
BalNode2Vec: Balanced Random Walk based
Versatile Feature Learning for Networks

Amirreza Salamat
Department of ECE

IUPUI
Indianapolis, Indiana

asalamat@iu.edu

Xiao Luo
Department of CIT

IUPUI
Indianapolis, Indiana

luo25@iupui.edu

Ali Jafari
Department of CIT

IUPUI
Indianapolis, Indiana

jafari@iupui.edu

Abstract—Research on social networks and understanding the
interactions of the users can be modeled as a task of graph
mining, such as predicting nodes and edges in networks. The
challenges of building the graph representation include engi-
neering features used by learning algorithms. Recent research in
representation learning can automate the prediction by learning
the features themselves. Many types of research have performed
graph sampling using random walks or it’s derivatives. However,
the random walk sometimes can not represent the features
of the graph accurately enough. In this research, we propose
BalNode2Vec – a new sampling algorithm for learning feature
representations for nodes in networks by using balanced random
walks. We define a notion of a nodes network neighborhood
and design a balanced random walk procedure, which adapts
to the graph topology. We show that through exploring the
graph through a balanced random walk can generate richer
representations. Efficacy of BalNode2vec over existing state-of-
the-art techniques on link prediction is demonstrated by using
several real-world networks from different domains.

Index Terms—Node Embedding, Representation Learning,
Graph Representation

I. INTRODUCTION

Graph networks play an essential role in social networks,
genomics, and recommender systems [41] [38]. The user’s
information, interactions, characteristic features, and role
in the network can be modeled as a graph. The most
recent research in graph networks investigated approaches
to generate graph embedding, which learns a mapping
from a network to a vector space while preserving relevant
network properties. DeepWalk [13], LINE [2], and node2vec
[6] are the graph embedding algorithms used in various
domains, such as assessing protein interactions or predicting
genome interactions. Graph embedding not only improves
the efficiency and accuracy of user profiling but also enables
vector analysis techniques to be applied. So that data can be
transformed with less computational costs. The applications
built upon the graph network, such as the recommender
system can be more scalable and also be used in real-time
applications.

The Node2Vec is built based on the idea of word embedding
generation techniques, such as the Skip Gram model [16]. The
basic theory is that performing short random walks on a scale-
free graph can generate node frequencies that closely follows

Fig. 1. A sample directed graph with nodes with various in-degrees to
demonstrate that random walks on this graph tends to select bias towards
the nodes with more direct or propagated in-degrees.

Zipf’s law [13], which is similar to the word distribution of
a corpus. Although the random walk provides a means for
sampling the graph, it may not represent the features of the
graph accurately, especially with a directed graph. The first
issue is that the initial starting node is chosen at random,
meaning that the nodes with lower degrees are treated equally
with the higher degree nodes. As the length of the random walk
increases, the walks bias towards nodes with more in-degrees
and moves away from the nodes with fewer in-degrees, which
causes those nodes to be underrepresented while the nodes
with more in-degrees are over-represented. This behavior is
illustrated by Figure1, which shows that node A might not be
walked on very often, and node E appears on several walks.
While the latter issue emerges in directed graphs, the former
appears in both directed and undirected graphs.

On the other hand, the notion of using random walks for
sampling a graph was that in a scale-free network, the short
random walks follow the power-law similar to the degree
distribution [13]. Therefore, word embedding techniques like
Skip Gram could be applied to the graph to create embeddings.
However, with this type of approach, there are two issues:

• The sampling error increases as the size of the graph
increases.

• The node distribution diverges from the power-law as the

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

length of the walk increases. Hence, more in-depth, more
abstract features cannot be extracted from the network.

In this research, our objective is to develop a novel al-
gorithm to prevent the sampling issues in calculating the
probabilities of walking each node when using a random
walk and comparing them with the actual degree distribution
(which follows the power-law). Therefore, the sequences are
more suitable for being used in an algorithm like the Skip
Gram algorithm. Specifically, we propose a balanced random
walk sampling algorithm – BalNode2Vec to generate the graph
embedding. The algorithm is designed to walk on the nodes
that are underrepresented using the random walk and put
less emphasis on the nodes that are walked often. This new
approach balances the node distribution and adjusts suit the
Skip Gram optimizer. This proposed BalNode2Vec is able
to produce relevant representations for large graphs without
biasing on the nodes with more in-degrees and efficient for
running and updating without advanced dedicated hardware,
scalable to vast networks of hundreds of thousands of edges,
adaptable to the variance of the data over time. We evaluate
the BalNode2Vec on five different data sets. The comparison
against the state-of-the-art algorithms demonstrates that BalN-
ode2Vec gains the highest AUC scores on all data sets.

The rest of the paper is structured as follows. In Section II,
we described the related work in graph embedding generation.
We present the technical details of BalNode2Vec in Section
III. In Section IV, we empirically evaluate BalNode2Vec on
prediction tasks on various real-world networks and assess the
parameter sensitivity. Section V presents our discussion about
the BalNode2Vec framework and gives some directions for
future work.

II. RELATED WORK

Graph-based network analysis has caught the researchers’
attention for many years. Several nonlinear dimension reduc-
tion techniques using spectral analysis were performed, but
they were not suited for graph data sets and had statistical and
performance shortcomings. Clustering techniques were also
widely used as a means to categorize nodes based on various
attributes, in [18] The largest eigenvalues of the Laplacian
matrix were used for clustering the nodes. This algorithm
implicitly assumed that the graph cuts would be enough
for classification. GraRep generates vertex representations by
explicitly computing successive powers of the random walk
transition matrix and uses the SVD to reduce their dimension-
ality, and it’s a very powerful baseline. However, the downside
of this approach is that it is not scalable to larger networks.

Advances in word embedding were another breakthrough
for the graph embedding algorithms, Noise Contrastive Esti-
mation (NCE) loss [16]significantly improved the performance
of word embedding algorithms. NCE postulates that a good
model should be able to differentiate data from noise through
the means of logistic regression. This model is highly efficient
for performing language modeling. Skip Gram [16] was one
of the algorithms that utilized NCE loss for optimizing a

neighborhood preserving likelihood objective; this model is
extremely efficient when dealing with vast corpora of words.

DeepWalk [13] introduced deep learning (unsupervised fea-
ture learning) [36] techniques that learn representations of
graph vertices and by modeling a stream of random walks
on the graph and feeding the generated strings into Skip
Gram. DeepWalk achieved scalability and adaptability in large
networks but was not configurable to the pattern that we
wanted to capture from the graph.

LINE [2] is another embedding generation algorithm that
embeds the graph into d dimensional vectors and learns d/2
embeddings using Breadth-First Search (BFS) and another
d/2 using Depth First Search(DFS), this method loses several
benefits of random walk which is explained in [6] and is not
entirely configurable to different patterns of data.

In the paper of Node2Vec [6], it describes that the prediction
task in graphs is comprised of two different aspects of the
network, homophily and structural equivalence. Homophily
hypothesis formulates the nodes which belong to the same
community and have frequent interactions must be embedded
together [20], while structural equivalence hypothesis [44]
states that nodes with similar structural role should be em-
bedded together. Node2vec [6] followed the same procedure
as Deepwalk except that it used second-order random walks
and introduced two new parameters, return parameter and in-
out parameter, and claimed that these two parameters simulate
the effects of BFS and DFS which represent structural equiva-
lence and homophily respectively. This algorithm allowed the
random walks to be configured based on the requirements, but
it distorts the node frequencies that Negative Sampling needs
to consider. This issue is elevated when dealing with graphs
that have lower average edge per node. Also, in the same study,
several link prediction algorithms were proposed to evaluate
the performance of the model, these link prediction algorithms
were compared in [19] [45] in terms of performance, the major
shortcoming in all of these techniques has high computational
efficiency.

The metapath2vec and metapath2vec++ were introduced in
[33], which incorporated metapaths to model heterogeneous
networks better, but the drawback of these methods is that
domain knowledge is required to define these metapaths which
may not be a viable option in many scenarios. Walklet [14] was
another approach that captured multiscale node representation
on graphs by sampling edges from higher powers of the
adjacency matrix and as a consequence, skipping some nodes.
The authors claimed that sampling from each order of the
adjacency matrix captures a specific dimension of social in-
teractions, but some deeper connections can only be extracted
from a blend of different orders of the adjacency matrix.
Additionally, the training was carried out by a MultiLayer
Perceptron, which has performance issues on larger output
classes.

Other deep learning models were also proposed [42] [35],
which use architectures like Convolutional Neural Networks
to perform node embedding. These algorithms have high
computational costs, require complete or partial retraining after

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

the change, and are hard to scale to larger networks.

III. REPRESENTATION LEARNING FRAMEWORK

The main objective in language modeling is to estimate
the likelihood of a specific sequence of words appearing in
a corpus. Equivalently, we can perform a series of walks
on a graph to turn them into a sequence of nodes. By that
definition, our problem can be formally defined as estimating
the probability of observing vertex vi given all the previous
vertices visited:

Pr (vi| (v1, v2, · · · , vi−1)) (1)

Assuming our network graph is G = (V,E), we define the
mapping Φ = V εv −→ Rd as mentioned in [6]:

Pr (vi| (Φ (v1) ,Φ (v2) , · · · ,Φ (vi−1))) (2)

Calculating the Equation 2 mentioned above is computation-
ally expensive, so two assumptions are made to have the
calculations more feasible. First, instead of using the context
to predict a node, it uses one node to predict the context.
Secondly, the context is composed of the adjacent nodes (both
left and right) with any order, meaning that there are no
differences between the adjacent nodes in the context. This
simplifies our algorithm to Equation 3.

maximize
Φ

log Pr ({vi−w, · · · , vi+w} \vi|Φ (vi)) (3)

In the following subsections, in subsection III-A, we describe
how node sequences are generated using balanced random
walks. Subsection III-C presents how the model learns the
representations based on the input sequences.

A. Walk Prediction

As mentioned in the previous sections, node occurrences
in random walks diverge from the degree distribution based
on the graph topology. Initially, we calculate the frequency of
each node in a random walk to adapt our walking strategy.
The first order of the adjacency matrix of a graph shows the
possible destinations after a single walk. Normalizing each
row of this matrix shows the probability of moving to a node
from a chosen source node. By summing over the column of
this normalized adjacency matrix results in a vector, we can
calculate the frequency of a destination node through a random
walk of length 1.

The same process can be repeated for higher powers of the
adjacency matrix, such as An, outputs a similar frequency
vector except that the destination is reached after n walks.
Through adding these vectors together, it shows the frequency
of passing through each node in n walks.

Algorithm 1 Node frequency measurement in a random walk
Input: Graph G=(V, E, W),
Output: f node frequencies

1: A=Adjacency Matrix(G)
2: Anorm = normalize(A) over rows
3: An = normalize(A) over rows
4: W = normalizeddegreehistogram(G)
5: for i = 1 to walk length do
6: An = matmul(An, Anorm)
7: W = W +

∑
<i>A

n
i,j

8: end for
9: Wnorm = normalize(W) over rows

10: return Wnorm

The adjacency matrix of a graph shows possible transitions
from each node to another. By adding all the values in a
column, we can acquire the number of times that a node was
walked on in a single step. The second order of adjacency
matrix has a similar effect except that the values are calculated
for two steps. Continuing for higher orders of the adjacency
matrix provides us with a simulation of the walker trajectory
in a random walk. Finally, summing over all the values for
each node in every order provides us with an estimate of the
number of times that a specific node is walked on.

Having the estimation for each specific node, we can
observe that the number of times each node is walked on is
different from the degree of the node. Although this calcula-
tion adds some overhead to the random walk algorithm, the
calculation is done only once for the graph and the sparsity of
the adjacency matrix to keep this overhead to the minimum.

To choose the initial node, the probability of initially
choosing a node to walk on is proportional to their degree,
this ensures that the initial values follow the Zipf distribution.
The algorithm 1 measures the frequency of each node in a
random walk using the graph adjacency matrix.

Assuming the graph has E edges and V nodes, the adjacency
matrix is O(E) space complexity because of the sparse nature
of it, however, the An is a space complexity between O(E)
and O(V 2) and this complexity gravitates towards the latter
since the matrix becomes dense as n increases. The space
required for storing the frequencies, on the other hand, is O(V)
and therefore, comparatively trivial. The process of matrix
multiplication, addition and normalization altogether have a
time complexity of O(N) with N being the number of non-
zero elements in the matrix. So for An, the time maximum
complexity is O(V 2).

B. Balanced Random Walk

After finding the frequency of the nodes in a random walk,
these frequencies are compared with the degree distribution to
modify the node preferences when walking. The nodes with
a higher frequency compared to their degree are at a penalty;
conversely, the nodes with a lower frequency compared to their
degree are preferred during the walk. The algorithm 2 performs
the comparisons and carries out the balanced walk.

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

Fig. 2. An example of a simple graph with walk probabilities extracted from the normalized adjacency matrix.

Algorithm 2 Balanced Random Walk
Input: Graph G=(V, E, W), Wnorm

Output: W walks
1: for all nodes do
2: coefficient[node] = degree[node]/W [node]
3: end for
4: for i = 1 to number of walks do
5: weight[node] = degree[node]
6: initial node = choose random node with given weight
7: weight[node] = coefficient[node]
8: walk = random weighted walk from node with the given

weight
9: append walk to walks

10: end for
11: return walks

The initial value of A0 ensures that the short walks are close
to the power-law while the following weights ensure that the
walks do not diverge from this initial value. It is also worth
noting that random walks are random, and the variance of the
node frequencies increase as the walk becomes longer. Since
our objective is to ensure the walks follow the power-law on
average, the balanced walks produce a more consistent output
than the random walk.

C. Learning Features

After performing the balanced random walks, the strings of
nodes have been created. First, these strings are shuffled to
randomize their order, and then they fed to the Skip Gram
model to extract the representations of the nodes. The training
objective of the original Skip Gram model is to find word
representations that are useful for predicting the surrounding
words in a sentence or a document. Applying full softmax in
training is not efficient for large networks because it evaluates
all the outputs to obtain the results; therefore, other methods
have replaced it.

Hierarchical softmax is a computationally efficient approxi-
mation of softmax. Instead of evaluating all the output nodes,
hierarchical softmax only evaluates the log base 2 of the
outputs, resulting in significant computational gains. Noise

Contractive Estimate (NCE) loss is an alternative to hierarchi-
cal softmax. NCE loss reduces the language model estimation
problem to the problem of estimating the parameters of a
probabilistic binary classifier that uses the same parameters
to distinguish samples from the empirical distribution from
samples generated by the noise distribution. Essentially, this
is more computationally attainable in large networks than soft-
max since it subsamples frequent words instead of considering
all the words in the vocabulary. The Skip Gram model is
concerned with learning high-quality vector representations,
so we are free to simplify NCE as long as we maintain the
vector representation quality. The negative sampling algorithm
is then defined as:

log σ
(
v′nO

>vnI

)
+

k∑
i=1

Eni∼Pn(n)

[
log σ

(
−v′ni

>vnI

)]
(4)

Where Pn is the noise distribution, n1, n2, ..., ni is the se-
quence of nodes and σ(x) = 1/(1 + exp(x)). In language
modeling, in very large corpora, the most frequent words
can easily occur hundreds of millions of times (e.g., in, the,
and a). Such words usually provide less information value
than rare words. The same phenomenon happens in social
networks, a few users possess most of the edges in the
network; therefore, they don’t contain valuable information
in most cases. To counter the imbalance between the rare
and frequent nodes, assuming f(ni) is the frequency of the
i’th node, a simple subsampling approach was used which the
nodes in the training set is discarded by:

P (ni) = 1−

√
t

f (ni)
(5)

The context size is one of the primary parameters of the
training, nodes in the context window can be paired together
and fed into the network. Having a larger window allows our
model to understand the more distant features in our network
better. But the larger the context size, the more data it requires
to train the model. It may not be necessary for most of the
networks.

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

Fig. 3. Node frequency in CourseNetworking user-follower network in log-
log scale.

TABLE I
BINARY OPERATORS FOR LEARNING EDGE FEATURES FROM NODE

EMBEDDINGS.

Operator Symbol Definition

Average ⊕ [f(u)⊕ f(v)]i =
fi(u)+fi(v)

2

Hadamard � [f(u) �f(v)]i = fi(u) ∗ fi(v)
Weighted-L1 ‖ · ‖1 ‖f(u) · f(v)‖1i = |fi(u)− fi(v)|
Weighted-L2 ‖ · ‖2 ‖f(u) · f(v)‖2i = |fi(u)− fi(v)|2

In a directed graph, each edge contains information about
the directions too, therefore, the direction of the context is
very helpful and depends on the type of data under study.

IV. EXPERIMENTAL RESULTS

In this section, we provide the details of our datasets, then
we evaluate the walking strategy, compare the performance
of the whole model against other state-of-the-art algorithms,
and evaluate the parameter sensitivity of the proposal BalN-
ode2Vec. The experimental results are repeated for 10 random
seed initialization and are statistically significant with a p value
of less than 1%.

A. Dataset

We use five different data sets in this research, which
4 of them are publicly available. One of the data sets is
generated from an academic and social networking site –
CourseNetworking [43]. The user-follower network of the
CourseNetworking is extracted from this academic and social
networking site to illustrate the performance of the BalN-
ode2Vec. There are 61151 nodes and 313923 edges. The nodes
of this graph represent users, and an edge between a source and
target node represents the follower and followee, respectively.
The distribution of the edges closely follows the pattern of
Zipf degree distribution, as shown in Figure 3. Therefore, the
network graph is scale-free so that the BalNode2Vec model
can be used to learn the representations of this network. This
network consists of nodes with different “roles” like student
or teacher, which means that a large number of source and
destination nodes exist in this network.

The other data sets used in this research include the follow-
ing:

• Reddit Hyperlink [39]: The hyperlink network repre-
sents the directed connections between two subreddits
(a subreddit is a community on Reddit). The network is
extracted from publicly available Reddit data of 2.5 years
from Jan 2014 to April 2017. There are 55,863 nodes and
858,490 edges.

• Protein-Protein Interactions (PPI) [38]: In the PPI net-
work for Homo Sapiens, nodes represent proteins, and
an edge indicates a biological interaction between a pair
of proteins. The network has 19,706 nodes and 390,633
edges.

• arXiv ASTRO-PH [39]: This is a collaboration network
generated from papers submitted to the e-print arXiv
where nodes represent scientists, and an edge is present
between two scientists if they have collaborated in a
paper. The network has 18,722 nodes and 198,110 edges.

• Facebook [39]: In the Facebook network, nodes represent
users, and edges represent a friendship relation between
any two users. The network has 4,039 nodes and 88,234
edges.

B. Walking Strategy

Figure 4 compares the node distribution by using the
random walk and a balanced walk. As shown from the results,
the balanced walk reduces the sampling error and generates
samples that follow the power-law more closely and, as a
result, produces a sequence that is more suitable for applying
the Skip Gram algorithm.

To numerically measure the difference between the node
frequencies in a walk, and the degree distribution, which is
the target distribution, we used the statistical distance methods.
The Jensen-Shannon divergence is used in this evaluation. The
results of figure 5 show that the predictions have successfully
managed to balance the node representations during the walk.
Because of the initial condition of choosing nodes based on
their degree, the BalNode2Vec has a minimal error in very
short walks and even in longer walks, it manages reduce the
rate of divergence significantly, thus it allows for a longer walk
length in order to capture deeper network connections.

C. Link Prediction

To evaluate the link predictions, typically, we use the output
embedding to predict the future edges in the graph [6]. This
experiment is carried out by selecting 50% of the edges at
random, with the constraint that the residual graph must be
connected, and then performing the training on the residual
graph and predicting the removed links. The output node
embeddings are then converted to edge embeddings using
binary operators mentioned in I. The edge embeddings are
compared with the removed edges of the graph to measure a
model’s performance.

In this research, we compare the proposed BalNode2Vec
against the most recent state-of-the-art algorithms DeepWalk
[13], Node2Vec [6], LINE [2], GraRep [34], and Walklet
[14]. Tables II to V show the Area Under the Curve (AUC)
score for each binary operator mentioned in Table I. We

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

Fig. 4. Node frequencies in a Random Walk (left) and Balanced Walk (right) of length 8. (The nodes are sorted by degree.)

TABLE II
AREA UNDER CURVE (AUC) SCORES FOR LINK PREDICTION USING THE AVERAGE BINARY OPERATOR.

Algorithm CourseNetworking Reddit Hyperlink PPI arXiv Facebook

BalNode2Vec 0.7480 0.7644 0.7097 0.7157 0.7570
DeepWalk 0.7324 0.7488 0.6647 0.6853 0.7360

Walklet 0.7127 0.7503 0.6451 0.6740 0.7470

LINE 0.7054 0.7096 0.6429 0.6843 0.7217

Node2Vec 0.7431 0.7422 0.6772 0.6932 0.7443

GraRep 0.7453 - 0.6819 0.7049 0.7518

TABLE III
AREA UNDER CURVE(AUC) SCORES FOR LINK PREDICTION USING THE HADAMARD BINARY OPERATOR.

Algorithm CourseNetworking Reddit Hyperlink PPI arXiv Facebook

BalNode2Vec 0.8837 0.9792 0.7796 0.9541 0.971
DeepWalk 0.8452 0.9530 0.7481 0.9354 0.9591

Walket 0.8430 0.9618 0.7129 0.9110 0.9480

LINE 0.8247 0.9436 0.7244 0.887 0.9323

Node2Vec 0.8539 0.9627 0.7563 0.9374 0.9620

GraRep 0.8651 - 0.7580 0.9418 0.9567

Fig. 5. Jensen-Shannon divergence of random and balanced walks based on
the walk length.

could not measure the performance of GraRep on the Reddit
Hyperlink dataset due to out of memory error. This is because

GraRep is not scalable on graphs with near one million
edges. Based on the results, BalNode2Vec performs better
than all the other methods on every data set. The performance
improves more significantly when dealing with networks that
have less reciprocal connections like CourseNetworking and
Reddit Hyperlink datasets. When we look at operators indi-
vidually (Table I), BalNode2Vec outperforms the others in
all different operators. Node2Vec works better than the other
methods except on Reddit Hyperlink involving the Average
Binary operator in which DeepWalk performs better than
Node2Vec. When Hadamard operator is used, the performance
of the BalNode2Vec shows more improvement than the other
methods across all datasets.

D. Parameter Sensitivity

The proposed BalNode2Vec has several parameters related
to the sampling strategy and network training that need to
be fine-tuned for each network. With the same procedure for
link prediction, Figure6 shows the sensitivity of the model

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

TABLE IV
AREA UNDER CURVE(AUC) SCORES FOR LINK PREDICTION USING THE WEIGHTED-L1 BINARY OPERATOR.

Algorithm CourseNetworking Reddit Hyperlink PPI arXiv Facebook

BalNode2Vec 0.8793 0.9754 0.7701 0.9463 0.9676
DeepWalk 0.8312 0.9499 0.7455 0.9334 0.9517

Walklet 0.8368 0.9670 0.7114 0.9048 0.9483

LINE 0.8219 0.9428 0.7211 0.8947 0.9315

Node2Vec 0.8547 0.9684 0.7647 0.9352 0.9579

GraRep 0.8697 - 0.7671 0.9388 0.9497

TABLE V
AREA UNDER CURVE(AUC) SCORES FOR LINK PREDICTION USING THE WEIGHTED-L2 BINARY OPERATOR.

Algorithm CourseNetworking Reddit Hyperlink PPI arXiv Facebook

BalNode2Vec 0.8724 0.9620 0.7514 0.9481 0.9648
DeepWalk 0.8349 0.9476 0.7428 0.9294 0.9516

Walklet 0.8407 0.9596 0.7150 0.9127 0.9429

LINE 0.8258 0.9428 0.7213 0.8920 0.9317

Node2Vec 0.8511 0.9644 0.7428 0.9341 0.9606

GraRep 0.8687 - 0.7601 0.9447 0.9542

Fig. 6. Area Under Curve(AUC) scores for link prediction on the CourseNetworking dataset.

to various parameters. All the parameters are set to default
value except the one being tested. The default values for this
experiment were: walk per edge: 12, embedding dimension
d=128, context window w=18 and walk length l=64.

We measure the AUC score against the number of features
d, the walk length l, and context window size w and how they
affect the performance. We observe that performance tends
to saturate once the dimensions of the representations reach
around 100. Similarly, we observe that increasing the number
and length of walks improves performance. The context win-
dow size, w, also improves performance and training depth at
the cost of increased training time. However, the performance
differences are not that large when w is close to 20. The
number of negative samples also has a diminishing effect on
the accuracy of the model, and after some point(around 32),
it is not computationally efficient to increase the number of
negative samples.

V. DISCUSSION, CONCLUSION AND FUTURE WORK

In this research, our objective is to provide a scalable, adapt-
able, and efficient node embedding method - BalNode2Vec.
We investigate the limitations of the random walk sampling
strategy for sequence generation for the Skip Gram model and
propose the BalNode2Vec model, which is capable of devising
a model and improving the performance of the baseline
Node2Vec model. By adopting a new sampling direction,
BalNode2Vec can analyze the graph structure and modify
the path accordingly, hence, ensuring that all the nodes are
adequately sampled. We compare the proposed BalNode2Vec
model against five different state-of-the-art models on five
different data sets. The results demonstrate the BalNode2Vec
can provide more consistent and accurate results and performs
better than the existing models.

In the future, we plan to use the embeddings generated using
this technique to improve the recommendation engine and

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

provide offer community and role-based results based on these
embeddings. As for the algorithm, in the future, our effort will
be to make the optimizer and sampler more interactive so that
the graph sampling will be based on the optimizer’s result, and
the sampler would sample what the optimizer needs instead
of performing random walks.

VI. ACKNOWLEDGEMENTS

We would like to thank cyberlab.iupui.edu for the support
of this research as part of the Rumi Agent project and provid-
ing us with the required data to carry out the experiments.
This research was supported in part by Lilly Endowment,
Inc., through its support for the Indiana University Pervasive
Technology Institute.

REFERENCES

[1] Oren Barkan and Noam Koenigstein, “Item2vec:Neural Item Embedding
for Collaborative Filtering.” Phil. Trans. Roy. Soc. London, vol. A247,
pp. 529–551, April 1955.

[2] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei. LINE: Large-
scale Information Network Embedding. In WWW, 2015.

[3] X. Li, N. Du, H. Li, K. Li, J. Gao, and A. Zhang. A deep learning
approach to link prediction in dynamic networks. In ICDM, 2014.

[4] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Dis-
tributed representations of words and phrases and their compositionality.
In NIPS, 2013.

[5] Jing Zhang, Jie Tang, Cong Ma, Hanghang Tong, Yu Jing, and Juanzi
Li. 2015. Panther: Fast top-k similarity search on large networks. In
KDD 15. ACM, 14451454.

[6] Aditya Grover and Jure Leskovec. 2016. Node2Vec: Scalable Feature
Learning for Networks. In KDD 16. ACM, 855864.

[7] X. Li, N. Du, H. Li, K. Li, J. Gao, and A. Zhang. A deep learning
approach to link prediction in dynamic networks. In ICDM, 2014.

[8] Mahalanobis, P. C. (1936). On the generalized distance in statistics.
[9] S. Zhai and Z. Zhang. Dropout training of matrix factorization and

autoencoder for link prediction in sparse graphs. In SDM, 2015
[10] K. Li, J. Gao, S. Guo, N. Du, X. Li, and A. Zhang. LRBM: A restricted

boltzmann machine based approach for representation learning on linked
data. In ICDM, 2014

[11] Ting Chen and Yizhou Sun. 2017. Task-Guided and Path-Augmented
Heterogeneous Network Embedding for Author Identification. In
WSDM 17. ACM

[12] L. Tang and H. Liu. Scalable learning of collective behavior based on
sparse social dimensions. In Proceedings of the 18th ACM conference
on Information and knowledge management, pages 11071116. ACM,
2009.

[13] B. Perozzi, R. Al-Rfou, and S. Skiena. DeepWalk: Online learning of
social representations. In KDD, 2014

[14] B. Perozzi, V. Kulkarni, H. Chen, and S. Skiena. Dont walk, skip!:
Online learning of multi-scale network embeddings. In Advances in
Social Networks Analysis and Mining (ASONAM), 2017.

[15] Shuicheng Yan, Dong Xu, Benyu Zhang, Hong-Jiang Zhang, Qiang
Yang, and Stephen Lin. 2007. Graph embedding and extensions: A
general framework for dimensionality reduction. IEEE TPAMI 29, 1
(2007)

[16] Yoav Goldberg and Omer Levy. 2014. word2vec Explained: deriving
Mikolov et al.s negative-sampling word-embedding method. CoRR
abs/1402.3722 (2014).

[17] Amr Ahmed, Nino Shervashidze, Shravan Narayanamurthy, Vanja Josi-
fovski, and Alexander J. Smola. 2013. Distributed Large-scale Natural
Graph Factorization. In WWW 13. ACM, 3748.

[18] M. Belkin and P. Niyogi. Laplacian eigenmaps and spectral techniques
for embedding and clustering. In NIPS, 2001.

[19] Yuxiao Dong, Jing Zhang, Jie Tang, Nitesh V. Chawla, and Bai Wang.
2015. CoupledLP: Link Prediction in Coupled Networks. In KDD 15.
ACM, 199208.

[20] J. Yang and J. Leskovec. Overlapping communities explain core-
periphery organization of networks. Proceedings of the IEEE,
102(12):18921902, 2014.

[21] A. Vazquez, A. Flammini, A. Maritan, and A. Vespignani. Global protein
function prediction from protein-protein interaction networks. Nature
biotechnology, 21(6):697700, 2003.

[22] J. Pennington, R. Socher, and C. D. Manning. GloVe: Global vectors
for word representation. In EMNLP, 2014

[23] Xiang Ren, Wenqi He, Meng , Clare R Voss, Heng Ji, and Jiawei Han.
2016. Label noise reduction in entity typing by heterogeneous partial-
label embedding. In KDD 16. ACM.

[24] Zhipeng Huang, Yudian Zheng, Reynold Cheng, Yizhou Sun, Nikos
Mamoulis, and Xiang Li. 2016. Meta structure: Computing relevance in
large heterogeneous information networks. In KDD 16. ACM, 15951604

[25] Martn Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,
Jerey Dean, MaŁhieu Devin, Sanjay Ghemawat, Georey Irving, and
others. 2016. TensorFlow: A system for large-scale machine learning.
In OSDI 16.

[26] Yann LeCun, Yoshua Bengio, and Georey Hinton. 2015. Deep learning.
Nature 521, 7553 (2015), 436444.

[27] Ming Ji, Jiawei Han, and Marina Danilevsky. 2011. Ranking-based
classification of heterogeneous information networks. In KDD 11. ACM,
12981306.

[28] Jian Tang, Meng, and Qiaozhu Mei. 2015. PTE: Predictive Text Em-
bedding rough Large-scale Heterogeneous Text Networks. In KDD 15.
ACM, 11651174.

[29] Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su.
2008. ArnetMiner: Extraction and Mining of Academic Social Networks.
In KDD 08. 990998

[30] L. Tang and H. Liu. Scalable learning of collective behavior based on
sparse social dimensions. In Proceedings of the 18th ACM conference
on Information and knowledge management, pages 11071116. ACM,
2009.

[31] L. Tang and H. Liu. Leveraging social media networks for classification.
Data Mining and Knowledge Discovery, 23(3):447478, 2011.

[32] Yoshua Bengio, Rejean Ducharme, Pascal Vincent, and Christian Janvin.
A neural probabilistic language model. The Journal of Machine Learning
Research, 3:11371155, 2003

[33] Dong, Yuxiao Chawla, Nitesh Swami, Ananthram. (2017). metap-
ath2vec: Scalable Representation Learning for Heterogeneous Networks.
135-144. 10.1145/3097983.3098036.

[34] S. Cao, W. Lu, and Q. Xu. Grarep: Learning graph representations with
global structural information. In KDD, 2015.

[35] S. Cao, W. Lu, and Q. Xu. Deep neural networks for learning graph
representations. In AAAI, 2016.

[36] P. Goyal, E. Ferrara, Graph Embedding Techniques, Applications, and
Performance: A Survey (2018), Knowledge-Based Systems.

[37] B.P. Chamberlain, J. Clough, and M.P. Deisenroth. Neural embeddings
of graphs in hyperbolic space. arXiv preprint arXiv:1705.10359, 2017.

[38] Y. Bengio, A. Courville, and P. Vincent. Representation learning: A
review and new perspectives. 2013. B.-J. Breitkreutz, C. Stark, T.
Reguly, L. Boucher, A. Breitkreutz, M. Livstone, R. Oughtred, D. H.
Lackner, J. Bhler, V. Wood, et al. The BioGRID interaction database.
Nucleic acids research, 36:D637D640, 2008.

[39] J. Leskovec and A. Krevl. SNAP Datasets: Stanford large network
dataset collection. http://snap.stanford.edu/data, June 2014

[40] B.-J. Breitkreutz, C. Stark, T. Reguly, L. Boucher, A. Breitkreutz, M.
Livstone, R. Oughtred, D. H. Lackner, J. Bhler, V. Wood, et al. The
BioGRID interaction database. Nucleic acids research, 36:D637D640,
2008.

[41] Hamilton et al. 2017. Representation Learning on Graphs: Methods and
Applications. IEEE Data Engineering Bulletin on Graph Systems.

[42] Scarselli et al. 2005. The Graph Neural Network Model. IEEE Trans-
actions on Neural Networks.

[43] thecn.com, Cyberlab.iupui.edu
[44] K. Henderson, B. Gallagher, T. Eliassi-Rad, H. Tong, S. Basu, L.

Akoglu, D. Koutra, C. Faloutsos, and L. Li. RolX: structural role
extraction mining in large graphs. In KDD, 2012.

[45] David Liben-Nowell and Jon Kleinberg. 2003. The link predic-
tion problem for social networks. In Proceedings of the twelfth
international conference on Information and knowledge manage-
ment (CIKM ’03). ACM, New York, NY, USA, 556-559. DOI:
https://doi.org/10.1145/956863.956972

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

