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Abstract—Crowd counting problem that counts the number of
people in an image has been extensively studied in recent years.
In this paper, we introduce a new variant of crowd counting
problem, namely categorized crowd counting, that counts the
number of people sitting and standing in a given image. Catego-
rized crowd counting has many real-world applications such as
crowd monitoring, customer service, and resource management.
The major challenges in categorized crowd counting come from
high occlusion, perspective distortion and the seemingly identical
upper body posture of sitting and standing persons. Existing
density map based approaches perform well to approximate a
large crowd, but lose important local information necessary for
categorization. On the other hand, traditional detection-based
approaches perform poorly in occluded environments, especially
when the crowd size gets bigger. Hence, to solve the categorized
crowd counting problem, we develop a novel attention-based
deep learning framework that addresses the above limitations.
In particular, our approach works in three phases: i) We first
generate basic detection based sitting and standing density maps
to capture the local information; ii) Then, we generate a crowd
counting based density map as global counting feature; iii)
Finally, we have a cross-branch segregating refinement phase
that splits the crowd density map into final sitting and standing
density maps using attention mechanism. Extensive experiments
show the efficacy of our approach in solving the categorized
crowd counting problem.

Index Terms—Crowd Counting, Convolutional Neural Net-
works, Attention Mechanism, Human Pose Estimation

I. INTRODUCTION

The crowd counting problem that counts the number of
people in a given image, has gained considerable attention
in recent years due to its intense demand in video surveil-
lance, public safety, and urban planning. Counting crowd
by automatic scene analysis is a challenging task due to
occlusion, complex background, non-uniform distributions of
scale and perspective variations. A plethora of techniques have
been proposed in recent years (e.g., [1]–[3]) to address these
challenges and to increase the accuracy of crowd count in
different real-world environments.

* Equal Contribution

Fig. 1: Example Images From Our Dataset

In this paper, we introduce a new variant of crowd counting,
namely categorized crowd counting, that counts the number
of persons sitting and standing separately in a given image.
There are many practical applications of categorized crowd
counting. For example, a bank manager may want to know
the number of customers who are waiting, standing inside the
service area of the bank so that s/he can increase the on-
demand resource for better service to the customers; a bus/tram
operator may want to know the number of standing passengers
and sitting passengers in the bus/tram, which will help them
to decide on the frequency and size of transports needed in
different times of the day; a service provider may want to
know the number of standing and sitting customers in a room
to decide on the facility that they should provide. In general,
the categorized crowd counting will add a new dimension
in providing quality services especially in restaurants, banks,
airport waiting areas, subway, and public transport where
delivering quality customer service is crucial. To the best of
our knowledge, we are the first to attempt the problem of
categorized crowd counting.

Existing approaches for general crowd counting can be
largely divided into two groups: (i) the most recent density-
based approaches (e.g., [1]–[6]) that generate density of the
crowd to approximate a large crowd in outdoor environment,
and the detection based approaches that detect visible human
body parts [7], [8] to count the number of persons in a given
(mostly indoor) image. Though the density-based counting is
quite promising when counting people in a high-density crowd,
it has the following limitations: (i) For images with a low-
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density environment, the density-based approaches usually
overestimate the crowd count; (ii) Images where global crowd
features vary significantly due to the presence of obstacles
between people (e.g., in lightly crowded indoor images with
furniture such as tables and chairs), the performance of these
global density-based counting methods drops significantly; and
(iii) there is no way to differentiate between standing and
sitting crowd as the local information corresponding to the
persons present in the image are lost during the density map
creation. On the other hand, detection-based approaches fail to
address the categorized crowd counting due to the following
limitations: (i) As the crowd density in images increases,
the detection accuracy and the reliability of extracted local
information start to decrease. The detection accuracy is poor
in highly occluded images; and (ii) Even if it was possible
to count the number of people by counting heads, it would
be quite impossible to detect the state of the body due to
occlusion.

To solve the categorized crowd counting problem, we pro-
pose a deep learning based approach that fuses both global
(density of different parts of the image) and the local (state
of the body) information present in the given image. The key
idea of our approach comes from the following real-world
observations: (i) Relative position of a person’s body parts,
their visibility and depth information of a human subject are
important cues when differentiating a standing person from
a sitting person, and (ii) the detection and labeling of some
of the persons present would assist in categorization of other
persons present in an image.

Our proposed solution framework consists of three major
phases. First, we use a pose estimator to detect persons and
extract pose features. From those features, we use a neural
network based classifier to get a baseline classification of
the detected persons with a weighted linear regressor used
to further ameliorate the baseline classification. The output
of this detection based baseline categorization is used to
generate two basic density maps for sitting and standing
persons respectively. This step utilizes the relative position
of the persons’ body parts and also the depth information for
the classification of standing and sitting persons. In the next
step, we generate a density map of the full crowd present
in the image. We first generate a regression map for crowd
counting via a CNN, and using this map and the density maps
generated in the first phase, we generate a density map of
the total crowd which is adaptive to varying crowd densities.
Finally, we adopt a cross-branch segregating refinement phase
that uses the detection based standing and sitting crowd map
of the first phase and the crowd count map of the second phase
to determine respective attention weights and produce the final
sitting and standing density maps. Summation of these density
maps gives us the final counts for each category.

To validate the effectiveness of our approach, we build a
new dataset as existing benchmark datasets do not contain a
sufficient number of sitting people and do not have ground
truth annotations for each category. Our dataset contains
553 crowd images containing a total of 16521 people taken

from a large variety of environments especially from places
like restaurants, airport waiting areas, public transport, etc.,
where the categorized crowd counting problem is of much
importance. Some example images of our dataset are shown
in Figure 1. The dataset also contains images of varying
densities ranging from 1 to 206 persons per image. Extensive
experiments show the effectiveness of our approach in solving
categorized crowd counting problem in a wide variety of
real-world environment achieving an MAE of 4.15 and 4.80
and RMSE of 7.96 and 8.59 for sitting and standing crowd
respectively, significantly outperforming the existing state-of-
the-art traditional crowd counting schemes adapted to this
multi-task problem.

In summary, our contributions are as follows:
• We are the first to introduce the categorized crowd count-

ing problem, which can assist in different applications
such as crowd monitoring, customer service and, resource
management.

• We propose a novel three-phase deep learning based
approach for categorized crowd counting that exploits
both local and global features with attention mechanism
to count each category of persons independently.

• We conduct extensive experiments and show the effective-
ness of our approach in various densities and cross-scene
environments.

II. RELATED WORKS

Based on the working methodologies, existing works on
crowd counting can be divided into three groups: counting by
detection, counting by global regression, and counting by deep
learning.

A. Counting by Detection

The early approaches in crowd counting that count a small
number people in an indoor image were mainly based on
different types detection. Example includes non-maximum
supression based detection [9] relied on non maximum sup-
pression steps after thresholding confidence map. Approaches
like detection using hough transform [10], pedestrian detection
[11], edgelet part detection [12] and combining local part
based scheme with global shape template [13] were also
taken. Relating object parts was another motivation of some
approaches [14], [15].

B. Counting by Global Regression

In high crowd densities, using global level crowd features
became the key to crowd counting. Kernel ridge regression
[16], multi output regression models [17], blob size histograms
to eliminate perspective problems [18], usage of different fea-
tures from interesting points [19] and random forest regression
[20] are some notable works. Some approaches also utilized
both detection and regression methods to get an estimate of the
crowd count based on segmentation [21], [22]. These methods
were prone to losing local information, which resulted in poor
performance in the higher density crowd. To alleviate this
problem, the work in [23] pioneered a new way by creating a
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Fig. 2: Block Diagram of Detection Based Basic Density Map Generation

density map from a given image. Another new way of counting
was introduced in [24] which was based on feedback response
from user. This method was introduced when most of the
methods at that time were completely unable to estimate count
in a new scene.

C. Counting by Deep Learning

As deep learning seemed to outperform traditional methods
in different computer vision problems, the first time CNN was
used for crowd counting in [25] by optimizing density loss
and crowd counting loss. In [26], a multi column CNN was
introduced to deal with density variation of different crowd
images. An approach of directly mapping crowd images to
the count was also taken [27]. Walach et al. [28] worked
with multiple CNNs where errors are corrected by subsequent
networks. Multi scale input and fusion in last layer was
used in [29]. Other recent deep learning based approaches
include switching mechanism between specialized columns
[30] and dynamic representation and appearance in crowd
video understanding [1], [31], [32]. Another contemporary
approach used a CNN model emphasizing on head locations
[33]. Also CNN models targeted to generate low resolution
density map first and estimating high resolution density map
from the low resolution map has been addressed in [34]. These
approaches primarily focus on highly dense crowd scenarios.
Liu et al. [3] found that, density map based approaches
tend to overestimate the crowd count in lower density sparse
crowd images, where the detection based methods generally
work well. As categorized counting is more relevant in low
to medium density images, traditional crowd counting tech-
niques are likely to give overestimation in these environments.
Moreover, density maps generated for crowd counting lose
local information, which is essential for categorized crowd
counting. To address this issue, they used a spatial attention
model [3]. Some recent techniques [6], [35] have also used
attention mechanism for crowd counting. [4] recently used
U-Net like architecture which uses reinforcement branches
to aid in counting, and achieves consistent state of the art
results in majority of the datasets. While recent models do
a reasonable job in estimating crowd count, emphasis only
on global features makes these methods unsuitable for crowd
categorization.

III. OUR APPROACH

A straightforward way to build a categorized counting
framework is to create an end-to-end network for classifying
sitting and standing people in an image. Due to the complex
nature of the problem we found that an end-to-end network
increases the difficulty of parameter tuning. Thus, we propose
a three phase approach where in each phase it learns some set
of specific information from the image and forwards the learnt
information to the next phase, thus eliminating the need to
tune parameters of the whole network at once. Our framework
works in three major phases, which are described as follows.

A. Detection Based Basic Density Map Generation

In this phase, we first classify the body state of different
persons based on the location of their detected body parts and
generate two separate detection based basic density maps for
sitting and standing people respectively. Block diagram of this
phase is shown in Figure 2.

Since the detection based techniques are proven to perform
reasonably well in counting the number of people in a low
density image, we first build a neural network model that can
classify a detected person as standing or sitting. We first adopt
a pre-trained multi-person pose estimator model [36]. It is a
pose estimator network which incorporates a symmetric spatial
files network (SSTN), a single person pose estimator (SPPE)
and a parametric pose non-maximum suppression (Pose NMS)
that detects individual persons and give locations of different
body parts of all the detected persons in an image. For each
person, 17 key body joints are detected (e.g. nose, shoulders,
knees, ankles etc.). With 2 values for the pixel coordinates and
a value indicating the confidence with which the body part is
located. Thus we have a total of 51 outputs for each person.

Next we develop a fully connected feed-forward neural
network which takes the aforementioned 51 outputs for each
person as input and obtains a baseline body state classification
for that person. This network consists of 4 hidden layers with
34,17,12 and 6 nodes respectively. The Adam optimizer is used
to optimize the network parameters and binary cross-entropy
is selected as the loss function. A baseline classification of all
the detected persons in the image is obtained. Afterwards, a
weighted linear regressor is used to further refine the baseline
classification, which estimates a decision plane that separates
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Fig. 3: Block Diagram of Crowd Density Map Generation.

sitting people from standing people. This linear regressor
uses the location of the nose point as an estimation of the
location of the person, and is weighted on the confidence of
the identified body keypoints, which essentially indicates the
visibility of the person.

As the final step of this phase, we produce separate crowd
density maps for each category (sitting and standing). To
generate the density maps from labeled persons with their nose
point used as the annotation, we convolve the annotations with
geometry-adaptive Gaussian kernels using the same technique
as in [26]. This gives us the basic detection based density maps
of the different categorizations.

These detection maps only contain categorization of the
persons detected by the pose estimator. However, the detection
accuracy falls severely in higher density environments. To im-
prove the total count estimation and categorization of persons
in occluded regions, we use these density maps in the second
and third phase of our pipeline.

B. Crowd Counting Based Density Map Generation

In the second phase of our framework we generate a total
crowd density map to capture the global information present
in the image. Inspired by the success of [3] to give an accurate
count in varying densities, we exploit a similar idea to make
a simpler crowd counting model. The block diagram of this
phase is shown in Figure 3.

We first generate a crowd regression map, which is similar
to the shortest field of view branch (starting with a 5x5 filter)
of the MCNN architecture proposed by [26], where we infer a
density map using several convolutional layers of the input
image. The details of this part of the phase is shown in
Figure 3. Following the outputs of the first two layers, we also
use 2x2 max-pooling which helps us give features irrespective
of various transformations.

Next we learn two masks that essentially determines the
relative weights of initial crowd map and categorized maps in
determining the final crowd map. The input image is down-
sampled to one-fourth of the width and height.Then the crowd
regression output, the down sampled image, and the crowd

detection map are concatenated together. This stacked result
is channelled through a 5 layer CNN architecture as shown
in Figure 3. Apart from the first layer, all the other layers
use 5 × 5 kernel size, which works well in an environment
prone to scale variance. This part results in two attention maps
which are element-wise multiplied by the regression map and
the total detection based crowd density map respectively and
the products are sent through a single channel 1 × 1 filter to
get the final crowd density map. Using two separate attention
masks give much flexibility to the network to choose from
noisy regression and detection maps.

C. Cross-Branch Segregating Refinement

While we obtain detection based basic density maps for
sitting and standing in the first phase, the major drawback in
that phase was the diminishing detection rate in images with
higher person density due to extreme occlusion. To alleviate
this problem, we combine the dense crowd information from
the second phase with the initial detection results of the
first phase to further refine the results of categorized crowd
counting. The block diagram of this phase is given in Figure
4.

This phase encompasses 2 parallel network branches to
obtain separate density maps for sitting and standing persons.
Both the networks are fed the corresponding density map (Sit-
ting / Standing), concatenated with the total crowd density map
and the original input image. They are fed to 5 convolutional
layers for each branch as shown in Figure 4. This results in
two different bi-channel segregation attention maps in each
branch, which essentially gives the network a notion of how
to divide the total crowd density map. So, we multiply these
maps with corresponding basic detection density map and the
crowd density map. But the branches have to agree in terms
of this segregation so that the sitting and standing densities
do not overlap. So, it has to be somehow incorporated in the
loss.

This leads us to a concept of internal cross connection
between these branches. The primarily refined categorized
density map is subtracted from total count estimate. This
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output is concatenated to the output of the other branch’s
categorization estimate. A 7x7 convolution after this step gives
us the final categorization density maps. This cross-connection
makes both the branches accountable for the errors in the other
branches too, restricting them from being biased towards a
single side. Integration of these density maps would give us
the desired sitting and standing person count estimate.

IV. TRAINING

We train the three phases of our methodology independently
which eliminates the difficulty of paramter tuning in an end-
to-end model. There is another considerable advantage in
choosing this approach. We can now use the Shanghaitech(part
B) [26] dataset along with ours to train the second phase to
make the counting strength of our model more robust, so that
it can handle varying densities properly.

70% of our dataset is used for training, 15% for validation
and the rest 15% for testing. The same split is used throughout
the whole procedure to avoid any kind of peeking.

A. Detection Based Basic Density Map Generation

The feed-forward neural network used after the pose esti-
mation is quite simple in structure and easy to train. We run
the pose estimator on the training and validation images and
extract the body keypoints found of all the detected persons.
Using the detected persons from these images as training
and validation data respectively, we train the neural network
model with Adam optimizer using an initial learning rate of
8 × 10−3. The whole model is trained for 10000 epochs with
a batch size of 512. The model which performed the best in
the validation set was saved and used. In the weighted linear
regressor used after this step, the weight of a sample is given
by W = 2∗U+L where U and L is the sum of all confidences
of the upper 10 (two eyes, ears, shoulders, wrists and elbows)
and lower 6 (two hips, knees and ankle) body part keypoints
respectively.

B. Crowd Counting Based Density Map Generation
This part of the model is trained end-to-end, like most of the

popular deep-learning based crowd counting frameworks. Both
part of this phase is trained simultaneously, using a weighted
pixelwise MSE loss function given by:

L (Θ) =
σ

N

N∑
i=1

∥∥MPred
xi

(Θ) −MGT
xi

∥∥2
2

Here Θ is the set of parameters of the crowd model, N is
total number of images, MPred

xi
is the predicted density map of

image, MGT
xi

is the ground truth map and σ denotes the weight.
We found a weight of 3.5 × 104 quite satisfactory to speed
up the training process. While training the whole network,
the output of the regression part is also optimized but at a
discounted weight (3.5× 102) which is added to the total loss
of the whole phases’ network. We used Adam optimizer with
a learning rate of 1×10−6. On the whole training set, we used
1500 epochs with a batch size of 64 to optimize our model.

During the training process, we faced several saddle points
in the weight space. To get rid of them, we checked for that
by monitoring loss change for 15 epochs. Whenever we detect
one, we increased the learning rate to 5×10−4 to escape those
points. This way we optimize our model to be adaptive in
various environments and densities.

C. Cross-Branch Segregating Refinement
This phase is the most difficult part to train in our whole

network. Straightforward end-to-end training in this phase
without any pre-training almost immediately falls into local
minima resulting in early convergence. For the hyperparam-
eter configuration of the layers of each branch, we started
with the middle branch configuration of MCNN [26], as we
have already collected local information in earlier stages. We
have tuned each branch until we got the best results on the
validation set.

To avoid the local minima, we first pre-train each of the 2
branches in this phase separately, upto the multiplication with
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the attention maps. We use our own dataset to train this part
of the network. During this pre-training, like in the second
phase, we use the pixelwise MSE loss here too.

Lsit (Θ) =
σ1
N

N∑
i=1

∥∥MPred
xisit (Θ) −MGT

xisit

∥∥2
2

Lstand (Θ) =
σ2
N

N∑
i=1

∥∥MPred
xistand (Θ) −MGT

xistand

∥∥2
2

Here σ1 and σ2 denotes the loss weights of sitting and standing
branch. With a learning rate of 1 × 10−5, these branches are
fairly easy to train with 1000 epochs each. The best resulting
model on the cross-validation dataset was selected.

We now load those pre-trained weights and then add the
cross connection on them. During the back-propagation of this
joint training, loss of each branch is intermixed with the other
branch in the crossing stage so that both branches can agree
in terms of segregation. Here we allocate a slightly higher
weight to σ1, as equal weight allocation results in the whole
architecture getting biased toward the standing network. This
time we train the whole network with a learning rate of 1 ×
10−6 for 1000 epochs with 64 batch size. Thus with the help
of pre-training, we can optimize this phase eliminating early
convergence issues.

V. EXPERIMENTS

We have conducted an extensive experimental study to show
the efficacy of our approach. As there is no prior work
that directly answers the categorized counting problem, we
cannot compare our solutions with a baseline from existing
works. However, to compare the performance of our model
with state-of-the-art methods in crowd counting, we formulate
them as multi-task schemes for counting sitting and standing
separately. As representatives of the state-of-the-art methods,
we take MCNN [26] as representative of shallow multi-branch
architectures due to its influential role in crowd counting,
CSRNet [37] as a representative of deeper models due to
its being the former benchmark leading performance, and
state-of-the-art W-Net [4] architecture because of its high
representational power and strong performance in raw crowd
counting.

A. Dataset

Crowd counting datasets are semantically rich containing
a wide variety of information in a single image. This comes
from the fact that each image has different crowd distributions
at different parts of the image. In addition, crowd counting
datasets are difficult to build up as each person in the image
needs to be hand annotated separately. Consequently, they
contain lesser no. of images than most other image datasets
of other machine learning problem domains. Although there
are a few benchmark crowd counting datasets used in previous
crowd counting models (e.g. WorldExpo’10 Dataset [19], the
ShanghaiTech Dataset [26]), none of these counting datasets
can serve our purpose. Firstly, they do not contain enough

number of sitting people as needed. No separate annotations
for different categories are done either. Furthermore, the crowd
density in most of the images in these datasets is so high that
categorization, as sitting or standing, is of little use.

Therefore we build a new datasetof 553 crowd images
randomly crawled from the Internet. These images contain
from 1 to 206 persons per image with a total of 16521 persons
taken from both indoor and outdoor environments with high
illumination variation and filled with complex obstacles. We
mainly focus on real-life environments with moderately high-
density crowd where our system is most applicable. Few
sample images of the dataset are shown in Figure 1. For
each image, we separately annotate the head location of all
the sitting and standing persons respectively. Also during
training and validation, we perform horizontal flipping to
further augment the data.

B. Results

We show the categorization performance of the detected
persons in the first phase in Table I. We use the traditional
detection metrics of precision, recall, F1 score and combined
accuracy to measure our performance. Standing is assumed to
be the positive class and sitting posture to be the negative class.
We achieve satisfactory categorization accuracy of detected
persons of 86.50%. However, these categorization accuracies
are based only on the persons detected by the pose estimator in
the test images. In Table II, we show the mean absolute error

TABLE I: Categorization performance of detected persons in
the first phase

Category Sitting Standing
Precision(%) 87.47 85.20

Recall(%) 88.80 83.51
F1 Score(%) 88.13 84.35
Accuracy(%) 86.499

(MAE) and root mean squared error (RMSE) of crowd count
using faster RCNN detection framework as used in [36] in low
(person count < 25) and high person density images (person
count ≥ 25) of our dataset. We observe that the detection
errors rise significantly in higher density images. This poor
human detection accuracy necessitates the second and third
phases of our model to achieve an acceptable accuracy with
higher density images.
In Table III, we compare the performance of CCCNet with

TABLE II: Detection performance
Metric Low Density High Density

Average Persons 11.42 62.15
Detection MAE 1.17 23.77

Detection RMSE 2.04 31.05

standalone detection based counting, SDBC (categorized count
using the detection based basic density maps generated on
the first phase of our pipeline in Section III-A ) and also
with other state-of-the-art counting methods [4], [26], [37]
considering sitting and standing crowd counting as separate
tasks.
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Fig. 5: Sitting and standing result comparison on our dataset. Ground truth count is denoted under the original image, and
predicted count of each model is denoted under respective density maps.

TABLE III: Overall performance comparison
Metric MAE MSE
Method Sitting Standing Sitting Standing
MCNN 13.89 9.029 17.54 16.399
CSRNet 7.33 6.51 13.28 11.61
W-Net 6.38 6.95 11.63 15.01

SDBC (Only Phase 1) 4.60 5.93 9.18 15.06
CCCNet 4.15 4.80 7.96 8.59

In all results, it is evident that CCCNet significantly out-
performs all other models including current state-of-the-art
counting models with a multi-task scheme adaptation. MCNN
and CSRNet don’t perform well in this case. While W-Net
with its strong crowd counting scheme shows some reasonable
performance, still it gives 53.7% worse sitting MAE, 44.8%
worse standing MAE, 46.1% worse sitting RMSE and 74.7%
worse standing RMSE than our proposed CCCNet. In fact, W-
Net performs worse than the first phase of our pipeline alone
in almost all the cases, as it only focuses on keeping the crowd
count right, rather than being careful about categorization.
This proves the effectiveness of CCCNet for categorized crowd
counting over existing crowd counting approaches.

C. Ablation Studies

Our model primarily works by inferring attention maps from
initial detection based density maps and total crowd map and
later using those on them to get the final categorized maps.
Leveraging this clever technique, CCCNet combines both local
and global information necessary for categorized counting.
This increases performance in every case over standalone
detection based counting as evident in Table III.

Some of the recent models e.g. [37]–[40] achieved excep-
tional performance in traditional crowd counting due to the
usage of deep networks like VGG-16 [41] or similar deeper
architectures. While these helped to achieve high-quality den-
sity maps as well as more accurate counting, in our case where
categorization is necessary they don’t perform well. Except
[38], all the other networks suffer from low gradient which
essentially leads to getting stuck in local optima as well as

slow training. In Figure 5, we see the performance of CSRNet
as representative of the best performing deep architectures,
generating poor density maps that do not resemble categorized
crowd at all. They rather seem to be focusing on raw crowd
count. Similar types of performances are found with other
deeper networks [39], [40]. We observe that MCNN also ends
up focusing on raw crowd count, and not doing a good job at
that either.

This behavior of leaning towards traditional crowd counting
is most prominently seen with [38], the present state-of-the-
art and benchmark leading counting mechanism. This is a very
powerful network and due to its reinforced U-Net like struc-
ture, it has lots of residual connections between final layers
and initial layers along with its deep structure, giving it high
representational power. These residual connections eliminate
the problems with low gradient. With our dataset, we see
this approach also focuses on producing crowd density map,
generating high-quality traditional crowd density map, that is
the total crowd map without any categorization. However, for
sitting cases in Figure 5, even though we have trained W-
Net using only sitting annotations, we see it captures standing
crowd too. This ultimately leads to crowd density maps that
fail to capture the categorization information. Yet, our model
successfully separates the sitting and standing crowd density
map and gives commendable accuracy in giving the counts.
This demonstrates the superiority of our model in categorized
crowd counting over any other available counting techniques.

VI. CONCLUSION

In this paper, we have introduced a new form of crowd
counting, namely categorized crowd counting, which counts
the number of people sitting and standing in an image. To solve
the categorized crowd counting problem, we propose a three
phase deep learning architecture, CCCNet that incorporates
both detection based categorized density maps and global
crowd density maps using attention mechanism to effectively
count the number of people sitting and standing in an image.
Extensive experiments on images of highly varying person
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densities and cross-scene environments show the effectiveness
and superiority of CCCNet over other competitive techniques.
On average, CCCNet only incurs a MAE of 4.15 and 4.80 and
a RMSE of 7.96 and 8.59 for sitting and standing crowd count,
respectively. In future, exploration of models generating higher
resolution density maps may lead to even better categorized
crowd counting performance.
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