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Abstract—Unsupervised  learning  of  hierarchical 8] for a detailed review of possible biologically plausible

representations has been one of the most vibrant research
directions in deep learning during recent years. In this work
we study biologically inspired unsupervised strategies in neural
networks based on local Hebbian learning. We propose new
mechanisms to extend the Bayesian Confidence Propagating
Neural Network (BCPNN) architecture, and demonstrate their
capability for unsupervised learning of salient hidden
representations when tested on the MNIST dataset.

Keywords—neural  networks,  brain-like  computing,
bio-inspired, unsupervised learning, structural plasticity.

I. INTRODUCTION

Artificial neural networks (ANN) have made remarkable
progress in supervised pattern recognition in recent years.
ANNs achieve this mainly under the umbrella of deep
learning by discovering hierarchies of salient data
representations [1]. At this stage, it is valuable to study how
they compare with the biological neural networks, and
explore new opportunities at this intersection [2, 3].

We see at least three fundamental differences between
current deep learning approaches and the brain:

Firstly, most deep learning methods rely extensively on
labelled samples for  extracting and  tuning
representations the hierarchy of representations, although
biological systems mostly learn in an unsupervised fashion.
Recent work in deep learning research has increasingly paid
attention to developing unsupervised learning methods [4, 5,
6], and the work we present here will also be in this
direction.

Secondly, deep learning methods predominantly make
use of error back-propagation (backprop) for learning the
weights in the network. Although extremely efficient,
backprop has several issues that make it an unlikely
candidate model for synaptic plasticity in the brain. The
most apparent issue is that the synaptic connection strength
between two biological neurons is expected to comply with
Hebb’s postulate, i.e. to depend only on the available local
information provided by the activities of the pre- and
postsynaptic neurons. This is violated in backprop, since
synaptic weight updates need gradient signals to
communicated from distant output layers. Please refer to [7,
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implementations of and alternatives to backprop.

Thirdly, an important difference between current deep
ANNSs and the brain concerns the abundance of recurrent
connections in the latter. A typical cortical area receives on
the order of 10% of synapses from lower order structures,
e.g. thalamus, and the rest from other cortical neurons [9].
In contrast, deep learning networks rely predominantly on
feed-forward connectivity. The surplus 90% connections are
likely involved in associative memory, constraint-
satisfaction, top-down modulation and selective attention
[9]. However, we will not consider those important aspects
of cortical computation in this work.

These concerns motivate exploring alternative more
biologically plausible learning strategies that enable
unsupervised learning of representations using local
Hebbian rules. The approach we follow here involves
framing the update and learning steps of the neural network
as probabilistic computations. Probabilistic approaches are
widely used in both deep learning models [6] and
computational models of brain function [10]. One
disadvantage of probabilistic models is that the known
methods do not scale well in practice. Also, inference and
learning with distributed representations is often intractable
and forces approximate approaches [6].

In this work, we examine a modular Bayesian
Confidence Propagation Neural Network (BCPNN)
architecture, previously used in abstract models of

associative memory [11, 12], action selection [13], as well
as in applications to brain imaging [14, 15] and data mining
[16]. Spiking versions of BCPNN have also been used in
biologically detailed models of different forms of cortical
associative memory [17-20]. The modules, referred to as
hypercolumns (HCs), comprise a number of functional
minicolumns (MCs) that compete in a soft-winner-take-all
manner. The abstract view of an HC is that it represents
some attribute, e.g. edge orientation, in a discrete coded
manner. An MC is represented as a unit that conceptually
represents one discrete value (a realisation of the given
attribute) and, as a biological parallel, it accounts for a local
subnetwork of around a hundred recurrently connected
neurons with similar receptive field properties [21]. Such an
architecture was initially generalized from the primary
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visual cortex, but today has more support from later
experimental work and has been featured in spiking
computational models of cortex [22, 23].

Importantly, in this work we introduce additional
mechanisms of bias regulation and structural plasticity to
the BCPNN framework that conducts unsupervised learning
of hidden representations. The bias regulation mechanism
ensures that the activities of all units in the hidden layer are
maintained near their target activity by adapting their bias
parameter. Structural plasticity facilitates learning a set of
sparse connections from the input to the hidden layer by
greedily maximizing a local information theoretic score.
The separability of the extracted representations is evaluated
with a BCPNN classification layer equipped with dual
pathways inspired by the model of reinforcement learning in
the basal ganglia of the brain [13].

1I. RELATED WORK

A popular unsupervised learning approach is to train a
hidden layer to reproduce the input data as, for example, in
autoencoders (AE) and restricted Boltzmann machines
(RBM). The AE and RBM networks trained with a single
hidden layer are relevant here since learning weights of the
input-to-hidden-layer connections relies on local gradients,
and the representations can be stacked on top of each other
to extract hierarchical features. However, stacked AEs and
deep belief nets (stacked RBMs) have typically been used
for pre-training procedures that are followed by end-to-end
supervised fine-tuning (using backprop) [5].

A recently proposed model by Krotov and Hopfield [24]
addresses the problem of learning with local gradients by
learning  hidden representations solely using an
unsupervised method. In the network the input-to-hidden
connections are trained and additional (non-plastic) lateral
inhibition provides competition within the hidden layer. For
evaluating the representation, the weights are frozen, and a
linear classifier trained with labels is used for the final
classification. Our approach shares some common features
with this model, e.g. learning hidden representations by
unsupervised methods, and evaluating the representations by
a separate classifier (refer [3] for an extensive review).

All of the aforementioned models employ either
competition within the hidden layer [24] or feedback
connections from the hidden to input layer (RBM and AE).
The BCPNN uses only the feedforward connections along
with an implicit competition via a local softmax operation,
corresponding to local lateral inhibition in brain networks.

It has also been observed that sparse connectivity in the
feed-forward connections performs better than full
connectivity in some classification tasks [3]. The
unsupervised learning methods we have discussed so far,
however, employ full connectivity [3, 24]. Networks
employing supervised learning like convolutional neural
networks (CNNs) force a fixed spatial filter to obtain this
sparse connectivity [25]. Here we take an alternate approach
where along with learning the weights of the feed-forward
connections, which is regarded as biological synaptic
plasticity, we also simultaneously learn the sparse
connectivity between the input and hidden layer, similar to
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constructive/pruning algorithms [26], and in analogy with
the structural plasticity in the brain [27].

I1I1. BAYESIAN CONFIDENCE PROPAGATION NEURAL
NETWORK

Here, we describe the network architecture and update
rules for the Bayesian Confidence Propagation Neural
Network (BCPNN). The simplest BCPNN architecture for
classification contains two layers, one for data and the other
for labels.

A layer consists of a set of HCs, each of which
represents a discrete random variable X, (upper case). Each
HC, in turn, is composed of a set of MCs representing a
particular instance of the random variable x, (lower case).
The probability of the variable X, is then a multinomial
distribution, defined as p(X;=x), such that
2pX;=x;) =

Xi

1. In the neural network, the activity of the

MC is interpreted as p(X; = x;), and the sum of activities of
all the MCs inside a HC sums to one.

Since the network is a probabilistic graphical model, we
can compute the posterior of a target HC in the label layer
conditioned on all the N source HCs in the input layer. We
will use x’s and y’s for referring the HCs in the input and
output layer respectively. Computing the exact posterior
pY j |X,.y) over the target HC is intractable, since it scales

exponentially with the number of units. The assumptions
[TpX|Y;) and p(X,,..Xy)=[]pX)
i=1 i=1

allows us to write the posterior as:

p(Xl, -~:XN|Y]') =

p(Y Xy X)) = (Y )55
N

p( i ,)

When the network is
XXy} = s axly
probabilities of a target MC in terms of the source MCs as:

driven by input data
we can write the posterior

Py

D
p(.yj|x15'9 ) p(y)l:[ p(xD)p(y)

) )
_p(y)nn(pf(’x)py(y) 2)

where I(-) is the indicator function that equals 1 if its
argument is true, and zero otherwise. We have written the
posterior of the target MC as a function of all the source
MC:s (all x,’s). The log posterior can be written as:

log p(y;Ix7, ... x7) = log p(y,)

(xi-))
+ Z‘iZI(x =) log 55t ()

Since the posterior is linear in the indicator function of

data sample, I(x;= xl.D) can be approximated by its
: D D

expected value, that is, p(x;”). Except for p(x;’), all the

terms in the posterior are functions of the marginals p(x;),


https://paperpile.com/c/65XECx/EOr6+n0yN
https://paperpile.com/c/65XECx/z0cY
https://paperpile.com/c/65XECx/wzjq
https://paperpile.com/c/65XECx/TIGs
https://paperpile.com/c/65XECx/6fyG
https://paperpile.com/c/65XECx/TIGs
https://paperpile.com/c/65XECx/6fyG
https://paperpile.com/c/65XECx/6fyG+TIGs
https://paperpile.com/c/65XECx/UXa58
https://paperpile.com/c/65XECx/jSB3
https://paperpile.com/c/65XECx/AHX1

define the terms bias

Py,
_ . _ P(xi’y/')
B(,)=logp(y;,) and weight w(x,y;)=log 0y

analogy with artificial neural networks.

and p(xl.,yj). We

The inference step to calculate the posterior probabilities
of the target MCs conditioned on the input sample is given
by the activity update equations:

N
W) = BO) + 3T PP wixsy)

=1 x;
exp(vh(y;))

717()/].) =
! % exp(yh(y,))

“)

where h(yj) is the total input received by each target
MC from which the posterior activity n(yj) is recovered by
softmax normalization (with gain 7y ) within the HC.

The learning step involves incrementally updating all the
marginals as input samples are presented. The marginals
p(x;),p(y;), and  p(x;,y;) are computed from the
probabilities 7(x;) and m(y;) using exponentially weighted
running averages, and the bias and weight parameters are, in
turn, computed from the marginals as follows:

dp(x) _

J (TPT - TF(X,-)_]?(X,-) P
p(x.y;
Tij = n(xi)n(yj) 7p(xi9yj)9

22 = n(y) - p(v,),
PO, = kg log p(y;) .
Wx,3,) = iy log 5 (5)
The terms kB’ k., and 1, are the bias gain, weight

gain, and learning time constant, respectively. Equations 4
and 5 define the set of update and learning equations of the
BCPNN architecture. The scope of the work is limited to
this abstract model of BCPNN where MCs are the
fundamental computational unit.

IV. UNSUPERVISED REPRESENTATION LEARNING

The network for unsupervised learning is similar to the
two-layer network, except we now have more than one HC,
each of which can contain an arbitrary number of MCs (see
Fig. 2). On top of the regular BCPNN equations, we
introduce additional mechanisms that enable learning
representations. We will use z to refer to this layer, and
differentiate it from the layer with supervised learning (y
in the previous section).

A. Bias regulation

The BCPNN update rule implements Bayesian inference
if the parameters are learnt with the source and target layer
probabilities available as observations. When the target
layer is hidden, we are learning the representations, and we
cannot expect the update rule to follow Bayesian inference.
In fact, we can see that performing learning and inference
simultaneously is counter-productive in this case. If a
hidden representation with random initialization assigned
some MCs with slightly higher marginal probability p(z;)

than others, learning would then amplify this difference. In
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consequence, the learnt parameters would make the network
associate more input samples with the MCs with high p(zj) ,
hence causing the marginals to increase further. One way to
circumvent this undesirable effect is to promote MCs with
low p(zj) to be more active in the future in the spirit of an

activity dependent homeostasis process in biological terms
[28].

To this end, we use a bias regulation mechanism, where
the bias gain kﬁ for each MC (equal to 1 if only Bayesian
inference is performed) depends on p(zj). One motivation
for choosing the bias gain is to influence the marginal p(z;)
alone without affecting the weight parameters that are
responsible for learning the input to hidden mapping. The
value of p(zj) is compared with respect to the maximum
entropy probability, p,, ..z = 1/N e, where N, . is the
number of MCs per HC. It is worth noting that the
maximum entropy is the ideal representation without the
input layer since all the MCs have equal marginal
probability, and hence the uniform distribution acts as the
reference for bias regulation. The dynamic update of k[3

with the time constant t, follows Eq. 6:

2
=1+ (khalf_ 1) Pysaeznd® _ kB (6)

T, =L
kde PO Pasanind

The mechanism maintains the value of gain kB at
around 1 when p(z;) > py,.p, . and drops sharply to
negative values when p(zj) is below p,, . .. (see Fig. 1).
The rate of this drop is controlled using the metaparameter
kha,f, defined as the value of gain kﬁ :khalf at
pz;) = 12 pyyoacins - FOr learning  representations, this
dynamically updating version of bias gain kﬁ substitutes the

constant in Equation 5.

1 ________
0
&
Knair 7= = 1 T
* gPmaxent

%pMaxEnr
Pmaxent

1073 1072 107t 10°

p(z)

Fig. 1: Bias regulation mechanism. For generating the figure, k;,(,”v =5
and Pyraven = 0-01 was used.

B. Structural plasticity

Structural plasticity aims to iteratively improve the
receptive fields for the hidden HCs from the input layer by
greedily maximising the information content transferred
from the input MCs. We define a boolean variable Mx,-,Z,-

denoting the connection from an input MC x; to an hidden
HC Zj as either active, M, , =1, or silent, M _, =0.
e i

Each M is initialized randomly with probability
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Dy =p(M =1). Once initialized, the number of active
incoming connections to each hidden HC is fixed whereas
the outgoing connections from a source MC can be changed
(see Fig. 2). The mutual information corresponding to a
connection is determined based on the probability
distributions over {x;,~x;} and Z, using the BCPNN

weights:
I =

X [,Z/

(x,2;)
Y X p(xz) log s (7)

J
- Z)
x € {x,7) 7

The information /_, is then normalized by the number of

j
active outgoing connections for each input MC, i.e. its
fan-out (with an additional 1 for numerical stability):

Ixi’Z/ N [x/,Zj [ %Mxi’zlc) ®)

Since the total number of active incoming connections is
fixed, each hidden HC greedily maximizes the T itreceives
by removing the active connection with the lowest T (set
M from 1 to 0) and adding the inactive connection with the
highest 7 (set M from O to 1). We call this operation a
flip, and use a parameter N fiips 1O set the number of flips
made per training epoch.
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4+t . .
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Fig. 2: The schematic of the network used for unsupervised learning. In this
network, the input layer contains 9 binary MCs (grey circles on the left),
and the hidden layer contains 3 HCs (grey boxes), each of which contains 4
MCs (grey circles inside the boxes). The existence of a connection
between an input MC and hidden HC is shown as a blue strip,i.e., M =1,
The input-hidden weights are shown as yellow dots and are present only
when a connection already exists.

V. BCPNN CLASSIFICATION

After learning the input-hidden connection, we freeze
the weights, biases, and receptive fields of this connection,
and treat the hidden layer representations as input to train a
BCPNN classifier with an output (label) layer. This way we
evaluate the separability of the learned representations. To
this end, we add another BCPNN projection from hidden to
output layer with a negative gain k,, = 1 (in contrast to the
existing projection with k, =1). This is analogous to a
network architecture used to model reinforcement learning
in the basal ganglia [13]. Using systems neuroscience
nomenclature, we call the projections Go (k, =1) and
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No-Go (k,=—1), as they are intended to increase the
probability of correct labels and reduce the probability of
wrong labels, respectively. The classification layer training
procedure is as follows: we first drive the pre-trained
network from input samples and check the predicted label.
If the classification is wrong, we either train the Go
projection (by setting the output activations to the true
label), or train the No-Go projection (by setting the output
activations to the predicted label), or both. We run this
procedure for N, epochs.

VI. RESuLTS

We evaluate the model using the MNIST hand-written
digits database [20]. MNIST contains 60000 training and
10000 test images of 28x28 handwritten digits. The images
were flattened to 784 dimensions and the grey-scale
intensities were normalized to the range [0,1] and
interpreted as probabilities. For each of the following
subsections, we used N, =50000 random training
samples for training, report on the other N, =10000 in the
validation set, and at the end of this section, report the test
accuracy of N, =10000 samples for the best set of model

test

parameters.
E 000 Output layer
=
v
Mo Hidden layer
© 000000000000
B
2 0000 0000 0000
g Hidden layer
a Input layer
= 000000000

Fig. 3: Schematic of the unsupervised learning and classifier network
employing BCPNN architecture. Here, for illustrative purposes, the input
layer has 9 MCs, the hidden layer has 3 HCs and 4 MCs per HC
(collectively 12 units), and the output layer has 3 MCs (label units). The
dotted lines imply we use the representations of the hidden layer as input
for the classifier.

The network had 784 input MCs, the hidden layer had
30 HCs and 100 MCs per HC, and the output layer had one
HC with 10 MCs corresponding to digit labels (see Fig. 3).
The dynamical update equations are implemented in discrete
steps using the forward Euler method. Each sample was

clamped to the input layer for N, . iterations of time-step

At, and the training was performed for N, epochs of the
training set. The time constants t, and t, were scaled by
the total training time per epoch, that is,
T =0 NyuinV At and t,=1y N, ..N At. The

sample sample
parameters used in the simulation are listed in Table 1. All
the results presented here are the mean and standard

train train
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deviation of the mean squared validation error over 10
random runs of the network, unless stated otherwise. The
simulations were performed on code parallelized using MPI
on 2.3 GHz Xeon ES5 processors and the training process
took approximately two hours per run.

TABLE I. MoDEL PARAMETERS

Symbol Value Description
Nyc 30 Number of HCs in hidden layer
Ny 100 Number of MCs per HC in hidden layer
At 0.01 Computation time step
n 10 Mean of Poisson distribution for initializing MCs
Y 1 Softmax gain
Kpaiy -100 Bias gain when marginal is 1/2 Py,
T 0.5 Multiplier for learning time-constant
7 0.1 Multiplier for bias gain time-constant
Probability of connections from input to hidden
Py 0.1
layer
Number of epochs of training for unsupervised
N, usup 5 .
learning
Number of epochs for training the BCPNN
qup 25 o
classifier

A. Bias regulation

We evaluate the bias regulation mechanism by measuring
the accuracy while varying the relevant parameters: k, alf is
changed from —10 to —100 in steps of — 10, and t from
102 to 10" in exponential steps of 10. Results are shown
in Fig. 4a. The validation accuracy improves consistently as
khalf is lowered and converges at aroundk,, < —50 to
96.7. This suggests that our bias regulation mechanism
effectively improves the representations.

To quantitatively assess the effect of 4, on the
marginals p(z;), we compute the marginal entropy of each

HC, H(p(Zj)) = Zp(zj) logp(zj) , and plot the histogram of

this entropy over the 30 HCs (Fig. 4c). Note that for the
marginals, higher entropy is preferred since it indicates all
the MCs in a HC are utilized evenly, and p,,, ., Was our
target while designing the bias regulation mechanism. Even
though the number of samples used in plotting this
histogram is low (N ), it clearly shows that lowering the
kyqr increases the entropy of all the HCs.

The marginals give the overall utilization of the MCs
over the training set, and we have evaluated it by measuring
the entropy of this marginal distribution with respect to the
parameter that regulates the bias (k). However, the
marginals by themselves cannot give the complete picture of
the representations since they do not take into account how
well the representations differentiate between samples. For
example, if all the MCs had a posterior of p,,, ., for all the
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input samples, the resulting high marginal entropy would
not reflect a desirable scenario.
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Fig. 4: (a) Accuracy results (mean and standard deviation for 10 random
runs) on the MNIST validation set as a function of k,mlf for different
values of time constant of bias gain T} ; (b) Accuracy results as a function
of softmax gain Y for different values of learning time constant; (c)
Histogram of marginal entropy p(Z;) of hidden layer HCs for different
ki 5 (d) Histogram of conditional entropy p(Z;|X) for different values of
softmax gain 7.

We measured the entropy of the posterior distribution of
the MCs conditioned on each input sample, that is,
H(p(Z;|X)). Contrary to the entropy of the marginals, we
expect this entropy to be as low as possible as we want the
posteriors in the hidden layer to be certain about the
conditioned input sample. The hyperparameter that controls
this is the softmax gain y. We computed the conditional
entropy of all HCs per sample, and plotted the histogram
over all samples in Fig. 4d. The histogram shows that the
entropy predominantly has values <2, whereas the
maximum entropy is around log(p,, .z, ) = 4.6 for y=1.
This confirms that the bias regulation does not force the
representations to have high marginal entropy at the cost of
making all posterior per sample have high entropy. Fig. 4b
shows an interesting relationship between accuracy of the
representations and the softmax gain y. One would expect
low values of y to have poor performance since we
“flatten” the posteriors to be equal in value, and thereby,
losing information about the input sample. However, high
values of y (>1) also worsen the performance, that is,
having “winner-take-all” like activity regulation does not
necessarily imply better representations.

B. Structural plasticity

We first report the performance of the network without
structural plasticity, that is, the connections M are
initialized randomly with probability p,, and left
unchanged during the course of learning. The train and



validation accuracies over 10 random runs of the network
are 95.33 = 0.03 and 93.83 = 0.04 respectively.

Adding structural plasticity produced a meaningful set of
receptive fields, which indicate the regions of the input
space that drive hidden units. In Fig. 5 we visualize
receptive fields, for four randomly chosen HCs and a subset
of the corresponding MCs in the hidden layer. Notice that
we obtain rather contiguous patches even though no spatial
structure of images were presented. The receptive fields of
MCs also seem to capture diverse features such as lines and
strokes.

C. Classification with Go and No-Go pathways

Table II shows the accuracy when learning with the
following strategies: (i) Go, (ii) No-Go and, (iii) Go +
No-Go. Go and No-Go strategies perform well individually,
but Go + No-Go performs slightly better.

TABLE II: CLASSIFICATION RESULTS

Architecture Accuracy (train) Accuracy (validation)
Go 98.03 + 0.28 96.40 + 0.10
No-Go 97.21 £ 0.13 96.23 £0.13
Go + No-Go 99.10 +0.63 96.52 + 0.08

EEE R
F e

Fig. 5: Receptive fields. Each row corresponds to a randomly chosen HC
of the hidden layer and the constituent MCs. First column shows the
receptive field of the HC before training and second column after training
(black means M =1). The remaining columns show the receptive field of
nine randomly chosen MCs in the HC.

Additionally, structural plasticity involved computing the
mutual information between each input MC and hidden HC
(Equation 7) and normalizing by the fan-out of input MC
(Equation 8). This normalization ensured that all the input
MCs have approximately equal fan-outs. We also separately
ran the network without this normalization, which resulted
in poor classification performance, with train and validation
accuracy of 91.7 + 0.22 and 90.4 + 0.31 respectively for
10 random runs of the network.

97

accuracy (%)
(o)
o

10° 10! 102
Niips

Fig. 6: Validation accuracy (mean and standard deviation for 10 random
runs) results as a function of number of receptive field flips per epoch.

In order to examine the effect of the number of flips per
epoch, N fiip » during learning of the receptive fields on the
quality of hidden representations, we measured the
validation accuracy while varying from 1 to 258
exponentially in steps of 2. Fig. 6 shows that the accuracy
converges for N, > 16.
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Using the Go + No-Go classifier and the parameter set we
found best suited based on validation (Table I), we report
the train and test accuracies as 99.10+0.63 % and 96.49 +
0.12%, respectively.

VII. DiscussioN

We have demonstrated that the proposed network model
can perform unsupervised representation learning using
biologically plausible local learning rules. We made our
assessment relying on the assumption that the saliency of
representations is reflected in their class dependent
separability, which can be quantified by -classification
performance (similar to [3, 24]). The performance on
MNIST is significantly lower than the “superhuman” deep
learning methods. Learning representations without
supervised fine-tuning is a harder task compared to similar
networks with end-to-end backprop training, since the
information about the label corresponding to each sample
cannot be utilised. Consequently, representations learnt with
unsupervised methods cannot be expected to offer better
class separability than the classification performance
reported by supervised end-to-end approaches. We show
that the BCPNN method scored around 96.5%, which is
slightly worse compared to the 98.5% accuracy of networks
with one hidden layer trained with end-to-end backprop
[29]. However, we consider the modular architecture, sparse
connectivity, lower complexity of our correlation based
brain-like learning approach has a potential for high
robustness, good scaling and low-power hardware
implementations (see [30] for VLSI design of BCPNN).

It is important to note that the unsupervised learning
methods introduced here are proof-of-concept designs and
not meant to directly model some specific biological system
or structure. Yet, they may shed some light on the
hierarchical functional organization of e.g. sensory
processing streams in the brain.

Further work will focus on comparing functionality and
performance to other popular unsupervised learning
networks such as AEs, RBMs, and the network by Krotov
and Hopfield [31], as well as extending our architecture
with a brain-like deep structure and recurrent connectivity.
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