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Abstract—This paper proposes a self-organizing control system
for uncertain nonlinear systems. The proposed neural network
is composed of a conventional brain emotional learning network
(BEL) and a cerebellar model articulation controller network
(CMAC). The input value of the network is feed to a BEL
channel and a CMAC channel. The output of the network is
generated by the comprehensive action of the two channels. The
structure of the network is dynamic, using a self-organizing
algorithm allows increasing or decreasing weight layers. The
parameters of the proposed network are on-line tuned by the
brain emotional learning rules; the updating rules of CMAC and
the robust controller are derived from the Lyapunov function;
in addition, stability analysis theory is used to guaranty the
proposed controller’s convergence. A simulated mobile robot is
applied to prove the effectiveness of the proposed control system.
By comparing with the performance of other neural-network-
based control systems, the proposed network produces better
performance.

I. INTRODUCTION

The control of nonlinear systems is regarded as an important
research topic in control engineering. In particular, controllers
must well handle both nonlinearly and uncertainty features
existing in controlled systems [1], [2]. However, difficulties
of mathematical modeling for the nonlinear and uncertain
features impede the development of high-performance con-
trollers [3], [4]. Artificial neural networks possess several
intelligent features such as self-learning and self-adaptation.
Therefore, several artificial neural network-based controllers
have been rapidly developed, so as to obtain fast convergence
and dynamic response [5].

In particular, dynamic systems must require controllers
to have fast dynamic response and rapidly arrange efficient
computational resources, so as to reduce the system response
latency. Several forward neural network-based controllers used
additional resource allocation mechanisms to improve the
dynamic response performance [6]. In addition, our previ-
ous work [7] designed a neural network containing the key
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mechanisms of a typical brain emotional learning controller
network and a self-organizing radial basis function network.
However, such additional mechanisms can only increase or
delete one neuron for each time; therefore, a more efficient
way of resource allocation is required. In addition, Huynh et
al. established a self-organizing network for controlling non-
linear systems [8], [9]. In this work, more weights were added
or removed for each turning epoch.

We noticed that the brain emotional learning controller
network (BEL) can have better performances on dynamic
response due to its dual transmission channels. In Huynh
et al.’s work [9], the two channels in BEL share several
weights; besides, the network structures of the two channels
are identical. As a single channel neural network, CMAC is
widely used in the robotic control system [10]. Therefore, it is
a promising way to use CMAC’s network structure to improve
BEL, so as to possess both computational efficiency and non-
linear approximation ability into network-based controllers.

Based on the above considerations, this work develops
a new type of self-organizing neural network, called self-
organizing emotional cerebellar model articulation controller
(SOECMAC), which integrates a CMAC network and a brain
emotional learning controller network (BELC). In particular,
a self-organizing structure is embedded into the proposed
network to determine when to create a new layer or to delete
a layer of weights. The rule of increasing and deleting for
CMAC layers is introduced. To ensure robust tracking perfor-
mance, the adaptive laws of CMAC and the robust controller
are derived from the Lyapunov function. Based on the new
network, a robotic control system comprising a SOECMAC
network controller and a robust controller is established.

The remainder of this paper is organized as follows. Section
II introduces the architecture and implementation details of
the proposed SOECMAC neural network. Section III presents
the proposed neural network-based control system and update
laws. Section IV provides simulation results and analyzes
the effectiveness of the proposed control system. Section V
concludes the work.

II. PROPOSED NETWORK
A. Network Structure of SOECMAC

The proposed network is shown in Fig. 1. The main struc-
ture is based on the conventional BEL; thus, the proposed net-
work contains two channels: brain emotional learning network
(BEL) channel and cerebellar model articulation controller
network (CMAC) channel. The output of the proposed network



is u; = b; — h;, where b; are outputs of the BEL and h;
are outputs of the CMAC. SOECMAC is composed of the
input space (/), association memory space for BEL channel
(M;) and CMAC channel (M), receptive-field space (J),
weight memory space (V, W), and sub-output space (A, O).
The signal propagation and basic function of each space are
specified as follows.
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Fig. 1. The architecture of the proposed SOECMAC neural network.

1) Input Space: I = [I,, I, ..., I;]7 € R'is an input vector
that is fed to both BEL and CMAC channels simultaneously;
[ is the dimension of the input.

2) BEL Channel: Association memory space (My): M
consists of a group of blocks, where M; consists of n; blocks
in the BEL, every block is represented as a gaussian basis
function. The output of the first layer is defined as:

I —cij)”
ij = exp <—(26])> (1

U3

where I; denotes the i-th input; ¢;; and v;; are the means and
variances of BEL, respectively; ¢ = 1,2,...,01,7 = 1,2, ..., n.
The block matrix of BEL = is defined as:

E=[6n. by b b )T ERT @

Weight Memory Space (V'): v}, is the weight of i-th output,
j-th input, k-th block of BEL.
Sub-output Space (A): a; is i-th output of BEL,

I ny
a; = Z Z Vijk&ij 3)
j=1k=1
3) CMAC Channel: Association memory space (Ms): Mo
consists of a group of blocks, where M, consists of nj blocks
in the CMAC, each block is represented as a gaussian basis
function; the output of the first layer is defined as:

I —myy)?
fij = exp (—W) )
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where m;; and z;; are the means and variances of CMAC,
respectively; 1 =1,2,...,0,7 =1,2, ..., ng.

Reception-field Space (J): Each block in the Reception-
field Space is the product of the corresponding block of the
association memory space Mo, defined as:

l

¢ =[] £ ©)
=1
The block matrix of CMAC @ is defined as:
O = (¢ do...0n,)" €R™ (6)

Weight Memory Space (W): w;; is the weight of i-th
output, j-th block of the Reception-field Space.
Sub-output Space (O): o; is i-th output of CMAC,

0; = sz’j¢j @)
=

4) Output Space: a and o are two output vector, which are
represented as:

a= [al,ag,...,an]T:VTE (8)
0 = [o1, 09, ...,on]T =wlo 9

where n denotes the dimension of the output. The total output
of the SOECMAC is the result of the interaction of BEL and
CMAUC, defined as follows:

v=a—o0o=VIZE—WTo (10)

B. Self-Organizing of SOECMAC

The proposed method uses both structural and parametric
self-learning. For the SOECMAC, the first task is to determine
whether to add a new layer in the association memory of
CMAC channel, and form its concurrent hypercube and weight
memory. If a current input is inside the boundary of the data
sets, the SOECMAC does not create a new layer, but it updates
the parameters for the current rules. Note that only CMAC
channel is adjustable and BEL channel is fixed.

The distance of mean, DM, is calculated as:

.D.Z\4]€ = ||I— mk”Q (11)

where m; = [mlk...mik.‘.mlk]T. Define a MAX-MIN
method to determine whether to add a new layer:

/%:arg min DM,

1<k<ny

12)

If max DM; > K, then a new layer should be generated,

where K ¢ 1s a predefined generated threshold. This means that
for a new input data, if the distance between input data and the
mean is too large for the existing clusters, which means that
the current value of the existing basis function is too small,
then a new cluster should be generated. The number of layers
is increased as:

ng(t+1)=nk(t)+1 (13)



where ny (t) is the number of existing layers at time ¢. For
the new layer, the weight memory space will be randomly
generated, and the initial mean and variance of Gaussian basis
function in association memory space will be defined as:

(14)
15)

Min,, = I;
Ring = %k

Another self-organizing structure is consider whether to delete
the existing layer. The scale of kth element of the jth output

is defined as: v,
MMy, = 2%

J

(16)

Find the maximum scale of n output and the corresponding
minimum component:

k= arg min max M My

1<ksne1<isn

a7

If MM i < K., then the kth layer will be deleted. where K.
is a predefined deleting threshold. This shows that the smallest
part of the current layer is less than the deletion threshold, so
it must be deleted.

C. Parameter Update

The weights in the BEL channel are updated based on the
brain emotional learning rule, Awv, are defined by:

Av = a2 x max (0,d — b)] (18)

d=vxI+pxusocs (19)

where « is a learning rate, d is composed of the input I and
the output uspocp, v and p is the learning rate. The update
law of BEL channel’s weights is defined as:

v(t+1)=v(t)+ Av (20)

The tunable parameters of the CMAC channel are w, m and z.
Therefore, to obtain more robust performance, the parameters
are update by Lyapunov stability analysis theory, rather than
the brain emotional method. The detailed update laws of w,
m and z are described in Section III.

wit+1)=w()+ Aw (1)
m(t+1) =m(t) + Am (22)
z(t+1)=z(t)+ Az (23)

III. NEURAL NETWORK CONTROL SYSTEM

The proposed SOECMAC control system is shown in Fig.
2. The controller consists of a sliding surface, an SOECMAC
network, and a robust controller. The input of the proposed
controller is errors of uncertain nonlinear systems. The error
values are processed by the sliding surface and delivered to the
SOBECMAC network and the robust controller. A nonlinear
system with uncertainties can be formulated as:

2 (1) = f(=(t)) + g(a(t))u(t) + d(t)

where z(t) = [z("D(t)...3(t) 2(t)] € R™! denotes the
system’s state vector, u(t) = [u1(£), uz(t) ... un(t)]" € R™ is

(24)
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controller’s output vector, f(x(t)) and g(x(t)) are unknown
but bounded system model and d(t) is the unknown external
disturbance.

The nominal model of this kind of a nonlinear system is
defined as

2™ (t) = fo(=(t)) + gou(t)

where fo(x(t)) and go denotes the nominal part of f(x(t))
and g(x(t)), respectively. Eq. 25 can be represent as

2 (1) = fo(w(t)) + Af(2) + gou(t) + Ag(a(t))ult) + d(t)
= fo(z(t)) + gou(t) + U(x(t),1) 6)

where [(z(t),t) = Af(z) + Ag(z(t))u(t) + d(t) is referred
to as the lumped uncertainty.

(25)
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Fig. 2. Design of control system.

Assume the reference tracking state vector, x4(t) is defined
as xq4(t) = x&"_l)(t) coZg(t) md(t)] € R™¥!, the tracking
error of the system is defined as:

e(t) = za(t) — x(t) = {e(”’l)(t) 0 e(t)]

An ideal controller u* can be designed if nominal functions
fo(z(t)), go and lumped uncertainty I(x(t),¢) are exactly
known.

u*(t) = gg " [za(n)(t) = fola(t)) — U(x(t),t) + KT e(t)]
(28)
where K = [K,,. ..KQ,Kl}T is the feedback gain vector.
Substituting the ideal controller Eq.28 into Eq.26 gives the
error dynamic equation as follows:

e™(t) + KTe(t) =0

27)

(29)

If K is chosen to correspond to the coefficients of a Hurwitz
polynomial, it implies that lim,_, . e(t) = 0. However, since
I(x(t),t) is not known accurately, the ideal controller u* is
unobtainable. Thus, an SOBECMAC controller is developed
to approximate the ideal controller.

The sliding surface is defined as:

s(t) = "Vt 4 Kre™ D (1) 4 ...+ K, / e(t)dt (30)



The derivative of Eq.30 can be represent as

5(t) =e™(t)+ K e

=xq (™ (t) = fo(z(t)) — gou(t) — l(x(t),t) + KTe(t()31)
There is an approximate error €(t) = u*(¢t) —usoprcmac(t)

between the proposed controller and the ideal controller. Then,
we have:

$(t) = go [u"(t) — u(?)] (32)

where u(t) = usopecmac(t) + urc(t), usOBECMAC
is the controller of SOECMAC, ugrc is a robust controller,
employed to suppress the influence of residual approximation
error between the SOECMAC controller and the ideal con-
troller. Assume that an optimal SOECMAC controller exists
in the ideal sliding model controller u*.

W*T(I)* te

u = uhpwan () +e=VTE - (33)

where ¢ is a minimum error vector, V*, W* =* ®* are opti-
mal parameter matrixes and vectors of V, W, =, ®. However,
the optimal controller is unable to achieve, hence an online
estimated controller is used to approach the optimal controller.
= VTé — WT(i) + URC

U = USOBECMAC + URC (34)

where V, W, é, d are the estimate values of the optimal
parameter matrix and vectors of V* W* =* ®* respectively.
Subtracting Eq. 33 from 34 gives the estimation error

W Te* + e —VIZ+ W'

t=u*—u=V7T=—

— URC

ZVTE—VVT(I)*—WT‘I)—F&—URC
o o (35)
where V =V*-V E=Z*-Z, W =W*-W,d = &* — P.

The expansion of ® in the Taylor series can be obtained as

T
~ d¢
$1 (87;)
o = : = : (m* — 1)
o 9bng \ T
‘ ( om ) m=m
(a¢1>T (36)
0z
+ : (2 =2)+ On
8én \T
( azd) z2=Z
=&, m+®.2+ Oy
where ®,,, P, are defined by:
P M
mn om’ 7 Om }
T m=m (37)
o, = % 9n,
* 0z 0Oz .

where m = m* —m,z = z* — 2, O, is a vector with higher
order terms. Thus we have:

P =P+ D=+ D, m+ P,z +0,; (38)
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Substituting Eq.38 to Eq.35 and Eq.32, yields
0 =VTE W7 (b + B + 0.5+ 0,
—WT (B + ®.2+ O;) + € — ure
VT2 WP - W7 (&, + ®.%) — urc + 0
where 0 = WL i+ WT®T2+W*T0, +e is a combined
error of CMAC. Where V = V* — V = [0y, 02,...,0] is an

approximation error weight matrix of BEL, A kind of H.,
tracking performance is designed as:

[

(39)

t)dt =s"(0)g; ' s(0) + tr [W7 (0! W (0)]
+ T (0), 1 (0) + 27 (02 £(0)

l
+ZA§/ 95(t>dt+z/
i=1 0 i=170
(40)

where 7,,, 7., 7w are diagonal positive constant learning rate,
and \; is an attenuation constant. The initial conditions of
system are set as $(0) = 0,7 = 0,% = 0, W = 0; then Eq.
40 can be represent as:

Z/ dt<Z)\2/ 02(t dt+Z/

Assume that the approximation error between the proposed
SOBECMAC and an ideal controller are bounded, which
means 6 € Lo [0 Ml] = Lo [07M2} ,VMl,MQ S [0,00)
Therefore 37, [ 62(t)dt < Ny, 30", [ 92(t)dt < No,
where N1 and N, are positive constants. If
Z:”l o S2(t)dt = oo. The system will be unstable.
There, the following must hold in order to make sure the
controlled system is stable:

t)dt (41)

m

3

In order to ensure the stability of the system, the update rules
of SOBECMAC and the design of robust controllers must
follow the Lyapunov stability theory. The update rules of BEL
channel have been given in the previous article. The whole
update rules of CMAC channel are designed as:

t)ydt < |[A\|> Ny + Ny < oo (42)

AW = —ny hat®s™ (t) (43)
Am = -1, @7 WsT (t) (44)
Az = —nzq)ZWsT(t) (45)
The robust controller is designed as:
upo = (2R?) T [(T+Z2) R2+1]s7(1)  (46)
where R = diag[A1A2... )] is a diagonal matrix of robust
controller.
Proof. The Lyapunov function is given by:

% [ 5T (t)gg ts(t) + tr [WTn;;VV} +

tr [f/T

L(s(t), V,W,m,2) =

oflf/} vyl + 57715
47



Taking the derivative of the Lyapunov function, yields:

L(s(t),V,W,m,2) = sT(t)gy "5(t) + tr {?Tofl‘;/}

);
ot [T W]+ Tyl + 270712
= sT(t)gy t5(t) — tr [f/Tofl\;/} —tr {WTm},lVﬂ
— gt — 212
=sTHVTE2-WTed - WT (@, + ®.2) — upc + 0)
—tr [f/Ta_l‘L/} —tr [WﬂfWﬂ m? N L — zTn 1Z
< —tr [W (s(0)® 40! W)| = i [s7 ()W @ + .40

_3 [sT(t)W@Z + nglé} +sT(OVE + 5T () (0 — unc)
(43)
From Eq. 18 we can see, if d — b < 0, then Av = 0,
and if d = b > 0, Av = a[Xi x (d—0b)] > 0. Given that
V € Ly[0, M), it can be derived that —tr {‘N/Toflf/} < 0.
Substitute Eq. 43-46 into 48, yields:

E(s(0), VW, 2) < — 3" (0s(0)+ 50202+ 21T 49)

Intergrating Eq.49 from ¢t = o to t = T, yeilds

L(T)— L :_,Z/ t)dt + ZAQ/ 03 (t
l

1
3y
=1 (50)

Since L(T) > O,L(O) > 0, from Eq.41 and 42, it is shown
that 31" [0 T's2(t)dt < oo; i.e., the cumulative error is not
divergent, it is bounded, thus the stability of the proposed

system is proved.

IV. EXPERIMENTATION

In order to illustrate the effectiveness of the proposed con-
trol system, a simulated mobile robot system was used in the
experimentation. Also, systematically compare the proposed
control system with two other comparison controllers, PID
controller and SMC with improved fuzzy brain emotional
learning model-based controller iFBEL) [7].

Fig. 3 shows a mobile robot with two coaxially mounted
driven wheels and a passive wheel. In the figure, r is the
radius of the wheel, 2R is the distance between the two
wheels, P is the midpoint of the two wheels, C' is the center
of gravity of the robot. Then the robot position information
can be expressed by ¢ = [z, y. H]T.where z. and y,. the
coordinates of C; 6 is the angle between the robot and the
reference coordinate system. As for v (t) = [v w]”, v and w
are the translation and angular velocity of the robot.

The dynamic equation of mobile robot presented as follow:

B(g)t—A(q)y (51)

where ¢ is the velocity vector of position and orientation;
g is the acceleration vector of position and direction; M (q)

M(q)+C(q,q)q+9(q)+F(q)+7a =

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

Fig. 3. Wheeled moblie robot model

TABLE I
INITIAL PARAMETERS OF SOBECMAC
BEL CMAC
ny, and ny 9 9
a vy pand 1y | 0.10.10.1 0.1
Nm and 7 0.1 0.1
c and m (-1.5 1.5) -11)
v and z 1 1

is inertia matrix; C(q,q) is the Coriolis/Centripetal matrix;
g(q) is the gravity vector, in this experiment, g(q) = 0; F(q)
denotes a friction vector; 74 denotes external disturbance; B(q)
is the input transformation matrix; 7 denotes the control input
vector; A(g) is a constraint matrix; and ¢ is a Lagrange
multiplier vector.

The reference trajectory of a mobile robot can be described

as ¢ =[x Yr HT]T, the expected velocity can be obtained
T

by using the velocity reference model v,.(t) = [v, w,] .
Thus, the velocity error is defined by:
ea=1r —v=le, ey’ (52)

In the simulation, the parameters of mobile robot are set as:
m = 10kg,I = 5kg-m? R = 02m,r = 0.05m,d =
0.0m, F'(¢) = 0. The external disturbance 74 is defined as:

B sin(¢)
Tqa = 20 {cos(t)] (53)
The reference trajectory is designed as:
Xy = vy - cos(w)
(st o
L T T
The initial state: ¢, = [2 0 %] ,¢=[1 0 Z] ,v, =

0.2m/s, w, = 0.1rad/s. Table I shows the initial parameters
of the SOBECMAC network.

Fig. 4 illustrates the simulated position response of the
mobile robot. The entire tracking time is 65s. The left figure
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Fig. 4. Simulation results of the PID, iFBEL and SOECMAC controllers

shows the whole tracking process; and the right figure shows
the tracking process of the first 10s, in order to observe the
differences of each controller in detail. The red solid line
denotes the reference trajectory; the green dash line, the black
dotted line, and blue solid line present the tracking trajectories
of the iFBEL, PID, and SOBECMAC controllers.

In this experiment, the SOBECMAC achieved a favorable
tracking performance: After a few adjustments, the SOBEC-
MAC can quickly catch the reference trajectory, and closely
follow the reference trajectory. In contrast, the trajectories of
PID and iFBEL required a longer time to approximate the
target trajectory.
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Fig. 5. Simulation results of the proposed control system. (a) Position tracking
error; (b) Position tracking error in the first 2 seconds; (c) Velocity tracking
error; (d) Velocity tracking error in the first 2 seconds.

Fig. 5 illustrates the error of position and velocity, the right
column shows the error of the first 2 seconds. In this figure,
all the controllers can have stable performance. However, the
SOBECMAC controller had a faster and smoother speed to
drive the system to converge.

In order to compare performance differences, Table II shows
the quantitative comparisons of the PID, iFBEL, and the
proposed SOBECMAC. According to this table, SOBECMAC
has the best tracking performance in position, angle, velocity,
and angular velocity. Therefore, the proposed SOBECMAC
control system has better tracking performance than those of
other control systems in this simulation.
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TABLE II
QUANTITATIVE COMPARISONS OF THE PID, IFBEL, AND PROPOSED

SOECMAC
PID iFBEL SOECMAC
P. | 6.4923e-03 | 6.1187e-03 | 5.8230e-03
Oe 1.3981e-02 | 1.2281e-02 | 8.4403e-03
ve | 7.5887e-03 | 2.6597e-03 | 2.5114e-03
we | 4.0888e-01 | 3.9870e-01 | 3.1704e-01

V. CONCLUSION

This paper proposed a novel self-organizing emotional
CMAC neural network-based robotic controller. The newly
developed network integrated the components of CMAC and
BEL; in particular, a type of organization mechanism was
adopted to dynamically adjust the structure of association
memory space. The parameters were adjusted by using Lya-
punov theorem. The simulation of the uncertain nonlinear
system had proved the effectiveness of the proposed control
system. This work can be further improved. It is worthwhile
to focus on the interpretability of brain emotional learning
network; also, the proposed controller will be used in physical
robotic hardware experiments.
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