
An Innovative Approach of Textile Fabrics
Identification from Mobile Images using Computer

Vision based on Deep Transfer Learning
Antonio Carlos da Silva Barros‡§, Elene Firmeza Ohata∗§, Suane Pires P. da Silva∗§,

Jefferson Silva Almeida§† and Pedro Pedrosa Rebouças Filho∗§
∗Programa de Pós-Graduação em Engenharia de Teleinformática (PPGETI),
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Abstract—The identification of different textile fabrics is a task
commonly learned in practice and, therefore, is considered a very
strenuous and costly form of learning, causing annoyance to the
individual who performs it. Based on this context, this paper
proposes a new method for classifying textile fabrics, based on
the development of a computer vision system using Convolutional
Neural Network (CNN). CNN works as a feature extractor by
incorporating the concept of Transfer Learning. Using Transfer
Learning allows a pre-trained CNN model to be reused for a
new problem. In order to highlight the high performance of
CNN, an analysis is performed with feature extractors established
in the literature. Parameters such as Accuracy, F1-Score, and
processing time are considered to evaluate the efficiency of the
proposed approach. For the classification were used Bayesian
Classifier, Multi-layer Perceptron (MLP), k-Nearest Neighbor
(kNN), Random Forest (RF), and Support Vector Machine
(SVM). The results show that the best combination is the
CNN architecture DenseNet201 with SVM (RBF), obtaining an
accuracy of 94% and F1-Score of 94.2%.

Index Terms—Textile Fabrics, Convolutional Neural Network,
Transfer Learning, Computer Vision

I. INTRODUCTION

The need for man to use a fabric that can cover his body
goes back to the beginnings when there was a need for man to
protect his body from cold or heat. The use and manufacture
of fabrics became a basic need and later an item of luxury and
social status. Clothing evolved with humanity and became a
reflection of social, political, religious, and moral aspects of
all stages experienced by human beings [1], [2].

Nowadays, because of the Industrial Revolution and sub-
sequent scientific progress, few people need to know how
to spin or weave, but they need to know how to judge the
quality of the cloths made by the machines considering their
duration. Therefore, the study of textiles becomes essential for
all consumers, as well as the manufacture of the cloth, and the
identification of the fiber assumes greater significance [1], [2].

There are people who learn to judge the quality of fabrics,
through practice and experience, over time, but the method of
”learning by making mistakes” is costly and full of hassles for
a human being [1], [2].

The computer vision area has solved several problems. It
is a research field that has helped humankind to customize
and automate different tasks. For instance, it can be used to
aid in the textile industry tasks. In the literature, some works
have applied this field of knowledge to the classification of
textile fibers, classification of flat fabrics, detection of defects,
or inspection. In [3], an automatic system for identification
of fabric structure was developed, employing the principal
component analysis (PCA) and fuzzy clustering. In [4], the
authors used the Local Binary Patterns and Gray-Level Co-
occurence Matrix, along with artificial neural networks, to
detect fabric defects. In [5], the authors proposed an algorithm
for detecting defects in fabrics, which was based on biological
vision modeling. In [6], a method based on lattice segmen-
tation and lattice templates was developed to automatically
identifies the defects of fabric images. While in [7], the authors
presented a method for detecting fabric defects based on
autoencoder. In [8], the authors used a CNN to identify fabrics,
but they used a dataset with 19,894 images.

This article proposes an innovative approach to classify tex-
tile fabrics. The approach consists of the use of CNN for fea-
ture extraction, based on the definition of Transfer Learning.
We evaluated the deep extractors with five classifiers. Because
it is a complex method, vision-based classification relies on
accurate calculations and fast processing times. Thus, to verify
the performance of each classifier, two evaluation metrics were
used: Accuracy (Acc) and F1-Score (F1S). Criteria such as
extraction time and classification time were also measured.

The results show that DenseNet201, DenseNet169, and
DenseNet121 combined with SVM reached 94.35%, 93.34%,
and 93.52%, respectively, in Accuracy, demonstrating to be
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Fig. 1: Generic CNN model for Transfer Learning.

a valid and reliable approach for the classification of textile
fabrics.

This article is structured as follows. Section II shows the
main features of CNN and its application in our approach.
Section III presents a brief summary of machine learning
techniques employed. Section IV details the methodology
adopted. Session V exposes the results, emphasizing and
highlighting the best values. Finally, Section VI presents the
conclusion and future work.

II. CONVOLUTIONAL NEURAL NETWORK AS FEATURE
EXTRACTOR

Despite the improvement in segmentation and object detec-
tion by modern CNN architectures, it may cause overfitting
problems when applied to small datasets. These architectures
are usually tested in large datasets, such as ILSVRC [9] and
JFT [10], resulting in the use of millions of parameters.

In order to solve this problem, researches have been using
an approach called Transfer Learning [11]–[13]. The central
idea of this technique is to try to transfer the “knowledge”
acquired on a generic task to a specific one. For instance, we
can use what was done to classify objects to identify a type of
cerebral vascular accident on tomography exams. The transfer
learning concept has been applied in several papers [14]–[18].

In order to be possible to apply the transfer learning on
CNNs, it is necessary to follow a few steps. First, build
a model, like the VGG network or Resnet. Then, train the
model in a large dataset, like the ImageNet. After that, remove
the last fully connected layer. Then, apply the remaining
architecture, that now is a fixed transformation, to each image
of the destination dataset, saving them in a new dataset with
their respective labels. Finally, train a new classifier, such as
Support Vector Machines or Multilayer Perceptron, using this
new dataset.

Generically, Figure 1 illustrates the operation of CNN
employing the concept of Transfer Learning. First, a sequence
of filters is applied to the input image (convolutional layer).
Then, the results are resized, resulting in a one-dimensional
vector (flatten layer). After this procedure, the one-dimensional
vector will store the attributes returned by CNN, based on the
input image.

III. REVIEW OF MACHINE LEARNING TECHNIQUES

The classification task runs after using CNNs as a feature
extractor utilizing the transfer learning approach. The outputs

from the transfer learning approach are used as inputs for
the classification methods. In this section, five consolidated
machine learning techniques are summarized.

Bayesian Classifier, henceforth called Naive Bayes, consists
of a technique of machine learning based on Bayes’ theory.
This method belongs to the probabilistic and supervised learn-
ing category [19].

Multilayer perceptron (MLP) is a neural network struc-
ture composed of multiple layers formed by a perceptron
arrangement, with the objective of solve non-linearly separable
tasks [20].
k-Nearest Neighbor (kNN) classifier defines the class to

which a sample is related according to the attributes of the k
nearest neighbors, obtained from the training set. It is defined
as a supervised machine learning method [21].

Random Forest (RF) is classified as a supervised machine
learning method and has as objective to form decision trees
from a feature collection, which was arbitrarily selected from
an initial set [22].

Support Vector Machines (SVM) has as its primary goal to
determine classes with surfaces, or hyperplanes, that increase
the distance between them [23].

IV. METHODOLOGY

In this section, we describe the proposed methodology to
classify the commercial textile fabrics using CNNs as feature
extractors associated with machine learning algorithms.

Figure 2 presents the steps of the methodology. The first step
consists in the dataset construction with textile fabric images
using an Iphone 6. The following step, which is detailed in
Section IV-B, is the feature extraction from the images. The
extracted features are used as input to the classifiers to build
the model. The training and test steps are detailed on Section
IV-C.

A. Dataset Construction

The dataset was built from a set of images divided into 14
classes of commercial fabrics. These classes are listed in Table
I as well as the number of images acquired for each class. The
classes are based on the work of [24], who affirmed that these
classes of commercial fabrics are the most widespread in the
clothing market.

A textile fabric specialist captured 48 images for each
class with different capture distances. Initially, the camera was
placed 5 cm away from the fabric, and then the first capture
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Fig. 2: Methodology of the proposed approach.

TABLE I: Classes of commercial textile fabrics used to build
the training base.

Class Textile Fabrics Type Number of Samples
0 Denim 100% cotton 48
1 Satin 100% acetate 48
2 Satin 100% polyester 48
3 Elastane satin 48
4 Crepe 100% polyester 48
5 100% Wool 48
6 Linen 100% cotton 48
7 Mixed linen 48
8 Knits 48
9 Ramie 48

10 Satin 48
11 Textoleen 50-50 48
12 Tricoline 100% cotton 48
13 100% viscose 48

was made by observing the image with the necessary zoom to
make the fabric pattern evident. The second capture occurred
at the same distance as the first capture, but without the zoom
feature. For the third capture, the camera was moved further
5 cm from the fabric. Finally, for the last capture, the camera
and the fabric had a distance of 15 cm. Each image has a
resolution of 1920 x 1080 pixels.

The sequence of images presented in Figure 3 shows the
result of the image acquisition for one sample of the Ramie
class. Figure 3(a) illustrates the result of capture with zoom in
a 5 cm distance, while Figure 3(b) presents the fabric at same
distance than Figure 3(a), but without zoom. Figures 3(c) and
3(d) show the result of a capture without zoom with distances
of 10 cm and 15 cm, respectively.

B. Feature Extraction

In this paper, we use the CNN with the Transfer Learning
concept. The CNN architectures considered for this work were:
VGG16 [25], VGG19 [25], MobileNet [26], InceptionV3
[27], Xception [28], ResNet50 [29], InceptionResNetV2 [27],

NASNetMobile [30], DenseNet121 [9], DenseNet169 [9] and
DenseNet201 [9], which were pre-trained with the ImageNet
database, and then we used as feature extractors in a com-
puter vision system to identify commercial textile fabrics,
composing the proposed approach. The configuration of each
architecture is specified in its paper. In addition, we extract
features from three well known consolidated feature extraction
methods from the published literature based on texture and
structure in order to compare the results obtained with the
transfer learning technique. These feature extraction methods
are: Gray-Level Co-Occurence Matrix (GLCM), Local Binary
Patterns (LPB) and Hu’s Moments (Hu). Table II presents the
number of features extracted by each extractor.

TABLE II: Number of features extracted by each extractor.

Extractor Number of Features
VGG16 512
VGG19 512
MobileNet 1024
InceptionV3 2048
Xception 2048
ResNet50 2048
InceptionResNetV2 1536
NASNetMobile 1056
DenseNet121 1024
DenseNet169 1664
DenseNet201 1920
GLCM 9
LBP 108
Hu 7

C. Model Training and Test

The classifiers used in this work have different principles,
allowing the coverage of various aspects. The Naive Bayes
classifier is based on probability and statistics; MLP is based
on neural networks; kNN is a technique based on instances.
Random Forest presents characteristics of a bagging classifier,
and SVM is based on an optimal hyperplane.
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(a) With zoom and 5cm camera distance.

(b) No zoom and 5cm camera distance.

(c) No zoom and 10cm camera distance.

(d) No zoom and 15cm camera distance.

Fig. 3: Sample of Ramie class. (a) Image with zoom and
camera placed 5 cm away of the fabric, (b) image without
zoom and camera placed 5 cm away of the fabric, (c) image
without zoom and camera placed 10 cm away, and (d) image
without zoom and camera placed 15 cm away.

TABLE III: Hyperparameters of classifiers.

Classifier Hyperparameter
Search Parameter Setup

Bayes - - Gaussian probability
density function

kNN Grid
Search k 3, 5, 7, 9, 11

MLP Random
Search

algoritm Levenberg-Marquardt method
neuron in hidden layer 2 to 1000

RF Random
Search

number of estimators 100 to 3000
criterion Gini or entropy

maximum depth of the tree None to 6
use bootstrap samples True or False

SVM
Linear

Random
Search C 25, 24, ...,215

SVM
Polynomial

Random
Search

C 25, 24, ...,215

degree 3, 5, 7, 9
SVM
RBF

Random
Search

C 25, 24, ..., 215

γ 215, 214, ..., 23

In this work, each dataset formed by the resulting attributes
after the feature extraction step, had its patterns divided into
two sets, where eighty percent of the samples were destined
for the training phase and the remainder was submitted for the
test step. We performed a 10-fold cross validation, in which
an average of these 10-folds are presented on Section V.

1) Model Training: For the training step, we considered the
values presented on Table III in order to find the best parameter
for the training set. We investigated the Linear, Polynomial
and Radial Basis Function (RBF) kernels for the SVM clas-
sifier. In the Grid Search and Random Search methods, we
determined a 10-fold cross validation. The Random Search
method performed a 20 iterations-search. The model with the
best estimator is saved to use in the next step.

2) Model Test: With the trained model, it is possible to
perform the test in the remaining dataset. The system can
accept the class with the highest score. It is also possible to use
the model to identify a fabric by submitting this new image
to the classification algorithms, which will return a score for
each class of tissue.

D. Results Evaluation

In order to evaluate the proposed methodology, we consider
two evaluation metrics: Accuracy and F1-Score [31]. These
metrics are calculated according to the confusion matrix. It is
important to note that the classes correspond to the type of
commercial fabric.

TABLE IV: Confusion matrix for the textile fabrics classifi-
cation problem.

Real Class Predicted Class
1 2 3 ... 14

1 TP FN FN FN FN
2 FP TN FN FN FN
3 FP FN TP FN FN
... FP FN FN TN FN
14 FP FN FN FN TN

Table IV presents the confusion matrix that portrays the
types of commercial fabrics predicted correctly or incorrectly
by the classification method. It is observed that the matrix is
of order 14 since the number of classes is 14.
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V. RESULTS

The inspection and identification of fabrics have several
applications and is a problem that can be solved with computer
vision techniques. For this reason, it is proposed, in this
work, a system capable of identifying different types of textile
fabrics, assisting professionals and academics.

The results of this work were obtained using several combi-
nations of CNN architectures with classifiers. The analysis is
obtained from the dataset, which was built by a specialist.
Finally, the best combinations have their processing times
analyzed.

The experiments were performed on a computer with a
Linux Ubuntu 16.04 operating system, Core i5 2.5 GHz
processor, and 8GB RAM. We should highlight that the
computer does not have a Graphical Processing Unit (GPU).
Both extractors and classifiers were implemented in the Python
programming language.

Tables V and VI show the mean values and standard
deviations of Accuracy and F1-Score, respectively, calculated
combining the CNN architectures with the classifiers. The best
values are highlighted in green.

Looking at the Table V, we can say that the best accuracy
values were achieved by the SVM(RBF) in association with
the entire CNN architecture, with the highest values being
94.350%, 93.524% and 93.339%, in combination with the
DenseNet201, DenseNet121 and DenseNet169 architectures.
The lowest Accuracy values were returned by combinations
with GLCM, LBP, and Hu Moments.

Analyzing the Table VI, we observed that the best F1-
Score values were achieved by the combinations of the
DenseNet201, DenseNet121, DenseNet169 architecture with
SVM(RBF), returning 94.296%, 93.454% and 93.331% in F1-
Score, respectively. Still analyzing the Table VI, we can also
affirm that the second best classifier, in this evaluation metric,
was the kNN combined with the VGG19 architecture, reaching
the value of 90.887% in F1-Score. The lowest F1-Score values
were returned by combinations with GLCM, LBP, and Hu
Moments.

Tables VII and VIII show the training and test times,
respectively, for each classifier to perform the prediction task,
considering the attributes returned by the CNN architectures
and classic feature extractors.

TABLE V: Accuracy achieved by CNN architectures and classic extractors in combination with the classifiers.

Classifiers
CNN architectures Bayes MLP kNN RF SVM(Linear) SVM(Polyn.) SVM(RBF)

VGG16 32.574±2.860 83.298±5.602 89.064±2.272 89.445±3.044 89.602±2.225 10.369±3.190 89.987±2.761
VGG19 31.409±3.830 88.806±4.180 90.869±0.739 90.303±2.515 89.959±2.239 10.377±3.011 90.356±2.166

MobileNet 70.259±2.871 82.865±3.978 90.074±2.319 89.823±1.413 90.077±2.306 87.963±1.596 90.685±1.637
InceptionV3 64.349±2.077 87.836±4.032 89.551±3.064 86.746±2.718 89.908±2.630 8.857±2.455 89.908±2.630

Xception 67.154±2.732 88.628±2.811 90.873±2.440 91.275±3.135 91.255±1.964 10.534±4.155 91.834±1.464
ResNet50 35.571±4.214 51.160±10.190 85.704±3.114 85.704±3.507 86.611±1.331 14.007±3.624 87.795±1.553

InceptionResNetV2 65.844±3.208 88.595±2.162 89.553±1.439 87.264±2.490 90.496±1.535 12.712±2.910 90.496±1.535
NASNetMobile 60.150±5.399 77.073±8.832 89.088±4.335 89.068±4.355 89.506±3.985 64.932±6.758 90.089±3.726
DenseNet121 58.343±2.605 90.414±1.436 92.371±1.497 92.476±2.866 92.319±2.523 11.496±4.381 93.524±1.666
DenseNet169 53.342±4.123 92.402±1.142 92.785±1.383 92.203±2.486 93.131±1.910 10.919±4.141 93.339±1.792
DenseNet201 56.120±2.557 93.177±1.729 92.798±0.767 93.023±2.017 93.547±1.452 9.049±2.314 94.350±1.177

GLCM 13.439±0.427 17.065±1.973 26.381±4.332 64.298±4.302 16.895±2.650 11.783±2.198 16.346±1.243
LBP 13.237±0.249 28.557±8.618 67.583±3.395 67.611±3.215 65.377±5.756 8.324±1.318 82.059±1.028
Hu 13.023±0.890 17.806±3.550 69.129±2.612 73.812±4.592 35.232±3.597 37.199±2.437 51.071±6.374

TABLE VI: F1-Score achieved by CNN architectures and classic extractors in combination with the classifiers.

Classifiers
CNN architectures Bayes MLP kNN RF SVM(Linear) SVM(Polyn.) SVM(RBF)

VGG16 32.270±3.648 88.284±3.076 89.130±2.381 89.437±3.090 89.618±2.399 3.144±2.366 89.938±2.904
VGG19 30.601±5.164 88.804±4.150 90.887±0.807 90.224±2.611 89.910±2.244 3.870±3.175 90.334±2.142

MobileNet 68.548±4.677 82.283±4.251 90.068±2.344 89.821±1.442 90.067±2.352 88.024±1.639 90.695±1.632
InceptionV3 64.479±2.523 87.845±3.895 89.421±3.020 86.413±2.814 89.720±2.754 1.590±0.846 89.720±2.754

Xception 66.014±2.614 88.250±2.990 90.932±2.423 91.317±3.162 91.277±1.850 2.663±2.093 91.808±1.454
ResNet50 33.146±5.804 48.914±11.683 85.559±3.121 85.740±3.317 86.479±1.231 9.104±4.631 87.694±1.490

InceptionResNetV2 64.507±3.407 88.615±2.206 89.472±1.450 87.107±2.568 90.506±1.537 8.094±3.219 90.506±1.537
NASNetMobile 59.280±5.183 76.568±9.399 89.087±4.419 88.988±4.415 89.454±4.131 64.317±6.526 90.081±3.834
DenseNet121 58.041±2.820 90.339±1.578 92.350±1.481 92.414±2.968 92.277±2.567 4.699±4.411 93.454±1.673
DenseNet169 50.863±4.610 92.374±1.155 92.869±1.302 92.105±2.554 93.139±1.896 4.513±4.148 93.331±1.767
DenseNet201 54.283±2.851 93.137±1.690 92.757±0.801 93.030±1.951 93.509±1.406 1.778±0.797 94.296±1.170

GLCM 3.187±0.191 7.217±1.001 25.428±4.173 64.039±4.725 13.079±3.115 5.881±2.184 11.730±1.929
LBP 3.187±0.191 7.217±1.001 25.428±4.173 64.039±4.725 13.079±3.115 5.881±2.184 11.730±1.929
Hu 3.124±0.217 10.153±2.740 68.807±2.773 73.611±4.986 31.965±3.345 32.567±2.442 48.926±6.521
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TABLE VII: Training time, in seconds, obtained by the classifiers.

Classifiers
CNN architectures Bayes MLP kNN RF SVM(Linear) SVM(Polin.) SVM(RBF)

VGG16 0.021±0.014 82.076±5.683 0.007±0.003 7.265±0.543 0.437±0.006 0.963±0.124 0.513±0.045
VGG19 0.025±0.007 101.236±14.732 0.006±0.001 14.967±0.117 0.417±0.012 0.867±0.018 0.480±0.015

MobileNet 0.019±0.004 82.949±14.151 0.015±0.001 5.264±0.035 0.976±0.014 0.963±0.052 1.616±0.027
InceptionV3 0.030±0.014 153.560±16.144 0.066±0.029 18.532±0.464 2.929±0.179 3.696±0.475 3.078±0.106

Xception 0.033±0.017 41.710±6.431 0.038±0.008 34.248±1.013 2.037±0.278 3.497±0.464 2.040±0.206
ResNet50 0.027±0.006 119.065±49.501 0.049±0.023 23.486±0.219 1.433±0.029 3.445±0.127 2.113±0.040

InceptionResNetV2 0.025±0.005 149.043±35.772 0.015±0.001 22.713±0.291 1.448±0.033 2.537±0.054 1.543±0.044
NASNetMobile 0.018±0.010 70.123±10.366 0.012±0.002 5.129±0.063 1.057±0.014 1.648±0.026 1.243±0.088
DenseNet121 0.023±0.015 132.330±16.677 0.016±0.001 30.174±0.309 0.830±0.006 1.696±0.035 1.524±0.028
DenseNet169 0.030±0.013 123.957±15.914 0.026±0.013 8.248±0.255 1.576±0.176 3.043±0.586 2.126±0.220
DenseNet201 0.031±0.010 138.051±12.765 0.027±0.013 24.287±0.754 1.744±0.035 3.380±0.265 2.502±0.242

GLCM 0.001±0.000 13.704±4.254 0.001±0.000 16.147±0.084 0.100±0.006 0.056±0.006 0.144±0.015
LBP 0.004±0.005 61.965±33.930 0.001±0.000 32.286±1.431 0.424±0.038 0.148±0.010 0.345±0.021
Hu 0.002±0.000 9.663±3.686 0.001±0.000 10.501±0.609 0.390±0.016 0.134±0.011 0.242±0.022

TABLE VIII: Testing time, in seconds, obtained by the classifiers.

Classifiers
CNN architectures Bayes MLP kNN RF SVM(Linear) SVM(Polin.) SVM(RBF)

VGG16 0.001±0.001 0.009±0.004 0.013±0.001 0.179±0.009 0.008±0.000 0.009±0.001 0.008±0.000

VGG19 0.001±0.001 0.011±0.001 0.014±0.001 0.162±0.001 0.008±0.000 0.009±0.000 0.008±0.000
MobileNet 0.002±0.001 0.020±0.002 0.028±0.001 0.163±0.002 0.016±0.001 0.016±0.001 0.018±0.001

InceptionV3 0.001±0.001 0.026±0.005 0.058±0.003 0.160±0.006 0.037±0.002 0.037±0.002 0.034±0.003

Xception 0.001±0.001 0.005±0.001 0.053±0.004 0.178±0.004 0.029±0.001 0.035±0.003 0.033±0.003

ResNet50 0.001±0.001 0.025±0.010 0.039±0.004 0.167±0.002 0.029±0.001 0.035±0.001 0.032±0.001

InceptionResNetV2 0.001±0.001 0.017±0.008 0.041±0.002 0.167±0.002 0.023±0.001 0.026±0.001 0.024±0.001

NASNetMobile 0.001±0.001 0.020±0.002 0.029±0.001 0.161±0.002 0.016±0.001 0.018±0.001 0.017±0.001

DenseNet121 0.001±0.001 0.017±0.003 0.027±0.001 0.157±0.001 0.015±0.001 0.018±0.000 0.017±0.000

DenseNet169 0.001±0.001 0.018±0.005 0.041±0.002 0.167±0.016 0.023±0.001 0.029±0.001 0.025±0.002

DenseNet201 0.001±0.001 0.023±0.004 0.045±0.002 0.153±0.003 0.028±0.001 0.032±0.001 0.030±0.002
GLCM 0.001±0.000 0.004±0.002 0.003±0.000 0.152±0.001 0.001±0.000 0.001±0.000 0.001±0.000

LBP 0.001±0.000 0.005±0.002 0.003±0.000 0.157±0.002 0.001±0.000 0.002±0.000 0.002±0.000
Hu 0.001±0.000 0.005±0.002 0.003±0.000 0.156±0.001 0.001±0.000 0.001±0.000 0.001±0.000

TABLE IX: Extraction time for each extractor.

CNN Architectures Extraction Time (ms)

VGG16 164.42±0.50
VGG19 188.11±0.14

MobileNet 94.01±0.55
InceptionV3 274.61±0.30

Xception 264.12±0.42
ResNet50 188.30±0.64

InceptionResNetV2 632.33±0.32
NASNetMobile 298.43±0.08
DenseNet121 507.37±0.02
DenseNet169 666.03±0.11
DenseNet201 832.14±0.20

GLCM 17.615±9.19
LBP 502.998±194.10
Hu 50.570±20.696

Analyzing the Table VII, we observed that the kNN clas-
sifier provides the best training times in combination with

all CNN architectures, the lowest value being returned when
combined with VGG19 architecture, with 0.006s. On the other
hand, MLP has the worst training time values, in combination
with all CNN architectures, with its highest value being
153.560s.

Looking at Table VIII, we can see that the fastest execution
times were returned by the Naive Bayes classifiers, their
lowest value being 0.001s, in combination with all CNN
architectures, except the MobileNet architecture, with which
the Naive Bayes reached a time of 0.002s. We can also verify
that the Random Forest classifier had the worst test times,
its highest value being 0.179s when in association with the
VGG16 architecture.

Regarding the extraction time, Table IX shows the time of
each CNN architecture to accomplish its task. Looking at Table
IX, it is noted that the best extraction times are returned by the
MobileNet, VGG16 and VGG19 architectures, with the values
of 94.01s, 164.42s and 188.11s, respectively.
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The CNN architecture MobileNet can extract features from
an image in the shortest time. This allows its use on an
embedded system. However, the best combination of this
architecture is with the KNN classifier with a F1-Score value
of 90.068%. On the other hand, DenseNet201 architecture
takes longer to extract the features of an image, nonetheless,
when associated with the SVM(RBF) classifier, it returned
the best Accuracy and F1-Score (94.350% and 94.296%,
respectively). The combination DenseNet201 with SVM(RBF)
classifier still a potential combination since the time to the
extract and test a new image would be less than 1 second.

Therefore, we can note from the presented tables that the
classic methods of feature extractions are not viable for this
application. Even though they achieved proper extraction and
test times, they did not reach satisfactory accuracy and F1-
Score. This phenomenon can be explained by the images with
different distances, thus preventing a precise extraction, mainly
of texture.

VI. CONCLUSIONS AND FUTURE WORKS

This paper proposed a system to identify textile fabrics
utilizing CNNs to extract features from the images from the
transfer learning concept.

According to results, we can conclude that images of a real-
world scenario from a high resolution camera can be used in
the task of identifying fabrics for making clothing. Further-
more, CNN architectures can be used as feature extractors
for this problem; the combination DenseNet201-SVM(RBF)
achieved the best performance in terms of accuracy, reaching
94.350%. This work also developed a prediction system that
can be used as a service for several applications, since we
have the built models (extractor-classifier) saved.

For future works, we intent to acquire new images from
the same classes of the dataset used, and add new classes
to the dataset. Other CNN architectures can also be used,
such as ResNeXt-50 [32] and CapsNet [33], as well as other
machine learning methods, such as Optimum-Path Forest [34].
In addition, a mobile application can be developed to integrate
the proposed system with a smartphone camera.
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