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Abstract—Cuffless technologies provide a convenient platform
for remote and continuous blood pressure (BP) monitoring,
however, signal recordings employed for cuffless BP estimation,
which are based on the electrocardiogram (ECG) and photo-
plethysmography (PPG) signals, are frequently corrupted with
measurement noise and artefacts. Consequently, even a small
portion of abnormal data samples can severely impact the overall
signal quality and therefore lead to significantly distorted BP
value estimates. To this end, a data-driven model is proposed to
infer the beat-to-beat signal quality for the ECG, PPG and BP
signal recordings, whereby high-quality and low-quality (outlier)
beats are detected using a probabilistic model chosen according
to the maximum entropy principle. Physiological rules are also
imposed to guarantee that each filtered sample is physiologically
meaningful. The advantages of the proposed filtering framework
for both systolic blood pressure and diastolic blood pressure
estimation are demonstrated through the analysis and estimation
of 12;000 clinical BP recordings, consisting of over 200;000 test
samples.
Index Terms—Continuous Blood Pressure Estimation, Beat

Quality Detection, Probabilistic Filtering Model, Systolic Blood
Pressure, Diastolic Blood Pressure

I. INTRODUCTION

In 2015 alone, Cardiovascular Diseases (CVDs) have caused
over 17:9 million deaths (32:1% of global death rate), thereby
being the leading contributor to the global death rate [1].
In particular, high blood pressure has been responsible for
13% of these CVD-related deaths. Evidently, there is an
urgent need for convenient and continuous blood pressure
measurement technologies which can be utilised by patients
in-home. The traditional approach to measuring blood pressure
is based on the mercury sphygmomanometer which employs
an inflatable cuff to collapse and release the artery beneath the
cuff [2]. While cuffs prevent the BP measurement from being
convenient and continuous, cuffless blood pressure estimation
methods provide a solution platform for such needs.
In order to accurately estimate systolic Blood Pressure
(SBP) and diastolic Blood Pressure (DBP) values, research
from recent decades has focused on developing features for
accurately estimating SBP and DBP values. For instance,
a pulse transit time (PTT) model was introduced in [3] to
estimate blood pressure from electrocardiogram (ECG) and
photoplethysmography (PPG) signal recordings. The proposed
features can be categorised into the following classes: (i) the

inter-channel time features relevant to PTT [4], [5]; (ii) the
waveform features from PPG signal [6], [7]; and (iii) the
point features from the acceleration waveform of PPG signal
(APG) [8]. While many features for blood pressure estimation
have been proposed, their effectiveness is typically verified
using a small dataset collected in ideal laboratory settings. The
subjects involved to record the dataset are often healthy and
the number of subjects is usually insufficient for statistically
significant results. In turn, when these features are tested on
larger datasets collected from patients in clinical environments,
the detection uncertainty of these features usually increases as
signals recorded in clinical environments are much noisier than
those collected in laboratory settings. For instance, the noise,
artefacts and missing data inherent to recordings performed in
the intensive care unit (ICU) often corrupt the physiological
recordings and therefore lead to significant errors in the
physiological parameter estimates, such as the heart rate (HR).
In order to reduce the ICU false alarm caused by HR estimate
errors, Signal Quality Indexes (SQIs) have been developed for
ECG, PPG and ABP signals. These SQIs are used to detect
high- and low-quality beats in a signal recording, whereby
low-quality beats are discarded so as to reduce the estimation
error. These SQIs are typically constructed using flexible rules
[9], time-domain and frequency domain features [10] and
adaptive template matching [11].
Inspired by the SQI-approach to HR estimation error re-

duction, we propose a probabilistic data-driven framework
for the detection of high- and low-quality (outlier) ECG,
PPG and Arterial Blood Pressure (ABP) beats. As shown in
Fig. 1, in the blood pressure (BP) estimation framework the
main contribution of this work focuses on the pre-processing
part. The BP estimation accuracy is expected to be improved
through filtering out the low-quality ECG, PPG and ABP
beats. Our proposed filtering model is unsupervised in the
sense that it does not require a training (calibration) procedure
for determining the optimal filtering thresholds. Also, without
any requirement on manually defining and calculating features
for assessing signal quality, this model utilizes raw signal to
recognize high-quality beats. In addition, unlike the template
matching method demanding an initial window to extract the
average QRS complex or PPG/ABP pulse-waveform template,
the proposed model is capable of evaluating beats in short
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Fig. 1: The Flowchart of This Study.

recordings, e.g., only a few seconds. Furthermore, the filtering
model also employs physiological rules to ensure that filtered
beats are physiologically meaningful. The advantages of the
proposed filtering framework is demonstrated on real-world
clinical recordings and is shown to effectively reduce the blood
pressure estimation error.

II. SIGNALS AND DATABASE

The Multi-parameter Intelligent Monitoring in Intensive
Care (MIMIC) II dataset [12] is considered in this work for
cuffless blood pressure estimation from ECG and PPG signals.
We consider the version 3 of this dataset, published in UCI
Machine Learning Repository [5]. The dataset consists of
12;000 ECG, PPG and ABP recordings, including: (i) ECG
signals from channel II; (ii) PPG signals from the fingertip;
and (iii) continuous invasively measured ABP recordings.
The recordings were collected from ICUs at a sampling fre-
quency of 125Hz, whereby the time length of each recording
ranged between 8 s and 592 s. Owing to the lack of patient
information, e.g. the patient ID, we did not consider the
impact of patient-specific recording discrepancies during the
modelling and estimation procedures. It is also important to
note that there exists unknown inter-channel delays (of up to
500ms) and/or unspecified filtering delays, as mentioned in the
technical limitations section of the MIMIC III WAVEFORM
DATABASE [13]. Therefore, the well-known and widely-
used feature PTT, which is measured between ECG and PPG
signals, may be unreliable either in absolute or relative terms.
We employed a sliding window of 2 s in length, with a
step-size of 1 s, for both the PPG feature extraction and blood
pressure estimation. The detected maximum and minimum
values of the blood pressure waveform in each window were
first averaged and then taken as the SBP and DBP value
of that window. Although this dataset, and the MIMIC II
database, have been employed by a broad community of
researchers, they typically consider only a small subset of the
dataset. Although numerous reasons for discarding recordings
have been described, no mathematical models for doing so
have yet been considered. This would be highly desirable as
discarded recordings may contain clean beats, and therefore
useful information for BP value estimation. To this end, we
develop a data-driven beat-to-beat signal quality assessment
method, whereby features from the high-quality beats are used
for the estimation procedure, while the features from the low-
quality (outlier) beats are discarded.
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Fig. 2: Beat isolation.

III. MODEL

Fig. 1 demonstrates the flowchart of this study. Our main
contribution focuses on the pre-processing part. In this section,
our proposed probabilistic filtering model is discussed in
detail.

A. Beat Isolation

Each cardiac cycle consists of two stages: (i) the heart
muscle relaxes and refills with blood; (ii) the heart contracts
and pumps blood. Throughout the cardiac cycle, the ECG,
PPG and ABP signal value increase and decrease accordingly,
thereby reflecting respectively the electrical activity of the
heart, the blood volume changes and the pressure of blood
circulating against the walls of the blood vessels. For each
of these three signals, we isolate single beats, each of which
ranges from the ending of a heartbeat to the beginning of the
next. To perform the beat isolation, it is necessary to precisely
locate the troughs of each signal. We therefore determine
the minimum time interval between troughs for each signal,
defined as Tmin = 1

fmax
, where fmax denotes the frequency

(in Hz) associated with the maximum amplitude of the power
spectral density (PSD) of the signal. In the absence of noise,
Tmin is equal to cardiac cycle.
To reduce the impact of noise specific to each signal type,

we estimate the minimum interval, Tmin, using the weighted
scheme

Tmin =
1

wECGfECG + wPPGfPPG + wABPfABP
(1)

where, wECG 2 [0; 1] denotes the confidence weighting as-
signed to the ECG signal. Without prior knowledge about
the signal quality of ECG, PPG and ABP signals, we set
wECG = wPPG = wABP =

1
3 for simplicity. Fig. 2 shows

the three signals extracted from recording 3 in the dataset,
with the onset time being ts = 90 s and the end time being
te = 110 s. In this work, the peaks in each ECG, PPG or ABP
recording are estimated by employing the MATLAB function
findpeaks. As illustrated, most beats are accurately isolated
based on their detected peak (green marker) and trough (red
marker). However, owing to the presence of noise and outliers,
there are regions of the data with erroneously detected peaks
and troughs. To rectify these errors, we next introduce our
probabilistic beat-to-beat filtering model.
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(a) Laplace model. (b) Gaussian model.

Fig. 3: Cross-sectional density function, p(xn[t]), of observa-
tion values, xn[t], across signal beats implied by the Laplace
and Gaussian models at 6 equidistant time instants t.

B. Beat Normalization

The individual beats extracted from the raw input signals
may be of different length and scale, thus it is necessary to
normalize them so as to allow for their direct comparison,
thereby mitigating the possible effects of their inherent non-
stationarity during the filtering, feature creation and modelling
procedures.
By denoting the t-th (time) value of the n-th beat by xn[t] 2
R, the values are scaled as follows

1: xn[t] xn[t]−xn[1]
maxtfxn[t]g−xn[1]

2: if t > argmaxtfxn[t]g then
3: xn[t] xn[T ]−xn[t]

xn[T ]−maxtfxn[t]g

where xn[T ] is the value of last point in each beat. In this
way, the beats are scaled so that the first and last values
equal 0, i.e. xn[1] = xn[T ] = 0, while their maximum value
equals 1, i.e. maxtfxn[t]g = 1. The result of the scaling
procedure is displayed in Fig. 4 (c). Notice that the beats
become homogeneous and are therefore suitable for modelling
purposes.
To deal with beats of different sample length, we set their
lengths to be equal to the median beat length, Tm, whereby
beats shorter than Tm are padded with zeros, and beats longer
than Tm are clipped.

C. Probabilistic Model

We next consider establishing an appropriate probabilistic
model to describe the observed distribution of xn[t] at a given
time instant, t, across all beats (see Fig. 3). In situations of
limited knowledge, it is natural to choose the model according
to the maximum entropy principle [14]. Such a model can
be thought of as the most forgiving one as it allows for the
largest magnitude and frequency of low probability events, i.e.
outliers, thereby maximising entropy.
The model we consider assumes that the observation values,
xn[t], consist of a mixture of frequent homogeneous (high-
quality) signals and infrequent outlier (low-quality) signals.
Realistic conditions we impose on the distribution include:
(i) the mean value of xn[t] across all beats is given by µ[t];
(ii) the values of xn[t] are absolutely summable over all N
beats at a given time instant, t, i.e. σ[t] = 1

N

PN
n=1 jxn[t] −

µ[t]j <1.
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(b) Isolated beats.

(c) Normalised beats.

(d) Histogram of beat scores.
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Fig. 4: Probabilistic beats filtering model.

The maximum entropy is thereby attained by the Laplace
distribution [15], [16], i.e. xn[t] ∼ L (µ[t]; σ[t]). Given the t-
th value of N i.i.d. beats, x1[t]; x2[t]; :::; xN [t], the maximum
likelihood estimators of µ[t] and σ[t] are respectively the
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sample median and the mean absolute deviation from the
sample median [17];
High-quality beats are therefore located close to the median,
µ[t]. In turn, their distribution can be modelled according
to a Gaussian located at the sample median, i.e. xn[t] ∼
N (µ[t]; σ[t]). This model is suitable since the Gaussian ex-
hibits thinner tails than the Laplace and therefore expects less
outliers, shown in Fig. 3.
The likelihood of the sample xn[t] being a high-quality beat
is therefore given by

p(xn[t]) / exp
�
−jxn[t]− µ[t]j

2

2σ[t]2

�
(2)

By considering the likelihood of xn[t], for t = 1; :::; Tm, the
likelihood of the n-th beat being a high-quality one is given
by

scoren = exp

�
1

Tm

TmX
t=1

log p(xn[t])

�
(3)

The beats were then classified to be of high-quality according
to the threshold, scoren ≥ exp(−2), whereby, on average,
the beat samples satisfy jxn[t]−µ[t]jσ[t] ≤ 2. From extracting raw
signal to calculating the ratio of high- and low-quality beats,
each step and corresponding results have been shown in Fig.
4.
Remark 1: The same scale parameter value, σ[t], is em-
ployed for the Laplace and Gaussian models since, owing to
Jensen’s inequality, the standard deviation is bounded from
below by the mean-absolute deviation, Efjxn[t] − µ[t]jg ≤p
Efjxn[t]− µ[t]j2g.
D. Physiological Rules
In order to remove beats which are not physiologically
meaningful/possible, we also impose a filtering stage based on
physiological rules, thereby guaranteeing that each filtered beat
is physiologically meaningful and possible. Such errors may
arise due to incorrect measurements or recording artefacts. The
range of the physiological rules is flexible and can be set to
a physiologically probable range for an adult population. If
a beat does not satisfying all of the conditions, the beat is
classified as an outlier beat and is therefore discarded.
In this work, we select three indices for ABP and two
indices for both ECG and PPG. The pulse pressure (PP) is
defined as the difference between SBP and DBP, while the
RR interval is defined as the time interval between two adja-
cent ECG R-peaks or PPG pulse peaks. Similar abnormality
criteria are employed for these indices in [9], [18]. The five
physiological rules for are shown in Table I.

TABLE I: Physiological rules.

Signal Indices Normal Range

BP
SBP SBP<300/mmHg
DBP DBP>20/mmHg
PP PP>20/mmHg

ECG/PPG
HR 20bpm<HR<220bpm
RR RR≤3s

E. PPG Features Detection

To demonstrate the performance of our filtering framework,
we employ the classical and simple blood pressure estimation
features which have been presented and verified effective by
other researchers. Owing to the unreliable quality of the PTT
features in this dataset, we do not use them in our analysis.
For both the SBP and DBP estimation procedures, we employ
32 time-domain features extracted from each beat in the PPG
signal, defined in Fig. 5. For clarity, these features are plotted
with three continuous PPG beats in Fig. 5 while in real
computation they are detected from every beat in PPG signal.
In detail, these 32 time-domain PPG features include: 1)

HR: HR is estimated by the time distance between two
continuous systolic peaks [5]. 2) PPG Intensity Ratio (PIR):
PIR can be used to assess the arterial diameter change during
one cardiac cycle from systole to diastole thus being relevant
to peripheral resistance and blood volume [19]. In calculation,
PIR is detected as the ratio of PPG peak intensity IH to PPG
valley intensity IL of one cardiac cycle. 3) Dicrotic Notch
(DN): Two DN features VDN and TDN [20] are employed
here. VDN is the amplitude of DN while TDN is the time
distance from onset to DN in each cardiac cycle. 4) Large
Artery Stiffness Index (LASI): LASI is linked with arterial
stiffness [21]. It is calculated by the inverse of the time
distance between systolic peak and DN. 5) Systolic time and
Diastolic time: TS is the time distance from onset to systolic
peak and TD is the time distance from systolic peak to end
point. 6) Maximum Slope: VMS is the amplitude of the point
with maximum slope within TS and TMS is the time distance
from onset to that point. 7) Area Ratio: These four are the
ratios of areas under PPG waveform between selected points,
which is denoted by S1, S2, S3 and S4 here. 8) Mean Value:
The mean value of whole PPG pulse in one cardiac cycle, the
mean value of PPG pulse within TS , the mean value of PPG
pulse before DN and the mean value of PPG pulse after DN are
also important BP estimation features [20]. 9) Diastolic Arc
Length: The PPG curve length from systolic peak to end point
in one cardiac cycle. 10) Systolic Width (SW) and Diastolic
Width (DW): The width of 10%, 25%, 33%, 50%, 66%,
75%, 90% in systolic time and diastolic time.

IV. RESULTS

We use a multi-layer neural network for both of the SBP
and DBP estimation procedures. The structure contains one
input layer, four hidden layers and one output layer, which
presents the best prediction performance after experimenting
a variety of neural network structures.

TABLE II: Ratio of retained/discarded samples.

Filter Type Samples
Retained(%) Discarded(%)

Probabilistic Model 86.41 13.59
Physiological Rules 98.87 1.13

In Total 85.52 14.48

978-1-7281-6926-2/20/$31.00 ©2020 IEEE



���� �� ��

DW at 90%

DW at 75%

DW at 66%

DW at 50%

DW at 33%

DW at 25%

DW at 10%

Diastolic Time

SW at 90%

SW at 75%

SW at 66%

SW at 50%

SW at 33%

SW at 25%

SW at 10%

Systolic Time

Cardiac Period

LASI

���

Dicrotic Notch

���

Max Slope
[���, ���]

�� ��

Fig. 5: PPG features detection.

We employ a moving-average window of 2 s in length, with
a step-size of 1 s, to extract the 32 PPG features, the SBP
value and the DBP value in each window. For clarity, and
without loss of generality, we refer to each window as a
sample. By employing the proposed filtering model, only the
features extracted from the high-quality beats in each window
are used to produce a sample. If none of the beats in a window
are of high quality, the entire sample would be discarded. For
the 12;000 recordings, 2;657;513 samples were extracted in
total. Upon employing the proposed filtering model, 2;272;617
filtered samples were retained. For comparison purposes, the
same features were also extracted without the filtering stage,
whereby the features from each beat in a window were
averaged and then taken as a sample. If none of the beats
were detected in a window, this window would be discarded
as well. Without our filtering model, 2;635;393 raw samples
were retained.
Upon employing the proposed probabilistic filtering frame-
work, the proportion of samples retained and discarded were
recorded and are shown in Table II. In practice, the proba-
bilistic modelling and physiological rules-based filtering were
applied sequentially for each sample. After the filtering stage,
we used the 90% of the samples to form the training dataset
and the remaining 10% of the samples to form the test
dataset. The 10-fold cross validation was employed here. In
order to avoid information leakage, we separated the training
dataset and test dataset according to the Recording ID. In this
dataset, each patient may have more than one recording but
the recordings of the same patient appear next to each other.
It is insightful to first illustrate the distribution of SBP and
DBP values in this dataset. The histogram of SBP and DBP
samples are shown in Fig. 6, indicating the more centered
nature of the distribution of the latter.
This paper realises a calibration-free, reliable and only PPG-
based continuous BP estimation model. The mean error (ME),
standard deviation (STD) and mean absolute error (MAE) of
estimation results are used to evaluate the regression results.
Table III demonstrates the increase of the BP estimation
accuracy when the proposed probabilistic filtering framework
is employed in comparison with using the raw data. Observe
that with our filtering model, both the SBP and DBP estimation

Fig. 6: Histogram of SBP and DBP sample.

error is reduced, based on the error ME, MAE and STD
measurement.
Also, Table III shows the comparison between this work

and other research papers about continuous BP estimation.
Both of the work from [22] and [19] only used relatively
small sample size dataset and realised estimation with the
need of calibration. In this work, the SBP and DBP estimation
models, with and without the proposed probabilistic filtering,
did not require any calibration. As the individually calibrated
model will significantly improve the regression results, we
mainly compare our work with [5] and [21] which also finished
calibration-free BP estimation using similar public dataset. The
dataset pulished by [5] includes 12,000 recordings extracted
from MIMIC II database. In both [5] and [21], only a subset of
these recordings was employed. However, some of the deleted
recordings such as the ones with insufficient duration (defined
as less than 10 minutes in [21]) should not be directly removed.
In our work, all of the 12,000 clinical collected recordings
were processed and used in training or test process. Using
more real-world data, our results can be more statistically
reliable. Moreover, because the MIMIC II website indicates
the popular features PTTs are not reliable in that database,
this work only used time-domain features from PPG signal.
When PTT features are available in the future, our proposed
model filtering out the low-quality beats in ECG and PPG
would also be helpful to improve the reliability of them. The
SBP and DBP estimation error would be potentially reduced
with the use of PTT features.

V. CONCLUSIONS

Cuffless blood pressure measurement devices are necessary
for convenient and continuous in-home monitoring of patients.
However, data recorded in real life are likely to be corrupted
by noise or measurement artefacts. We have therefore analysed
the MIMIC II dataset so as to emulate the quality of the data
collected in real-world clinical environments. A probabilistic
filtering framework has been proposed which detects high-
and low-quality (outlier) beats from ECG, PPG and ABP
signal recordings. In this paper, in order to demonstrate the
efficacy of the proposed filtering model, over 200;000 unseen
samples have been employed and the error in both SBP and
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TABLE III: Comparison with other work.

Work Dataset Signals Calibration- SBP/mmHg DBP/mmHg

free ME MAE STD ME MAE STD
This

Work(Raw)
12,000
Recordings PPG Yes -4.73 16.59 19.89 0.57 7.85 10.97

This
Work(Filtered)

12,000
Recordings PPG Yes -3.95 16.04 19.23 0.14 7.31 9.98

[5] 4,254
Recordings ECG,PPG Yes - 12.38 16.17 - 7.52 9.54

[21] 3,663
Recordings ECG,PPG Yes - 11.17 10.00 - 5.35 6.14

[22] 32 Subjects PCG,PPG No -0.28 6.22 9.44 1.03 3.97 5.15
[19] 27 Subjects ECG,PPG No -0.37 4.09 5.21 0.08 3.18 4.06

DBP estimation tasks have been reduced in comparison with
using the raw dataset. For improving estimation results in a
further step, we plan to try transfer learning techniques and
modifying the mean square error loss function. Furthermore,
with key patient-specific features, such as the subject ID, age,
sex, height, diseases or medicines, or if the PTT features can
be employed, we might be able to further reduce the estimation
uncertainty. Finally, our future work will include collecting our
own recordings from patients and healthy subjects in order
to further examine the performance of the proposed filtering
model.
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