is HiCE (Hierarchical
Context Encoder) [9]. HiCE is a deep model that uses self-
attention blocks [25] to encode each context of a OOV word,
and then uses another set of self-attention blocks to combine
each encoded context into a final context estimate. It then
creates a subword estimate using a character based convolu-
tional neural network. These estimates are then concatenated
and then inputted to an output layer that outputs the final
estimate. Like the Form-Context model, it trains to predict
already existing embeddings, using a large text corpus. In
addition, HiCE improves its embedding estimates by adapting
the trained model to newer data sets using a technique known
as Model Agnostic Meta-Learning (MAML) [6].

The combined models are very good at estimating OOV
words, but do have some drawbacks. First, they depend on the
quality of word embeddings they are trained on, as they do
not learn their own. Because both the subword and context
sections of the models are trained to estimate the word
embeddings directly, the word embeddings do not learn from
subword or combined context information, which could enrich
the quality of the embeddings.

III. ESTIMATOR VECTORS

A. Model

We present Estimator Vectors (EV), a word2vec based
model that learns three types of representations: word em-
beddings, context clue embeddings, and subword embeddings.
EV can easily create an embedding for an OOV word as it is
encountered. Like the Form-Context model, Estimator Vectors
combine both context and subword information. However, EV
has some key differences. First, it learns word embeddings,
subword embeddings, and context embeddings at the same
time. This joint training leads to stronger representations.
Second, unlike other methods’ context estimations, EV learns
a unique set of context vectors, which we call context clue
embeddings. Unlike word embeddings, these embeddings are
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trained in a sum, and therefore not only learn the meaning
of each context word, but also how “informative” it is. This
means that more informative words will have a greater impact
on the sum, leading to a strong context estimate.

Our model takes a similar approach as the skipgram [13] and
fastText [3] models mentioned above. EV trains on word co-
occurrence pairs, but replaces the first word embedding (uwt

in (1)) with a context clue estimate, which is the average of
the context clue embeddings for the context words of wt:

ccwt
=

1

|Qwt |
∑

q∈Qwt

hq (7)

where Qwt
is the set of context clues for wt and h is the set

of context clue embeddings.
In addition, it replaces the first word with the subword

estimate as well, which is the average of the character n-gram
embeddings for wt:

subwt =
1

|Gwt |
∑

g∈Gwt

zg (8)

where Gwt
is the set of character n-grams (the subwords) of

the target word wt, and z is the embedding of the subwords.
EV maximizes both probabilities for words that co-occur

and minimizes both probabilities for the negative samples. The
equations for the context clue probability is

σ(ccwt
· vwc

) (9)

where v is the set of word embeddings. Similarly, the proba-
bility for the subwords is

σ(subwt
· vwc

) (10)

EV optimizes both probabilities at the same time, through
the following error function:

E = −logσ(ccwt
· vwc

)− logσ(subwt
· vwc

)

−
∑
n∈N

[logσ(−ccwt · vn) + logσ(−subwt · vn)] (11)

where N is the set of negative samples.
Note that two major components are being learned by this

model; (1) the overall semantic space is being learned by the
word vectors via the skipgram pairings and negative samples,
and (2) the ability to estimate any word in the space is
also being learned by the context clue and subword vectors.
In addition, since these are all being learned at the same
time, they are enhanced by each other. This means the word
embeddings v learn from both context clue embeddings h and
subword embeddings z, while h and z both learn from v. In
addition, since both impact v, h indirectly learns from z and
vice versa. This interplay between each type of vectors leads
to high quality vectors of each type.

As an example, we return to the sentence “The yellow
car sped up quickly”. Given the target context pair “car”
and “sped”, Estimator Vectors would train on the following
probabilities: σ( 14 (hthe + hyellow + hsped + hup) · vsped) and
σ( 14 (z<c + zca + zar + zr>) · vsped). In this example, the

EV model learns three things: a semantic representation for
“sped”, how to estimate a semantic representation for “car”
by learning representations for its context clues, and how to
estimate “car” by learning representations for its subwords. In
addition, it learns all of these representations based on the fact
that “car” and “sped” co-occur.

The learned word vectors v can be used as normal word
embeddings for downstream tasks. When an OOV word wo is
encountered, the context clue representation is calculated as:

cc(wo) =
1

|Qwo |
∑

q∈Qwo

hq (12)

and the subword representation is calculated as

sub(wo) =
1

|Gwo
|

∑
g∈Gwo

zg. (13)

These estimates can then be combined for a final estimate of
the OOV word:

est(wo) = cc(wo) + sub(wo). (14)

B. Postprocessing Context Clues

One advantage of word embeddings is that they can be
summed to estimate a new word. However, sets of word
vectors tend to share a few common directions, and summing
multiple vectors can amplify these directions. This can harm
the sum’s representation, as the uncommon directions tend to
carry more meaning. In order to reduce this problem, Mu and
Viswanath [15] and Arora et al. [1] propose removing the top
PCA components from the vectors.

In order to improve the context clue representations, we
remove the top three components based on the word repre-
sentations from the sum of the context clues. This is done
before a context clue representation is combined with a sub-
word representation. We denote the postprocessed context clue
representation as cc′(wo), which leads to the final equation:

est(wo) = cc′(wo) + sub(wo). (15)

IV. EXPERIMENTS

A. Baseline and Hyperparameters

We compare EV’s word embeddings to the word2vec skip-
gram model and fastText. Both word2vec and fastText are
trained using the gensim library, a very efficient embedding
toolkit in Python [20]. EV’s implementation1 is also based
on the gensim library. All models, including EV, use the same
hyperparameters: embeddings of size 300, minimum frequency
of 100, sampling with a rejection threshold (for reducing
overly frequent words) of .0001, window sizes between 1 and
5 (uniformly sampled), and 5 negative samples. The models
are trained with a learning rate of 0.025, which linearly decays
to a minimum of .0001, as training goes on. Word2vec and
fastText were trained for 15 epochs, and EV was trained for
20 (these were chosen from 5, 10, 15 and 20, based on each
models’ performance on the validation set for the definitional

1https://github.com/rajicon/Estimator Vectors
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nonce task (see Section IV-C). Since fastText isn’t compatible
with the definitional nonce set, it was set to 15 epochs to
match word2vec. For fastText, character ngrams from size 3
to 5 were selected. For EV, the context clues of a target are
taken from a window size of 3 (3 before and 3 after). If a
word with less than 100 frequency occurs as a context clue, it
is ignored. Additionally, the subwords used in EV were chosen
as any ngram from size 3 to 5, and only those that occur in
at least 3 words in the vocabulary (in order to compare to the
Form-Context model, mentioned below).

In addition to word embedding quality, we also show EV’s
ability to estimate OOV words effectively. To this end, we
compare to context based methods, subword methods, and
combined methods. For context models, EV is compared to
simple summation methods of the skipgram vectors and à
la carte embeddings [10] (which are based on the trained
word2vec embeddings). We train à la carte embeddings on
the skipgram vectors mentioned above, with a minimum
word count of 500 for training the linear transformation.
For subword methods, we compare to fastText [3]. Finally,
we compare to the state of the art combined methods, the
Form-Context model and its extension, the Attentive Mim-
icking model [21], [22]. We train both of these models on
the skipgram embeddings mentioned above, using the hyper
parameters mentioned in [22]. These include a minimum word
count of 100, and character ngrams from size 3 to 5 (ngrams
only taken if they occur in at least 3 different words2) . For
weights, we examine the gated model, as it generally had
stronger results than the single parameter model. We slightly
alter the tokenization method, and we do not shuffle the corpus
when training on the form context model, both in order to
match more closely to EV. Each model was trained for 20
epochs, with a version saved each epoch. The best models (on
the definitional nonce validation set) were selected.

B. Data Set

All models were trained on the Westbury Wikipedia Corpus
(WWC) [23]. We use a modified version provided by Khodak
et al. [10] where sentences with certain rarewords removed for
purpose of testing OOV estimation.

C. Testing

The EV model trains word embeddings along with context
clue embeddings and subword embeddings, leading to two
goals. The first goal is for the word embeddings (v) trained
by this model to be high quality. To verify this, the trained
embeddings are tested on an analogy task and a similarity
to human judgement task. The analogy task, first shown in
[13], tests the embeddings on how well they can solve an
analogy, like the u(“King”) - u(“Man”) + u(“Woman”) ≈
u(“Queen”) example mentioned earlier. Three words (the left
side of the equation) are used to estimate a new vector. Then,
this vector is compared to all word embeddings, and the

2EV counts slightly differently than Form-Context and Attentive Mimick-
ing, leading to subword counts of 111968 for the former and 111976 for the
latter models. We do not expect this to make a large difference in analysis.

most similar (by cosine similarity) is chosen. The score is the
percentage of correct words found. The task is split into two
parts: semantic (which captures meaningful relationships) and
syntactic (which captures structural relationships). The quality
of the word embeddings is also evaluated using the WS353
task, created by Finkelstein et al. [5]. This task contains 353
word pairs with human created similarity scores for each pair.
These scores are compared to the cosine similarity between
the corresponding word embeddings, using Spearman’s rank
order correlation coefficient [24]. Better embeddings should
have a higher correlation coefficient. For both the analogy and
WS353 tasks, any analogy or pair involving words not in the
vocabulary is ignored.

The second goal of EV is for the context clue embeddings
(h) and subword embeddings (z) to find good estimates of
OOV word embeddings. This is evaluated by two tasks for
OOV estimation; the definitional nonce task, created by Herbe-
lot and Baroni [7] and the Contextualized Rare Word (CRW)
task, created by Khodak et al. [10]. The definitional nonce
task contains 300 sentences, each being the first sentence of
the Wikipedia page for a nonce word. The goal of this test
is to pretend the nonce word is unknown, estimate it using
the sentence, and then compare the estimated embedding to
its original embedding. Because the sentences are definitions,
their contexts are known to be informative. Note that the
definitional nonce task compares the nonce estimate to its real
location, and therefore must have a real embedding for the
nonce. All models trained from WWC are missing 5 nonce
words, and therefore only evaluate based on 295 nonces. The
second test is the CRW set. The goal of CRW is to estimate
OOV words given the word and a set of contexts. It is built
on the Rare Word (RW) dataset [12], which has a list of rare
words, pairs them with other words, and contains similarity
scores for the pair based on human judgements. The goal is
to try to estimate the rare words such that their similarity to the
paired word correlates with the human scores. CRW extends
this, by adding sets of contexts to each rare word. CRW
estimates the rare word with different amounts of contexts and
judges how well their pair similarity correlates with human
judgements. Unlike the definitional nonce task, the CRW task
does not require the words to have existing embeddings.

V. RESULTS

Each result we present is the average of 10 trained versions
of the corresponding model. Statistical significance is assessed
using a one-way ANOVA with a post-hoc Tukey HSD test
with a p-value threshold equal to 0.05. For each task, boldface
indicates the technique with the statistically significant best
performance score.

For the results, we denote the whole Estimator Vectors
model as EV, with its word vectors as EV-word, its subword
vectors as EV-s, and its context clue vectors as EV-c. We
denote the Form-Context model as FCM and Attentive Mim-
icking as AM, and similarly denote the subword and context
only models as FCM-s/AM-s and FCM-c/AM-c respectively.
In addition, skipgram is denoted as sg.
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TABLE I
ANALOGY TASK AND WS353 TASK JUDGEMENT

Semantic Syntactic WS353 (ρ)
sg 80.72% 73.66% 0.7147
fastText 82.99% 76.58% 0.7132
EV-word 84.86% 67.49% 0.7233

A. Word Embedding Quality

We compare gensim implementations of skipgram and fast-
Text to the word vectors trained by our model. Note that FCM,
AM, and à la carte embeddings are based on the skipgram
embeddings, so the word embedding quality is particularly
important. The results for the analogy test and the WS353
task are shown in Table I.

These results show that EV word vectors are stronger
embeddings, due to being trained jointly with subwords and
context clues. EV outperforms skipgram and fastText in the
Semantic analogy test, along with the WS353 semantic simi-
larity task. However, it performs worse on the Syntactic task.
This shows that joint training with subwords and context clues
at least enhances the semantic information contained in em-
beddings, although it may decrease the structural information.
This may be mitigated by adding the EV-s vectors, as subword
vectors tend to be good at capturing syntactic information [3].
This is shown by fastText, a subword model, which has the
strongest Syntactic task score.

B. OOV Embedding Estimation

We also investigate how well EV performs at OOV esti-
mation. We perform this test on the definitional nonce task
and the CRW task. We show the results for the definition
nonce task in Table II, and for the CRW task in Figure 1.
The definitional nonce task measures the rank of the ‘real’
embedding of the OOV word in the list of nearest neighbors
of the estimated embedding. The ranks of each nonce are
aggregated using two metrics: MRR and Median Rank. MRR
is the Mean Reciprocal Rank, i.e. the average inverse rank,
and higher values are better. Since Median Rank measures
rank, lower is better (with the vocabulary size 145741 being
the worst rank). For the CRW task, each method’s correlation
with human scores is shown across multiple context sizes, to
show how they perform in both low and high context settings.

We compare EV to context based, subword based, and
combined methods mentioned earlier. Note that fastText is
incompatible with the definitional nonce task as a subword
estimation method. This is because fastText’s word embed-
dings are already the sum of its subwords. Therefore, its “real”
embedding is the same as its subword estimation, which makes
it unable to be judged by the definitional nonce task. As a
result, fastText is omitted from the definitional nonce task.

The results for the definitional nonce task (shown in Table
II) show that EV performs strongly, although it is not the best
model for the task. For the combined subword/context methods
(which ideally should perform the best), the Form-Context and
Attentive Mimicking models outperform everything, including

TABLE II
DEFINITIONAL NONCE TASK

MRR Median Rank
sg (additive) 0.0322 161.6
à la carte 0.0921 44.8
FCM-c 0.0971 52.9
FCM-s 0.9533 1
FCM 0.8554 1
AM-c 0.0985 52.3
AM-s 0.9532 1
AM 0.8652 1
EV-c 0.0848 41.6
EV-s 0.9174 1
EV 0.7830 1
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Fig. 1. CRW Task

EV, in MRR. For median rank, they all get the best possible
score with a median rank of 1, demonstrating that the Form-
Context model, Attentive Mimicking model, and EV estimate
a vector that is very close to the correct one. However,
interestingly, using the subword only strategies performs better
on both measures than their combined strategies (EV-s, FCM-
s, and AM-s are better than every other model). This seems
unusual, as we would expect context to help the subwords,
and a combined representation to be better than just a subword
representation. However, this issue can be answered by looking
deeper into the definitional nonce task. The definitional nonce
task tests words the model already knows (it compares the
estimate to the real embedding). Therefore, in any subword
model, the subwords of the nonce words were trained with the
nonce word specifically, and therefore will generally be good
at estimating it. This shows a flaw in the definitional nonce
task; although it is supposed to measure how well OOV words
can be estimated, it uses already learned words to do it, which
may mislead on how well it performs on real OOV words. A
“better” task for this is the CRW task, which compares OOV
words to other words, and therefore tests words that the models
have truly never seen before.

This flaw in the definitional nonce task mainly applies to
subword strategies. As such, we also compare each context
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only strategy. EV perform well using just the context, with a
fairly strong rank of 41.6, tied with à la carte’s 44.8 (in terms
of statistical significance), and beating Form Context model’s
52.9 and Attentive Mimicking model’s 52.3. The MRR scores
between all the context models are statistically the same. This
means EV-c and à la carte have stronger ranks, but similar
MRR to the other context models. We suspect this means that
EV context clues have a more ’stable’ estimation than the other
context estimation, where the competitors’ context estimations
are sometimes much better but can also be much worse. MRR
is affected more by individual ranks, which could explain why
the other models maintain an equal MRR but worse median
rank compared to EV-c.

Next, we look at the CRW task, shown in Figure 1. Like
the above tasks, 10 trials of each method were analyzed, with
the figure showing the average results. Statistical significance
is assessed as before, using a one-way ANOVA with a post-
hoc Tukey HSD test for each context group. All differences in
performance are significant, except for fastText, FCM-s, AM-
s, and EV-s in all contexts; FCM and AM in all contexts;
FCM-c and AM-c in all contexts; and EV with EV-s, fastText,
FCM-s, and AM-s in context size 2.

For the CRW task, EV outperforms all other methods
when using at least 4 contexts. This demonstrates EV’s strong
capabilities at estimating OOV words. As mentioned earlier,
the CRW task tests a model’s ability to estimate words it truly
hasn’t seen before, and as such we consider this task a better
test of OOV word estimation. This shows Estimator Vectors
are competitive at OOV estimation.

Like the definitional nonce task, the subword only strategies
perform extremely well on the CRW task, (although not as
well as the full EV this time). For the Form-Context model,
the subword only model once again outperforms the combined
Form-Context model, suggesting using only subwords is better
than using both context and subwords with the Form-Context
model. This finding is also demonstrated by Schick and
Schütze [22], where subword based strategies also perform
extremely well (better than all other strategies). Schick and
Schütze suggest this is due to the fact that CRW was built
from the Rare Word dataset, which was originally contructed
on words with strong morphologies. Therefore, the rare words
in this set have highly meaningful subword context, which
means subword estimation strategies should do well.

When looking at context only methods, EV-c is by far the
best performing method, with higher scores than FCM-c, AM-
c, and à la carte in any amount of contexts. This suggests that
learning a separate set of context clue embeddings (for the
purpose of estimating words) seems to be an effective strategy
for better OOV estimation.

Finally, we observe that attention (used in AM) does not
seem to help in the definitional nonce task and the CRW task,
as AM performs very similarly to FCM, the equivalent model
without attention.

Overall, the CRW task shows EV is extremely effective at
estimating OOV words.

VI. CONCLUSION

We propose Estimator Vectors (EV), a word2vec inspired
model that learns high quality word embeddings, and allows
for good OOV estimates without requiring separate training.
The model learns three distinct sets of embeddings: the word
embedding itself, along with context clue embeddings and
subword embeddings, used for estimating OOV words. We
show this model has promising results in both word embedding
quality and OOV estimation.

We plan to extend this work. First, we plan to experiment
with various weighting strategies, in order to effectively com-
bine context clue and subword words. In addition, we plan
to incorporate other information, like position information, to
enhance the context clue representations even more.

Furthermore, we plan to investigate ways of combining
EV’s word, subword, and context clue embeddings to create
stronger representations for all words, not just OOV words.
With EV’s context clue vectors, we can create contextualized
embeddings for words using the summation of EV’s various
embeddings. We plan to investigate how strong these contex-
tualized representations can be, and how well they compare to
more complex, deep contextualized representations like those
generated by ELMo [18] and BERT [4].
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