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Abstract—The field of Human Activity Recognition (HAR) fo-
cuses on obtaining and analysing data captured from monitoring
devices (e.g. sensors). There is a wide range of applications within
the field; for instance, assisted living, security surveillance, and
intelligent transportation. In HAR, the development of Activity
Recognition models is dependent upon the data captured by these
devices and the methods used to analyse them, which directly
affect performance metrics. In this work, we address the issue of
accurately recognising human activities using different Machine
Learning (ML) techniques. We propose a new feature represen-
tation based on consecutive occurring observations and compare
it against previously used feature representations using a wide
range of classification methods. Experimental results demonstrate
that techniques based on the proposed representation outperform
the baselines and a better accuracy was achieved for both highly
and less frequent actions. We also investigate how the addition
of further features and their pre-processing techniques affect
performance results leading to state-of-the-art accuracy on a
Human Activity Recognition dataset.

Index Terms—Machine Learning, Supervised learning, Neural
networks, Human Activity Recognition

I. INTRODUCTION

Over the past fifteen years, extensive research has been
carried out in the field of Human Activity Recognition [1].
This has been largely motivated by the technological advance-
ment in monitoring devices within several research areas. One
example where this applies is the improvement of services
in elderly care. As discussed in [2], any form of traditional
methodology (e.g. in-person visits and telephone interviews)
has its inherent limitations and a 24-hour continuous moni-
toring contributes towards mitigating the risks associated with
them. Therefore, the potential that HAR has in order to detect
physical and cognitive changes provides a great opportunity
for the development of bespoke prevention plans.

HAR aims to infer the actions taken by an individual using
monitoring sensors [3]. A generic activity recognition model
takes as input the data collected by the sensors and aims to
accurately classify the activities of the individual.

We use the van Kasteren dataset [4] which consists of binary
sensor activity from three different houses (A, B and C) [4].
The binary sensors capture human activity by indicating, for
instance, if a door or a cupboard is open or closed, if the toilet
is being flushed, or if a person is sitting on a couch, lying in
bed or moving in a specific area. The dataset provides sensor
readings in 60 second intervals.

In this paper, we present a thorough study of ML techniques
including probabilistic (Naı̈ve Bayes, Hidden Markov Model,
Hidden Semi-Markov Model and Conditional Random Field)
and neural network based (Recurrent Neural Network, Long
Short-Term Memory Network, Gated Recurrent Unit, Multi-
Layer Perceptron and a Long Short-Term Memory Network
with a Conditional Random Field layer) models to the clas-
sification task. The main contributions are: (i) A new feature
representation (observation-based) is proposed and compared
against the state-of-the-art results for other feature represen-
tations. The proposed representation outperforms the others
and, in general, is able to produce a better accuracy for both
dominant and minor classes; (ii) We provide an extensive
evaluation and analysis of the aforementioned classification
models. Our analysis shows that the Conditional Random Field
model performs best using an observation-based representa-
tion; (iii) Our best method produces state-of-the-art accuracy
on the van Kasteren dataset.

A. Related Work

A number of papers have proposed techniques for classify-
ing the data in [4] and evaluated them using two evaluation
metrics: the overall accuracy and the mean per class accuracy1.

Both generative (e.g. Naı̈ve Bayes (NB) [4], Hidden Markov
Models (HMMs) [4], [5]) and discriminative (Support Vector
Machines (SVMs) [6], Conditional Random Fields (CRFs)
[4], [5]) methods have been evaluated against this dataset.
The state-of-the-art methods are Hidden Semi-Markov models
(HSMMs) and CRFs [4], [5] depending on which evaluation
metric is being considered.

From the literature we are able to identify the state-of-the-
art methods which provide the best accuracy and mean per
class accuracy, in particular, CRFs and HSMMs, respectively.
The previous best results for those metrics and their standard
deviation and our improved results are summarised in Table I.
Our results for HSMM and CRF differ from the ones that
were published in [4], in particular, the values of the mean
per class accuracy that we obtained for the CRF method
are significantly higher. The improved results are most likely

1The accuracy calculates how often the predictions match the class labels
and the mean per class accuracy calculates the average of the per-class
accuracies.
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TABLE I
ACCURACY AND MEAN PER CLASS ACCURACY RATES (%) AND THEIR STANDARD DEVIATION FOR STATE-OF-THE-ART METHODS OBTAINED BY

REPRODUCING RESULTS PRESENTED IN [4] AND OUR BEST RESULTS FOR HOUSES A, B AND C

House Model Mean per class accuracy Accuracy

A HSMM 74.96 ± 12.1 (75.0 ± 12.1 [4]) 91.81 ± 5.88 (91.8 ± 5.9 [4])
A CRF 69.35 ± 12.07 (65.8 ± 14.0 [4]) 96.93 ± 2.11 (96.4 ± 2.4 [4])
A This paper 88.40 ± 12.43 98.95 ± 1.62

B HSMM 65.18 ± 13.41 (65.2 ± 13.4 [4]) 82.27 ± 13.51 (82.3 ± 13.5 [4])
B CRF 58.06 ± 7.01 (51.5 ± 8.5 [4]) 94.99 ± 5.71 (92.9 ± 6.2 [4])
B This paper 79.08 ± 22.35 96.07 ± 6.35

C HSMM 55.98 ± 15.4 (56.0 ± 15.4 [4]) 84.48 ± 13.17 (84.5 ± 13.2 [4])
C CRF 46.79 ± 15.63 (40.4 ± 16.0 [4]) 90.69 ± 9.05 (89.7 ± 8.4 [4])
C This paper 76.54 ± 18.99 94.10 ± 15.27

due to the enhancement of the MATLAB library L-BFGS2

(Limited-memory Broyden–Fletcher–Goldfarb–Shanno [8]).
Recently, Arifoglu et al. [6] applied SVMs and different

types of Recurrent Neural Networks (RNNs) to the dataset.
In their work, only a portion of the data is used for testing,
which differs from the approach taken by van Kasteren et al.
[4], where a full K-Fold cross validation is carried out. The
results presented in [4] are therefore more trustworthy, hence
we apply the same technique in this paper.

Singh et al. [9] applied an LSTM network to the dataset.
Even though the results did not outperform state-of-the-art
methods, this work demonstrated that LSTMs are capable of
performing well given the temporal dependencies present in
this dataset.

Other techniques such as stacked autoencoders [10] and
modified weighted SVMs [11] have been considered in order
to develop a classifier for the dataset. Furthermore, hybrid
approaches have also been discussed and applied [12]–[16].

B. Roadmap

The rest of the paper is organised as follows. Section II
introduces some of the ML models that were used, Section III
presents the proposed feature representation and the pre-
processing techniques utilised. Section IV demonstrates the
effect that the feature representation as well as the combination
of different features has on a model’s performance. We also
show how our best results improve the state-of-the-art. Sec-
tion V concludes this paper with pointers to future directions.

II. PRELIMINARY

In this section, we present the task we aim to tackle and
provide an overview of some of the ML models applied.

Given a dataset {(Xi
t,yt)}, such that t = 1...T and i =

1...N , where T is the number of data points and N the number
of features, the task is to learn a function f : SN 7→ {1, ..., c},
where S is some abstract space and c the number of activities.
In this kind of task, both 〈X,y〉 need to be provided in order
to perform supervised learning.

2The improvement of the L-BFGS library in 2011 [7] has likely resulted
in a better learning process of the Conditional Random Field model and,
consequently, in an improved algorithm that yields a better performance.

For our dataset, X represents the sensor data and y the
corresponding labels of the activities performed.

A. Probabilistic models

Naı̈ve Bayes, Hidden Markov Model, Hidden Semi-Markov
Model and Conditional Random Field constitute the state-of-
the-art probabilistic models for this dataset. A brief description
of the Hidden Semi-Markov and Conditional Random Field
models is presented in the following sections.

1) Hidden Semi-Markov Model: A Semi-Markov Model is
a generalised Poisson [17] process where the holding times
need not be independent and identically distributed. Although
it is similar to a Markov renewal process [18], the Hidden
Semi-Markov Model (HSMM) [19] is a stochastic process
where a state has a corresponding length. The length of each
state is determined by its duration. Therefore, this is a time-
evolving process where the transition between states is made at
jump times and dependent upon the corresponding probability
distributions.

The main difference between HMMs and HSMMs is the
relaxation of the Markov assumption. In particular, HSMMs
are able to do this by modelling the duration of a state (e.g.
activity). Therefore, a new variable dt is introduced in this
model and the joint probability is calculated as follows:

p(y,X,d) =
T∏
t=1

p(xt|yt)p(yt|yt−1, dt−1)p(dt|dt−1, yt).

We will use maximum likelihood estimation (MLE) to
estimate the parameters θ which maximises the likelihood
of observing y, X and d given the model θ: θ̂ =
arg,max

θ
P (y,X,d|θ).

2) Conditional Random Field: The Conditional Random
Field model, which is the most structurally similar to the
HMM model, is called a linear-chain CRF. This model relies
on the same independence assumptions as the HMM:

(i) yt is only dependent on yt−1 (first order Markov assump-
tion);

(ii) xt is only dependent on yt (output independence assump-
tion).
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Unlike HSMMs, linear-chain CRF models do not explicitly
model the duration of a state. The conditional distribution is
calculated using the following expression:

p(y|X) =
1

Z(X)

T∏
t=1

exp
L∑
l=1

λlfl(yt, yt−1,xt),

where fl(yt, yt−1,xt) is a feature function, λl is a weight
parameter and L is the number of feature functions. The
potential function is the exponential representation of the
product of λlfl(yt, yt−1,xt), which can take any positive
value, hence why Z(X) is needed as a normalization term.

A CRF is also a stationary process and it uses CMLE
(Conditional Maximum Likelihood Estimator), which finds the
θ (CRF parameters) that maximises the conditional likelihood
of observing y given the model θ: θ̂ = arg,max

θ
P (y|X, θ).

Therefore, unlike HMMs which assume that xj are condition-
ally independent, CRFs make no assumptions about p(X).

B. Recurrent Neural Network models

One of the main differences between statistical and neural
network models is related to interpretability. Unlike statistical
ML models, neural network models do not provide interpre-
tation even though they do provide an effective representation
of data properties [20].

In the following sections, two different recurrent neural
network models are presented: RNN and LSTM.

1) Recurrent Neural Network: The RNN model considered
is a fully-connected RNN, where the ouput is fed back to
the input. Hence, RNNs contain loops in them which is what
allows these type of networks to learn temporal dependencies.

Let x = (x1, ..., xT ) be an input sequence and h =
(h1, ..., hT ) the hidden vector sequence computed by a re-
current neural network. In an RNN, the hidden vector h(t), at
time step t, is computed as follows:

h(t) = φ(Whh
(t−1) +Wxx

(t)) + bh),

where φ is the activation function. The parameters W and b
are the weight matrix and bias vector, respectively.

2) Long Short-Term Memory Network: In long-term depen-
dencies, when there is a large time gap between where specific
information is stored and where it is needed, RNNs do not
perform well; and LSTMs [21] are a better and more robust
solution. LSTMs are a type of RNNs which are able to detect
dependencies across long time windows.

The LSTM architecture is composed of connected cells and
each cell is constituted by three gates: the input (i(t)), output
(o(t)) and forget (f (t)) gates, which control the information
that is added to or removed from the cell. Moreover, besides
having an internal state c(t), a cell also contains a layer which
produces the variable c̃(t). This variable is representative of
the candidate values which may potentially be added to the
internal state.

This type of networks are able to learn the importance of
features over time by storing information in the hidden layers.
This is done by performing an optimisation of the weights that
impacts the information flow. Consequently, LSTMs can lead

to a better comprehension of data patterns, which makes them
useful to be applied in the field of HAR.

The following equations are used, in an iterative manner, to
obtain the scalar value h(t), at time step t, of the output vector
of the cell. The symbol � denotes element-wise multiplication.

i(t) = σ(Wihh
(t−1) +Wixx

(t) + bi)

f (t) = σ(Wfhh
(t−1) +Wfxx

(t) + bf )

o(t) = σ(Wohh
(t−1) +Woxx

(t) + bo)

c̃(t) = φ(Wchh
(t−1) +Wcxx

(t) + bc)

c(t) = i(t) � c̃(t) + f t � c(t−1)

h(t) = o(t) � φ(c(t)),

where σ and φ are the activation functions.

III. LEARNING FROM OBSERVATION-BASED
REPRESENTATIONS

A. The Dataset

The dataset which will be used in the experiments refers
to sensor activity in three different houses (A, B and C) [4].
The data is representative of the activation and deactivation
of binary sensors, where a reading is provided every minute
for time spans ranging from 14 to 25 days. As a result, in
the data there are long stretches where the sensor readings do
not change. For example, for houses B and C, on average, the
sensors change state only every one and a half hour.

Van Kasteren et al. [4] used various types of binary sensors
(e.g. passive infrared; pressure mats; reed switches), which
were placed in three different environments: houses A, B
and C. In order to map the observations obtained from these
sensors to activities, an annotation system was put in place
[5].

Table II presents some information about this dataset, in
particular, the number of sensors placed around the house,
the number of activities, the age of the person who inhabited
the house and how many days of data we have. The relative
frequencies of activities in the three different houses are
represented in the full version of the paper [22]. In general,
the most frequent labels in the three houses are ‘Idle’, ‘Leave
house’ and ‘Go to bed’. A slight higher frequency of label
‘Idle’ is noticeable for house C. On the other hand, the label
‘Leave the house’ acquires a higher frequency in houses A
and B.

B. Observation-based Representation

Since there are long periods of time where the sensors do not
change, learning temporal dependencies on this type of data
requires a long time history of previous data points, denoted
as look-back window. We have observed that there is a gradual
increase of training time with higher values for the look-back
window. To overcome this, we propose a new representation
for sensor data called observation-based (OB) representation,
which combines consecutive data points with the same sensor
readings into one data point. Hence, data points are merged if
sensor readings remain unchanged.
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TABLE II
DETAILS ABOUT THE DATASET

House Sensors Activities Age Duration
(days)

A 14 10 26 25
B 23 13 28 14
C 21 16 57 19

Furthermore, three different feature representations were
considered in [4]: raw, changepoint and last-fired. These were
initially introduced in [5] and are a way of comparing how
the data is given as an input and the impact that it has in the
overall recognition performance. In the raw representation, the
sensor takes value 1 when it is activated and 0 otherwise; with
the changepoint representation, the sensor takes value 1 when
it changes state and 0 otherwise; the last fired representation
makes the last sensor that changed state to take value 1 until
another sensor changes its state.

In comparison, our proposed representation is more ex-
pressive than the changepoint and last-fired representations,
because it yields information about the current and/or most
recent sensors that have changed its value, without having
to provide a large number for the look-back window. The
disadvantage of having a large number for the look-back
window is that it may affect the classification of other activities
which do not require all the information provided by the data
that is fed into the network.

C. Time Related Features

When computing the OB representation, the variable ∆t is
obtained by calculating how long the sensor readings remain
unchanged. Since the dataset provides sensor readings in 60
second intervals, ∆t indicates the duration (in minutes) of no
change for a sensor reading. We study the effect of using
this variable as well as the hour variable, which represents
the hour of a sensor reading. By incorporating the latter, the
information provided can be useful for classification purposes.

The frequency of each possible value for variable ∆t in
house A is presented in Figure 1 and we observe a similar
distribution for houses B and C. For house A, this variable
can take values from 1 to 2732. In order to keep the number
of features small, we further discretize ∆t into coarser bins.
Hence, each bin will essentially represent an interval. Based
on the relative frequency, we considered two different ways
of splitting this variable into intervals: one results in a total of
48 intervals and the other one in a total of 7. The difference
between the two lies on the importance of categorising smaller
durations. Further details related to the discretization process
are described in the full version of the paper [22]. We
then encode each interval considering two different encoding
processes: one-hot and unary-based encodings.

Regarding the one-hot encoding process, it will generate
a squared matrix, where the number of rows is the same
as the number of values. Therefore, it creates new binary
columns, indicating the presence of each possible value. As for

Fig. 1. Frequency of the ∆t variable for house A

the unary-based encoding, this process also creates a squared
matrix which has the same dimension as the matrix generated
in the previous encoding process. The main difference between
these two encoding processes lies on the interpretation of the
binary columns. In the one-hot encoding, the binary columns
indicate the presence of each possible value, therefore only one
component in each column will take value one. On the other
hand, for the unary-based coding, the binary columns indicate
the presence of values that are less than or equal to each
possible value; hence, without loss of generality, supposing
the values are in ascending order, all the elements of the lower
triangle of the matrix will take value one.

In regard to the hour variable, which can take values from
0 to 23, we also encode this variable using the two processes
aforementioned (one-hot and unary-based encodings) but we
consider each number a category so, for this particular vari-
able, we will have exactly 24 values. Hence, each category
will be representative of the hour of the sensor reading. The
reason why we encode this variable such that the values of the
features are in the same range as the other features is because
this makes training faster and reduces the chances of getting
stuck in local optima.

IV. EXPERIMENTS

In the following experiments, an OB representation of the
dataset is used in order to compare and evaluate against other
feature representations. The OB representation is obtained
by directly collecting information from the sensors, which
corresponds to the data in its raw representation format. The
raw representation gives the worst results, irrespective of the
algorithm. Hence, a good performance by both generative and
discriminant algorithms is always dependent on considering
a changepoint or last-fired representation. The OB represen-
tation provides a generalisation of the changepoint and last-
fired representations. Some further discussion of the proposed
method and analysis of the results is presented in the following
sections.
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These experiments were run using a K-Fold cross validation
approach, where we cycle through each one of the days using it
for testing and the data corresponding to the remaining days is
used for training. This is consistent with the technique applied
by van Kasteren et al. [4]. The mean per class accuracy as well
as the overall accuracy are presented as evaluation metrics; and
the accuracy for each class is also calculated.

In regard to the neural network models - RNN, LSTM,
GRU, MLP and LSTM with a CRF layer (LSTMCRF) - we
considered the following set of hyper-parameters: 128 for the
number of units, a learning rate of 0.0001, 100 for the number
of epochs and a batch size of 512.

The optimisation algorithms that were used in order to
minimise the error rates of the ML models were the Root
Mean Square Propagation for training the RNN, LSTM and
GRU models, and the Adaptive Moment Estimation optimiser
was used for training the MLP and LSTMCRF models.

These parameters were selected after analysing the training
losses and accuracies of the models applied by taking into
consideration their performances across different sets of hyper-
parameters. We also aimed at making a fair comparison among
these methods and selected the same set of hyper-parameters
for the NN-based models. Moreover, these particular param-
eters have shown to work relatively well for these methods
irrespective of the feature representation.

A. Evaluation metrics

We will be using the mean per class accuracy and the
accuracy as evaluation metrics for our experiments. The latter
can be defined as follows. Let pred and true be the N -
dimensional arrays which contain the model’s predictions and
the true labels of each data point, respectively. Then, the
accuracy is the percentage of correctly predicted activities,
i.e.:

accuracy =
|{i ∈ {1, ..., N} | pred(i) = true(i)}|

N
.

Given the imbalance of the dataset, a classifier would not
be properly evaluated if accuracy was the only metric utilised
to assess its performance. Therefore, the accuracy for each
class is also presented in order to analyse whether the models
are being able to accurately classify not only highly frequent
classes but also infrequent ones.

Formally, the accuracy of a class c is given by

accuracyc =
|{i ∈ {1, ..., Nc} | predc(i) = truec(i)}|
|{i ∈ {1, ..., N} | true(i) = c}|

,

where predc and truec are the Nc-dimensional arrays which
contain the model’s predictions and the true labels of each
data point belonging to a class c, respectively.

Lastly, we define the mean per class accuracy as follows. Let
c ∈ {1, ..., C}, where C is the number of activities in a dataset.
Then, the mean per class accuracy is calculated according to
the following expression:

mean per class accuracy =
1

C

C∑
c=1

accuracyc.

The best values for the mean per class accuracy, overall
accuracy and per-class accuracies are highlighted in bold.

B. Effect of the Feature Representation

All the experiments presented in this section do not take into
consideration the features hour (NoToD, where ToD stands for
Time of Day) nor the ∆t (NoDeltaT), i.e. the features hour
and ∆t were not added to the dataset.

1) Raw Feature Representation: We evaluated 8 differ-
ent methods using a raw feature representation: NB, HMM,
HSMM, CRF, LSTM, GRU, RNN and LSTMCRF. We con-
sidered a look-back window of 1 and this serves as a baseline
for the experiments run in the next subsections. In particular,
the results provided by the methods NB, HMM, HSMM and
CRF were obtained by reproducing the experiments done in
[4]. The CRF model outperformed the other models for houses
A and C. Specifically, the accuracy(mean per class accuracy)
achieved for house A was 91.85±7.80(59.13 ± 15.66) and for
house C 73.83±22.39(32.03±20.23). For house B, the RNN
model achieved the best overall accuracy (87.16±11.12) in
comparison to the other models; however, the CRF model
provided the best value for the mean per-class accuracy
(47.64±13.17).

2) Observation-based representation with RNN-based
methods: We have also applied the LSTM, GRU, RNN
and LSTMCRF methods to the raw and OB feature
representations. We considered the following values for the
look-back window: 2, 5 and 10. In Table III, we present the
results achieved for house A considering the RNN model
across different look-back window values. The full results are
given in the full version of the paper [22].

In regard to house A, we observe that, for all methods, this
dataset does not require a large value for the look-back window
in order to be able to accurately classify highly frequent labels.
LSTM is the method which provides the highest accuracy
considering a look-back window of 2. Also, considering the
mean per class accuracy, GRUs are able to perform better than
any of the other RNN-based methods. We observe that the
optimal value for the look-back window here was 5, which
only differs 0.3 percent points from the result obtained for
the same method with a look-back window of 2; therefore,
since the difference between the mean per-class accuracies is
not significant, a small look-back window provides enough
knowledge in order to achieve a good performance in this
classification task.

For house B, LSTMCRF is the method which provides
highest accuracy considering a look-back window of 2. As for
the mean per class accuracy, RNN with a look-back window
of 5 is the method that performs the best, but we observe
once again that there is not a significant difference between
the mean per class accuracies for a look-back window of 2
and 5.

Lastly, for house C, the RNN method achieved the highest
values for the evaluation metrics considered, where a look-
back window of 5 and 2 gave the best results for the mean
per-class accuracy and the accuracy, respectively.
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TABLE III
ACCURACY (%) PER LABEL FOR RNN MODEL (RAW VS OB FEATURE
REPRESENTATIONS) - HOUSE A (LOOK-BACK WINDOW: 2, 5 AND 10)

Label 2 5 10

Raw OB Raw OB Raw OB

‘Idle’ 25.94 86.0 30.55 66.18 39.19 55.41
‘Leave house’ 96.45 99.88 96.37 98.89 96.17 97.62

‘Use toilet’ 44.66 67.67 52.88 63.84 47.95 55.62
‘Take shower’ 0.0 0.0 0.4 22.31 7.57 22.31
‘Brush teeth’ 0.0 0.0 0.0 0.0 0.0 0.0
‘Go to bed’ 95.21 97.76 95.21 94.33 95.44 91.89

‘Prepare breakfast’ 49.43 54.02 52.87 48.28 55.17 44.83
‘Prepare dinner’ 9.76 15.33 12.54 26.13 13.24 23.69

‘Get snack’ 0.0 4.76 0.0 4.76 2.38 7.14
‘Get drink’ 34.69 34.69 32.65 28.57 38.78 6.12

Mean per class accuracy 48.68 62.58 51.22 60.70 53.68 55.54
Standard deviation 17.42 13.81 16.93 17.50 16.42 17.87

Overall accuracy 85.39 95.46 86.0 91.77 87.0 88.86
Standard deviation 10.49 3.44 10.25 7.91 9.97 9.0

In general, we observe that for lower look-back window val-
ues, our proposed feature representation achieves significantly
better results than the raw representation. Moreover, from the
results obtained for the LSTM, GRU, RNN and LSTMCRF
models, we conclude that the best accuracy for all houses was
obtained by considering a look-back window of 2 and an OB
feature representation of the data. In addition, neural network
models seem not to benefit much from concatenating multiple
data points for training as those techniques learn temporal
dependencies differently.

We also note that, if considering the raw feature represen-
tation, a longer look-back window is required so that LSTM
models are able to obtain reasonable results. In particular, it
becomes hard to accurately predict labels due to the long-
term dependencies inherent to the raw feature representation.
Therefore, based on the results obtained, this implies that there
is an advantage in using the proposed feature representation.
The OB feature representation is shown to be beneficial not
only in obtaining a higher accuracy but also in decreasing the
training time given that a better performance is achieved when
considering a low look-back window value.

3) Observation-based representation with probabilistic-
based methods and a MLP network model: In this experiment,
we use probabilistic models and a feed forward neural network
model and considered an OB feature representation. Unlike
recurrent neural networks, models such as NB, HMM, HSMM,
CRF and MLP are limited to a single “time step” (i.e. a
look-back window of 1). However, it is possible to provide
look-back information to these models. We accomplish this
by feeding in a sequence which contains concatenated data
points. Specifically, we add the most recent data points as
further features of the current single data point. We consider
2, 5 and 10 as the possible values for the number of recent
data points to be concatenated with the current one.

Also, we do not consider the raw representation for these

models as it would result in low information signals, where
repeated information would be given as input to the models
in the form of equal concatenated data points.

For both overall accuracy as well as per-class accuracies,
CRFs were able to outperform all the experiments done
thus far by using an OB feature representation. The best
accuracy values were obtained by concatenating 5 data points
for house A (97.14±5.89) and 10 data points for houses
B (87.55±16.77) and C (90.43±14.85). Nevertheless, the
experiments also show that a higher value for the number of
concatenated data points significantly contributes towards a
higher mean per class accuracy.

C. Adding the Time of Day as a further feature

From the results presented in the last section, it is possible to
conclude that CRF is the algorithm which overwhelmingly is
able to perform the best using an OB feature representation.
In this section, we show the results obtained by adding the
time of day (hour) as a further feature to the dataset. In total,
we considered fifteen different feature combinations in our
experiments.

In all the experiments presented in Section IV-B, the
features hour (ToD) and ∆t (DeltaT) were not added to
the dataset (NoToD&NoDeltaT). In order to test and eval-
uate the need to better distinguish duration intervals, we
considered all the other feature combinations, which result
from adding a one-hot(unary-based) encoding of i inter-
vals of the feature ∆t - OneHotDeltaTi (UnaryDeltaTi ) -
and/or a one-hot(unary-based) encoding of the feature hour -
OneHotToD(UnaryToD) - to the dataset.

The best performance for houses A, B and C resulted
from the feature combinations UnaryToD&UnaryDeltaT7 (5
data points concatenated), UnaryToD&UnaryDeltaT48 (5 data
points concatenated) and OneHotToD&UnaryDeltaT48 (10
data points concatenated), respectively. The full results are
given in the full version of the paper [22]. Furthermore,
we observe that only house C significantly benefits from
using more ∆t values and generally, one-hot and unary-based
encodings produce similar results for all houses.

Specifically, 98.95 ± 1.62 was the best result achieved
for house A, where a unary-based encoding with 7 bins
was considered. For house B, the best result achieved was
96.07±6.35 by applying a unary-based encoding with 48 bins
and the best result obtained for house C was 94.10 ± 15.27
by using a unary-based encoding with 48 bins.

D. Comparison with State-of-the-art methods

In this section, we present our best results and compare
them against the state-of-the-art (Tables IV, V and VI). The
state-of-the-art methods for this dataset are HSMM and CRF
using changepoint and last-fired feature representations [4].

For house A (Table IV), we observe that the accuracy
of every label increased by applying a CRF model with
our proposed representation. In particular, the label whose
accuracy benefited the most by using the OB representation
was ‘Get snack’, which improved by 45%. Other labels that
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TABLE IV
ACCURACY AND MEAN PER CLASS ACCURACY RATES (%) AND THEIR

STANDARD DEVIATION FOR STATE-OF-THE-ART METHODS AND OUR BEST
METHOD FOR HOUSE A - CRF USING OB FEATURE REPRESENTATION
(UNARYTOD&UNARYDELTAT7 - DATA POINTS CONCATENATED: 5)

Label HSMM
(Change-

point)
[4]

CRF
(Last-fired)

[4]

This paper

‘Idle’ 50.75 86.62 95.98
‘Leave house’ 99.66 99.92 99.92

‘Use toilet’ 82.19 61.64 82.74
‘Take shower’ 64.94 27.89 82.07
‘Brush teeth’ 34.38 0.0 40.62
‘Go to bed’ 96.53 99.76 99.64

‘Prepare breakfast’ 68.97 68.97 86.21
‘Prepare dinner’ 51.57 88.85 99.65

‘Get snack’ 54.76 14.29 100.0
‘Get drink’ 67.35 44.9 89.8

Mean per class accuracy 74.96 69.35 88.40
Standard deviation 12.10 12.07 12.43

Accuracy 91.81 96.93 98.95
Standard deviation 5.88 2.11 1.62

TABLE V
ACCURACY AND MEAN PER CLASS ACCURACY RATES (%) AND THEIR

STANDARD DEVIATION FOR STATE-OF-THE-ART METHODS AND OUR BEST
METHOD FOR HOUSE B - CRF USING OB FEATURE REPRESENTATION
(UNARYTOD&UNARYDELTAT48 - DATA POINTS CONCATENATED: 5)

Label HSMM
(Change-

point)
[4]

CRF
(Change-

point)
[4]

This paper

‘Idle’ 59.86 72.62 75.24
‘Leaving the house’ 93.7 99.69 99.21

‘Use toilet’ 71.43 31.17 70.13
‘Take shower’ 92.79 87.39 72.07
‘Brush teeth’ 33.33 19.44 63.89
‘Go to bed’ 68.65 96.15 97.06

‘Get dressed’ 69.57 69.57 86.96
‘Prepare brunch’ 59.52 71.43 82.14
‘Prepare dinner’ 38.03 97.18 95.77

‘Get a drink’ 42.86 14.29 28.57
‘Wash dishes’ 23.81 42.86 71.43
‘Eat dinner’ 42.86 0.0 100.0
‘Eat brunch’ 39.04 0.0 63.7

Mean per class accuracy 65.18 58.06 79.08
Standard deviation 13.41 7.01 22.35

Accuracy 82.27 94.99 96.07
Standard deviation 13.51 5.71 6.35

had significant improvements were ‘Take shower’ (17%),
‘Prepare breakfast’ (17%) and ‘Get drink’ (23%). On average,
considering the label accuracies, we observe an improvement
of 13% between the best value obtained from the state-of-the-
art methods (HSMM (Changepoint) and CRF (Last-fired)) and
the CRF model with our proposed representation.

In regard to house B (Table V), we observe that the accuracy

TABLE VI
ACCURACY AND MEAN PER CLASS ACCURACY RATES (%) AND THEIR

STANDARD DEVIATION FOR STATE-OF-THE-ART METHODS AND OUR BEST
METHOD FOR HOUSE C - CRF USING OB FEATURE REPRESENTATION

(ONEHOTTOD&UNARYDELTAT48 - DATA POINTS CONCATENATED: 10)

Label HSMM
(Last-fired)

[4]

CRF
(Last-fired)

[4]

This paper

‘Idle’ 68.57 82.6 85.81
‘Leave house’ 86.19 95.96 98.14

‘Eating’ 22.19 6.73 72.07
‘Use toilet downstairs’ 63.29 21.52 27.85

‘Take shower’ 60.0 36.32 81.58
‘Brush teeth’ 26.73 4.95 78.22

‘Use toilet upstairs’ 45.0 13.75 52.5
‘Shave’ 43.48 31.88 97.1

‘Go to bed’ 98.03 99.37 96.76
‘Get dressed’ 69.64 56.25 81.25

‘Take medication’ 26.67 0.0 40.0
‘Prepare breakfast’ 33.8 49.3 76.06

‘Prepare lunch’ 48.33 41.67 83.33
‘Prepare dinner’ 69.31 55.86 90.69

‘Get snack’ 20.83 4.17 66.67
‘Get drink’ 0.0 6.45 51.61

Mean per class accuracy 55.98 46.79 76.54
Standard deviation 15.4 15.63 18.99

Accuracy 84.48 90.69 94.10
Standard deviation 13.17 9.05 15.27

of most of the labels improves, but the labels ‘Take shower’
and ‘Get a drink’ decrease by 21% and 14%, respectively. In
particular, the accuracy of label ‘Take shower’ decreases due
to being misclassified as ‘Going to bed’ and ‘Prepare brunch’.
As for label ‘Get a drink’, it is classified 63% of the times
as ‘Idle’, ‘Brush teeth’ and ‘Prepare brunch’. Nevertheless, on
average, we obtain an improvement of 10.3% between the best
value obtained from the state-of-the-art methods and the CRF
model with the OB representation.

We observe that the largest improvement regarding label
accuracy was given by house C (Table VI): on average, there
was an improvement of 22% between the best value obtained
from the state-of-the-art methods (HSMM (Changepoint) and
CRF (Last-fired)) and the CRF model with our proposed
representation. One exception we observe is the label ‘Use
toilet downstairs’. The highest accuracy for this label is ob-
tained with the HSMM method and a last-fired representation.
This occurs because, most of the times, the other two feature
representations misclassify this highly infrequent label as
‘Idle’.

From the experiments above, we conclude that the OB
representation outperformed the state-of-the-art feature rep-
resentations and, in general, there is not only a significant
improvement in the accuracies for each class but also in the
overall accuracy. The confusion matrices for each method
applied to each dataset are given in the full version of the
paper [22].

Even though CRFs outperform HSMM from an overall
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accuracy standpoint, when considering the per-class accuracy,
HSMMs are sometimes able to better classify infrequent
classes in comparison to CRFs. This results from the learning
process each method is undertaking. Specifically, HSMMs
build a model p(xt|yt) for each class, whereas CRFs use
the same model for all classes by computing p(y|X), which
causes competition among classes. Consequently, if a dataset
is imbalanced, a higher likelihood may be obtained if the data
points are classified as the dominant class(es) than if the low
frequent classes are considered and some of the dominant ones
are misclassified [5].

V. CONCLUSION

In this paper, we have presented a thorough study of
different ML techniques for a standard HAR dataset. Our
experiments show that a significant improvement was made
in comparison to state-of-the-art methods in the HAR field.

A new representation for data that is to be given as input
to a model was presented. The results have shown that, by
applying such a representation, models are better able to
learn data patterns and, consequently, successfully perform a
classification task in the HAR domain for both dominant and
minor classes.

By using an OB representation, we improved the mean per-
class accuracy and the accuracy for house A by 13.44% and
2.02%, respectively, in comparison with the state-of-the-art
results. Moreover, for house B, the aforementioned evaluation
metrics increased 13.9% and 1.08%, respectively. As for house
C, results improved 20.56% and 3.41% for the respective
evaluation metrics considered.

Given the results obtained with an observation-based repre-
sentation, its usage may also be suitable and advantageous in
other domains. Moreover, using adversarial zero-shot learning
[23], [24] to recognise abnormal human activity is an interest-
ing direction for future work.
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