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Abstract—Swarm guidance, such as the case of guiding a
group of sheep away from a field, is a challenging task. As the
swarm size increases, it becomes necessary that multiple control
points, or sheepdogs, are needed to guide the swarm. In this
paper, a swarm of unmanned aerial vehicles (UAVs) acts as a
moving safety network (aka a formation) that not only guides
the sheep swarm, but also prevents them from dispersing or
reversing to the other side of the field. We investigate two types
of formations. The first type acts as a baseline, maintains fixed
distances from the sheep swarm, and relies on fixed predefined
angular structure relative to the sheep’s global centre of mass
(GCM). The second type is dynamic, where the force vector
to control the UAV and the individual distance of each UAV
from the sheep’s GCM are controlled by a Perceptron, with the
weights optimized by a particle swarm optimization algorithm.
We evolve five Perceptrons to specialize in relative positions in
the formation, which fixes the space cost for the optimization
algorithm, while allowing the size of the swarm of UAVs to scale
up. We demonstrate that the use of Perceptron-networks for
dynamic control scheme reduces the total distance travelled by
the UAVs, is transparent when interpreted with Hinton diagrams,
and transferable to a larger number of UAVs.

Index Terms—Multi-Agent Systems, Formation Control, Shep-
herding, Particle Swarm Optimization

I. INTRODUCTION

Bio-inspired swarm control problems synthesize novel per-
spectives from a variety of fields including biology, con-
trol theory, and artificial intelligence [1]. Studies in multi-
agent systems and swarm robotics attempt to propose cost-
effective algorithms to create swarm behaviour of simple
agents/robots [2], [3].

Swarm control approaches can be divided into two cat-
egories: rule-based and learning-based algorithms [4]. The
former algorithms use a set of fixed rules or predefined
equations to compute the dynamics of the system based on
local or global state information [5], [6]. While they are simple
in design and scalable, they often do not generalize well to
different contexts.

The latter approach is based on machine learning, offers
flexibility, and eliminates the need for a large amount of
knowledge to pre-exist. Various methods applying reinforce-
ment learning or deep reinforcement learning combined with

team communication or a shared mental model have been
proposed to learn decentralized policies for swarm control [7]–
[9]. Nevertheless, these approaches do not scale up well
with an increasing number of swarm members due to the
significant increase in the computational resources required
to train multiple agents simultaneously.

The shepherding problem is inspired by sheep-herding using
a single or multiple sheepdogs in agriculture. Shepherding
is a flocking behaviour in which one or multiple external
agents/sheepdogs, guide a swarm of autonomous agents, called
flocking or sheep agents towards a predefined target. The basic
idea has been transferred to the context of swarm robotics and
multi-agent systems [10]. A wide range of practical applica-
tions [10], [11] of shepherding problem within robotics include
herding cattle or other free-living animals, guiding a group of
sheep away from a field area, assisting in human crowd control
activities, cleaning environmental hazards like oil-spills, or
driving cells to repair tissue in internal medicine [12].

Strömbom et al. [10], [13] develop a heuristic rule-based
shepherding model to explain the interaction between one
intelligent agent and a swarm of autonomous agents using two
basic behaviours: collecting and driving. The former behaviour
collects astray sheep, while the latter drives a flock towards a
goal.

However, the use of a single shepherding agent to control
an entire swarm is ineffective when the number of entities
to be guided increases and their complex behaviours, such as
random flocking or dispersing, challenge the capability of a
single sheepdog to complete the task successfully [14], [15].
The use of multiple shepherding agents is a promising way
to address this issue. Some authors [14], [15] use rules for
multiple agents in order to create fixed sheepdogs formations
such as a line or an arc. In nature, though, the sheepdogs
do not abide to a strict geometric shape or formation. This
begs a fundamental question: how do sheepdogs decide on
their proximity to the sheep while organizing themselves in a
flexible formation?

In this paper, we propose a low-cost dynamic formation
learning approach for multiple UAVs to guide a swarm of
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sheep. In the proposed learning approach, five hyperbolic
tangent (tanh) Perceptrons are used to adapt the positions of
multiple sheepdogs in the controlling area behind the flock
and towards the target. This approach is designed to be
independent of the number of UAVs used for shepherding;
that is, the five tanh networks can be used by more than five
agents. In order to optimize the weights of the five networks,
Particle Swarm Optimization (PSO) [16], [17] is used. This
algorithm is able to produce solutions in a vectorized form,
allowing efficient runs on graphical processing units (GPUs).
Other advantages of PSO are the ease of implementation
and a relatively low number of parameters compared to
other algorithms. This proposed learning approach utilizes the
advantages of PSO to achieve better performance of dynamic
formation. It also provides scalability when the size of the
flock and the number of UAVs increase.

II. RELATED WORK

The flocking behaviour can be seen widely in animal
herds [18], for example, ants, birds, and fishes. A large number
of agents interact and collaborate with one another in order to
achieve different objectives such as finding paths or seeking
food. Understanding these swarm behaviours helps to not only
design effectively distributed and coordinated control methods
in multi-agent systems but also inspire swarm intelligence
optimization algorithms such as Particle Swarm Optimization
(PSO) [16], [17].

In an early research on shepherding [19], the authors attempt
to learn a set of rules for a shepherding agent to guide a
sheep swarm to a desired target by using Genetic Algorithms.
In another study, Lien et al. [20] attempt to simulate four
behaviours: herding, covering, patrolling, and collecting. The
combination of those exhibits effective shepherding strategies.
However, both approaches above are more appropriate for
guiding a small flock size (less than 40) [21].

Aiming to guide a large number of agents or a swarm of
agents (more than 40), Strömbom et al. [10], [13] develop a
heuristic model for shepherding using two basic behaviours:
collecting and driving. The model is promising and is able to
herd up to 300 sheep, although the success rate declines unless
multiple shepherds are in use.

In the context of using multiple shepherding agents, Lien et
al. [14], [15] propose the use of a group of shepherds in order
to control a swarm of sheep, demonstrating multiple shepherds
perform better than a single shepherd. Their control method
creates different fixed formations for multiple shepherds like
a line or an arc. However, those multi-shepherd frameworks
are limited to a small flock size.

Learning dynamic formation control of multiple shepherds
using Strömbom’s model, which is well-known for its ability to
control large flocks, is an unexplored area. A dynamic forma-
tion adapts the formation to the flock, which we hypothesize
to improve efficiency.

In this paper, we propose a dynamic formation production
model, whose parameters are optimized by PSO [16], [17],

for multiple UAVs to guide a large number of sheep towards
a desired target.

III. PSO-BASED DYNAMIC FORMATION LEARNING

An arc formation similar to [14] is created by a set of
fixed rules. Each shepherd specializes in a fixed position
in the arc formation. We adopt the model introduced by
Strömbom et al. [13]. The environment is a L×L square and
obstacle-free paddock. Given M shepherds and N sheep in the
environment, the notations for the shepherds and the sheep are
B = {β1, . . . , βj , . . . , βM} and Π = {π1, . . . , πi, . . . , πN},
respectively. The behaviours of the sheep are identical to that
in Strömbom’s model. Each sheep πi has four behaviours at
a time step t as follows:

1) Escaping: This behaviour is triggered when there is a
repulsive force F tπiβj between sheep πi and shepherd
βj . The position of πi and that of βj at time step t
are denoted as P tπi and P tβj . The force exists when the
distance between them is no more than a predefined
distance Rπβ ; that is,

‖P tπi − P
t
βj‖ ≤ Rπβ (1)

2) Collision avoidance: This behaviour is triggered when
there is a repulsive force between sheep πi and other
sheep πk 6=i. The force is able to exist if the distance
between them is less than or equal to a threshold Rππ;
that is,

∃k 6= i, such that ‖P tπi − P
t
πk
‖ ≤ Rππ (2)

F tπiπ−i
is denoted as the summed force vector on sheep

πi influenced by all others within the threshold distance.
3) Grouping: This behaviour represents an attraction force

F tπiΛtπi
of sheep πi to the centre of mass of its neighbors

Λtπi .
4) Jittering: To avoid impasse, a random noise vector,

sampled from the normal distribution, is added to sheep
πi. This noise is presented as F tπiε with a weight Weπi

and summed into the total force.
Then, each sheep πi has a total force F tπi representing a

weighted sum of force vectors F tπiβj , F
t
πiπ−i

, F tπiΛtπi
, F tπiε,

and the previous total force F t−1
πi at time step t− 1; that is,

F tπi = WπυF
t−1
πi +WπΛF

t
πiΛtπi

+WπβF
t
πiβj+WππF

t
πiπ−i+WeπiF

t
πiε

(3)
The shepherds include two key behaviours: reaching to and

maintaining their fixed positions in the arc formation. Each
shepherd observes the state of the environment and produces
a directional vector F tβj that leads it to an appropriate position
to guide the sheep. The current positions of the shepherds
and the sheep are updated according to Equations 4 and 5
given Stβj and Stπi be the speed of βj and the speed of πi
at time t, respectively. However, in Strömbom model, the
speeds of the agents are fixed.

P t+1
βj

= P tβj + StβjF
t
βj (4)
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P t+1
πi = P tπi + StπiF

t
πi (5)

The dynamic spatial distribution of individuals in the sheep
swarm, which a shepherd does not fully aware of, contributes
to the task complexity.

A. Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a well-known swarm
intelligence optimization algorithm and has been successfully
applied to many realistic problems such as neural network
optimization due to its ability to search globally with low com-
putational cost [16]. In PSO, each particle, which is regarded
as a point in the D-dimensional search space, represents a
candidate solution to the optimization problem. Particles in
the swarm adjust their flying velocities based on both their
individual experience and the swarm experience in order to
arrive at better solutions. The position of the ith particle is
denoted as Xi = {Xd

i , d = 1, ..., D} and its velocity is
represented as Vi = {V di , d = 1, ..., D}. D is the dimension of
the search space. The velocity and position of the ith particle
are manipulated as follows:

V di ← V di +c1 ·rd1 ·(Pbestdi −Xd
i )+c2 ·rd2 ·(Gbestd−Xd

i ) (6)

Xd
i ← Xd

i + V di , i = 1, 2, ..., Np (7)

where Np is the population size, c1, c2 are two acceleration
constants, and r1, r2 are two random numbers in the range
[0, 1]. Pbesti is the personal best historical position of
ith particle, representing individual’s own experience, while
Gbest is the global best position of the swarm, representing
the swarm experience.

Algorithm 1 The pseudo code of PSO-w algorithm

Require: variables Xd, d = 1, ..., D, the evaluation function
F (X)

1: Initialize the algorithms parameters Np, c1, c2, the pop-
ulation positions Xi, i = 1, ..., Np and velocity Vi, i =
1, ..., Np

2: while termination conditions not met do
3: for i = 1, ..., Np do
4: Update the velocity Vi according to (8) and (9)
5: Update the position Xi according to (7)
6: Evaluate the fitness value F (Xi) of particle
7: end for
8: Update Pbest,Gbest
9: end while

10: X∗ = Gbest, f(X∗) = F (Gbest)
Ensure: the best solution X∗, the best objective value F (X∗)

During the initialization phase, Np particles, which repre-
sent Np potential solutions, are randomly generated in the D-
dimensional space. The objective function of the optimization
problem is used to evaluate the fitness value of each particle
in a specific position, based on which Pbest and Gbest are
selected. Then particles update their positions according to
Equation 6 and Equation 7. If the particle finds a better

position in the solution space compared to its previous Pbest,
its Pbest will be updated with that position. Gbest will
be updated only if the swarm finds a better global solution
compared to previous Gbest. Particles keep moving in the
search space until the stopping conditions are met. Hence,
Gbest is considered the optimal solution for the problem.

In PSO, the update of particle’s flying velocity consists of
three parts: the “previous velocity” part, the “cognition” part
related to Pbest and the “social” part related to Gbest. The
first “previous velocity” part benefits the global search while
the last two parts facilitate the local search [22]. To better
balance the global and local search, Shi and Eberhart [22]
added an inertia weight w into Equation 6 to control the effect
of previous velocity. This standard PSO is known as (PSO-
w). A large w allows particles explore more areas while a
small w favors exploitation in local areas of the search space.
The velocity in PSO-w with linearly decreasing w is updated
according to the following equation:

V d
i ← w ·V d

i +c1 ·rd1 ·(Pbestdi −Xd
i )+c2 ·rd2 ·(Gbestd−Xd

i ) (8)

w = wmax − (wmax − wmin) · k/Maxgen (9)

where wmax is the maximum initial w, wmin is the minimum
w, k is the current number of generations and Maxgen is
the maximum number of generations. In this way, the inertial
weight is linearly decreased from wmax to wmin to balance
exploitation and exploration. The pseudo code of the PSO-w
algorithm is shown in Algorithm 1.

B. A PSO-based Dynamic Formation Learning for swarm-on-
swarm guidance

In this paper, a PSO-based dynamic formation learning
method is proposed for optimizing the formation of multiple
UAVs to guide the sheep swarm towards a target position.
The formation of the UAVs is determined by a set of subgoal
points whose positions are generated based on the sheep’s po-
sitions. These subgoals are produced by Perceptron-networks
optimized by PSO. Each UAV is assigned a subgoal as its
navigation destination to deploy the formation.

Figure 1 illustrates a formation of UAVs to herd the sheep
swarm, consisting of multiple subgoal points which are defined
according to two factors: the angular position θ and the
distance δ. Five Perceptron-networks are evolved as subgoal
production models to specialize in relative positions in the
formation for multiple UAVs. Tactical subgoals are generated
at different locations within 180 degree arc in each formation
for guiding the sheep swarm. The Perceptron-networks are
trained to specialize in locations for UAVs acting as left fielder
(LF), left midfielder (LMF), midfielder (MF), right midfielder
(RMF), and right fielder (RF) respectively. LF, MF and RF
UAVs specialize in the most left, the middle and the most
right positions in the formation respectively. The UAVs which
specialize in a position between two UAVs on left or right-
hand side are called LMF and RMF UAVs. This type of
formation generation method allows the size of the swarm
of UAVs to scale up without an increase in the number of
networks to be optimized.
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LF
LMF

RMF

MF

RF

𝑅𝑅𝜋𝜋𝜋𝜋

3𝑅𝑅𝜋𝜋𝜋𝜋

5𝑅𝑅𝜋𝜋𝜋𝜋

Sheep

UAV

Sheep Global Centre 
of Mass (Sheep GCM)

𝛿𝛿
𝜃𝜃

Operating Angle

𝜃𝜃 The angle between 
the subgoal line and 
the bisector of the 
operating angle

𝛿𝛿 The distance 
between the UAV 
and sheep GCM

Target

Fig. 1: A dynamic formation learning problem for swarm-on-
swarm guidance based on shepherding mode of control. Each
UAV is assigned an operating angle. The subgoal of the UAV
is defined by angle θ and the distance δ.

𝑤𝑤𝑝𝑝1𝑘𝑘

𝑤𝑤𝑝𝑝2𝑘𝑘

∑

∑

𝜃𝜃 (−1,1)

𝛿𝛿 (−1,1)

tanh(𝛼𝛼1𝑘𝑘𝑍𝑍)

tanh(𝛼𝛼2𝑘𝑘𝑍𝑍)

Fig. 2: Subgoal production model with two outputs.

As shown in Figure 2, each Perceptron-network consists of
2 Perceptrons which have NI inputs and 2 output values with
no hidden layer between them. The weights are denoted as
wkpj , k = 1, ..., 5, p = 1, ..., NI , j = 1, 2 where k is the
index of five Perceptron-networks, p is the index of NI inputs
and j is the index of two Perceptrons. The number of inputs is
NI and is relative to the specific problem scenario. The outputs
of the network are activated by hyperbolic tangent activation
functions (tanh(αZ)) which result in outputs ranging between
-1 and 1. tanh(αk1Z) and tanh(αk2Z) are used for two outputs
of the kth network respectively, which are then scaled to:
• Angular Position θ ∈ [−ϑ, ϑ]
• Distance Factor δ
Each subgoal is defined as a position that has a distance

of δ from the sheep’s GCM, and the line connecting the
subgoal and the sheep’s GCM forms with the bisector of the
operating angle assigned to a corresponding UAV an angle of
θ. Based on the above, the parameters involved in each subgoal
production model consist of NI × 2 weights of the networks
and 2 α values of the tanh(αX) activation functions for the
corresponding outputs. As we have 5 subgoal production mod-
els based on locations, the maximum number of parameters
that can be searched for in the dynamic formation learning
problem is 5× (NI × 2 + 2). PSO is applied to these models
to obtain higher guidance performance by optimizing the entire

TABLE I: Environmental parameters in the simulation.

Parameter Meaning Value
L Length and Width of Environment 150
N Number of Sheep {50,100,200}
M Number of Shepherds/UAVs {5,7,9}
Rπβ Sensing range of a sheep for a UAV 65
Rππ Sensing range of a sheep for another

sheep
2

Wππ Sheep repulsion strength from other
sheep

2

Wπβ Sheep repulsion strength from UAVs 1
WπΛ Sheep attraction strength to sheep centre

of mass
1.05

Wπυ Inertial strength of sheep previous direc-
tion

0.5

Weπi Strength of sheep movement noise 0.3
Weβj Strength of UAV movement noise 0.3
|Ωπiπ | Number of sheep (neighborhood) a

sheep can sense
25

Sπ Maximum speed of sheep 1
Sβ Maximum speed of a UAV 2
D Minimum distance between the sheep’s

global centre of mass and the target for
successful mission

5

parameter set or only some specific parts of it.

IV. EXPERIMENTS

The swarm-on-swarm guidance with dynamic formation
control is simulated using the model presented in Section III.
The parameters regarding environment initialization and the
interaction between agents for the simulation are listed in
Table I. In each simulation, a predefined number of sheep
are randomly initialized at the centre of the paddock with
their coordinates in the range of between 1/4 and 3/4 of the
length/width of the environment. The UAVs are randomly
spawned at the lower left corner, with their coordinates not
exceeding 1/10 of the length/width of the environment, near
the target position (at (0, 0)). The mission is for all UAVs
to collect and herd the sheep swarm towards and until they
reach the target. Each simulation run ends if the mission is
successful, i.e. all sheep are collected and herded to the target,
or the number of time steps reaches a limit of 2000.

A. States and Actions

Each UAV initially uses axis-parallel movements to travel
to the back of the swarm of sheep until all sheep are in the
third quadrant of the unit circle with the location of the UAV
as the origin. The UAVs then deploy the formation using five
production networks mentioned in Section III-B.

In this experiment, the number of inputs NI is set to
seven, where each subgoal production network takes a 7-
component vector (RS , xct, yct, xsc, ysc, xscs, yscs) as input
states, which consists of both common and individual agent’s
state information:
• Common information:

– Radius of Sheep Flock (RS) (m): the distance be-
tween the sheep global centre of mass and the
furthest sheep

– Direction from Sheep Global Centre of Mass to
Target (xct, yct)

978-1-7281-6926-2/20/$31.00 ©2020 IEEE



• Individual information:
– Direction from the Shepherd to Sheep Global Centre

of Mass (xsc, ysc)
– Direction from the Shepherd to Global Centre of

Mass of other Shepherds (xscs, yscs)

All states are divided by the Paddock Length L to scale the
range of input to [0, 1).

Each UAV uses one of the production network to generate
a subgoal consisting of angular position θ and distance δ
relative to the sheep swarm based on the inputs. The agent
then computes its normalized force vector F tβjsg towards that
assigned position, then the movement of the UAV is guided
by:

F tβj = F tβjsg +WeβjF
t
βjε (10)

where F tβj is the total force exerted on the UAV βj , F tβjε is
the movement noise of the UAV and Weβj is the strength of
the noise.

Each UAV is assigned a π/9 (20 degree) operating angle
relative to the sheep swarm at the LF, LMF, MF, RMF, or
RF positions as demonstrated in Figure 1. The first output
of the production network (in a range of [−1, 1]) is mapped
to an adjusted angle in the range of [−π/18, π/18]. Within
the assigned operating angle, the subgoal point lies on a
subgoal line that forms with the bisector, at the middle of the
corresponding section, an angle θ ∈ [−π/18, π/18], where a
positive θ indicates the subgoal line is rotated an angle of
|θ| counter-clockwise, and a negative θ indicates the subgoal
line is rotated an angle of |θ| clockwise. The location of the
subgoal on the subgoal line has the distance in the range
δ ∈ [RS + Rππ, RS + 5Rππ] from the sheep global centre
of mass.

B. Experimental Setups

The description of every configuration is shown in Table II,
including the fixed formation baseline model and five dynamic
formation learning models with different parameters alterna-
tively fixed or optimized. The parameters to optimize include
the weights wkpj and scaling factors αkj , k = 1, ..., 5, p =
1, ..., NI , j = 1, 2, and the outputs for each Perceptron
network are angular position θ and distance δ. For example,
in the model named α, all weights w of Perceptron-Network
are preset. Then for five Perceptron networks, five α values
used in tangent activation function are the parameters required
to be optimized with PSO algorithm. In this case, one output
θ is computed while the distance δ is fixed for each network.

The parameters of PSO which are shown in Table III are
selected based on the reference [22] and test experiments.
The fitness function is the average distance each UAV travels
divided by the size of the environment. Each particle of PSO
generates a set of parameters whose fitness value is the average
fitness over ten randomly initialized simulations. In total, it is
required 20 × 10 = 200 simulations to compute the fitness
values of all particles within a generation of size 20.

The best set of parameters found by the PSO in each con-
figuration is tested on 100 randomly generated test scenarios.

The performance of these models, introduced in Section IV-C,
are then compared against the baseline fixed formation model.

The scalability of the learning algorithm is also tested with 7
and 9 shepherding agents with only five production networks.
The models learned in cases of 50 sheep are then transferred
to scenarios with 100 and 200 sheep to validate the sensitivity
of the proposed method to an increase in the size of sheep
swarm.

C. Evaluation Metrics

There are three assessment metrics for the proposed algo-
rithm as below:
• Number of steps: the number of time steps for the sheep

to be herded to the target location.
• UAV’s mean travel distance: the distance that one UAV

moves in the environment on average.
• Radius of sheep swarm. The radius of the sheep swarm

can be displayed over time along with the formation
of the UAVs to see how the formation created by the
UAVs affects the collection and guidance of the sheep.
The smaller the radius of the sheep swarm the better the
formation. It is evaluated through visual inspection of the
trajectory figures.

V. RESULTS AND DISCUSSION

In this section, we analyze the performance of different
training configurations when taking into account the different
number of UAVs. The formation and sheep’s movement of
the baseline method and the best dynamic method obtained
through learning are then investigated further to see how their
proposed formations affect the trajectory and behaviour of the
sheep. Finally, the sensitivity analysis of the dynamic method
is conducted with an increase of sheep swarm size from 50 to
100 and 200 in order to evaluate the scalability of our proposed
method.

A. Performance Analysis of Different Training Configurations

In all experiments of 50 sheep, all methods exhibit similar
number of time steps on average. Table IV illustrates the
number of steps as well as the mean travel distance of each
UAV in the mission with five, seven and nine UAVs. Among
dynamic formation learning methods, only the ones with α-
δ (10 α with fixed weights, 2-output networks) or w-α-δ (80
parameters including 70 weights, 10 α with 2-output network)
learned by the PSO algorithm achieve lower travel distance per
UAV on average than the baseline method.

In particular, the w-α-δ configuration can be considered the
best for all cases with five, seven, and nine UAVs operating
on 50 sheep with lowest travel distance (ANOVA and 2-
sample t-test at the significance level of either 0.05 or 0.01).
Due to the fact that the travel distance is proportional to the
power consumption of the UAV, our proposed algorithm with
optimized values of both weights w and scaling factor α to
adjust both the dynamic angle and distance from each UAV
relative to the sheep’s GCM is more efficient than the baseline
fixed formation.
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TABLE II: Configurations of experiments.

Method ID #Outputs per
network

Weights Activation Distance #Optimized parameters in
total

baseline N/A N/A N/A ∀k δk = RS + 3Rππ 0
α 1 (θ) ∀(k, p) wkp = 1

7
αk1 ∈ [−10, 10] ∀k δk = RS + 3Rππ 5 (αk1 )

w 1 (θ) wkp1 ∈ [−1, 1] ∀k αk = 1 ∀k δk = RS + 3Rππ 35 (wkp1)
α-δ 2 (θ,δ) ∀(k, p) wkp1 = wkp2 =

1
7

αk1 , α
k
2 ∈ [−10, 10] δk ∈ [RS+Rππ , RS+5Rππ ] 10 (αk1 , αk2 )

w-δ 2 (θ,δ) wkp1, w
k
p2 ∈ [−1, 1] ∀k αk1 = αk2 = 1 δk ∈ [RS+Rππ , RS+5Rππ ] 70 (wkp1, wkp2)

w-α-δ 2 (θ,δ) wkp1, w
k
p2 ∈ [−1, 1] αk1 , α

k
2 ∈ [−10, 10] δk ∈ [RS+Rππ , RS+5Rππ ] 80 (αk1 , αk2 , wkp1, wkp2)

where k = 1, ...., 5; p = 1, ..., 7

TABLE III: The parameters in PSO.

Parameter Meaning Value
Np The population size 20

Maxgen The maximum number of generations 100
c1, c2 Two acceleration constants 2
wmax The maximum/initial inertial weight 0.9
wmin The minimum/final inertial weight 0.4

On the other hand, when increasing the number of UAVs,
the mean increase in the travel distance per UAV with baseline
method is approximately 4 to 5 meters. The travel distances
of UAVs using dynamic methods also increase along with the
increase in the number of UAVs. Most are equivalent or even
worse than the baseline method, except the w-α-δ model with
less than two meters for each UAV on average. Thus, the
scalability of the dynamic formation learning method with w-
α-δ configuration is higher than that of the baseline method.
The insignificant changes of the number of time steps and the
travel distance per UAV suggest that the model learned with
our proposed method can be applied to a larger number of
UAVs.

B. Learned Weights of Specialized Networks

We further investigate different weight matrices of five spe-
cialized w-α-δ networks to understand how the networks are
tailored to produce adaptive behaviour for their own operating
areas. Figure 3 shows the weights between seven inputs and
two outputs of every network. Positive weights (green colors)
indicate positive reinforcement of the corresponding inputs and
their positive correlation to the output, while negative weights
indicate negative reinforcement.

Each network learns different weight profiles toward its
operating area in the formation. For example, given an increase
in radius of the sheep swarm (first input), the LF-net, MF-
net, and RF-net tend to direct the UAVs slightly to counter-
clockwise side while the rest to clock-wise side. In this case,
the output distances (second outputs) of LF, MF, RMF UAVs
increase significantly while the distances of LMF and RF ones
decrease. Some UAVs on both left and right sides change
their distance to effectively collect back the sheep while others
shrink closer to maintain the driving force to the whole sheep
swarm. In another instance, given the increase of the y-
coordinate of the vector between a UAV and the local centre of
mass of other UAVs (7th input), i.e. the UAV of interest tends
to move north of the other UAVs’ neighborhood, the subgoals

Fig. 3: The Hinton diagrams of weights matrices of five
w-α-δ perceptron-networks with 7 inputs (columns) and 2
outputs (rows) in the experiment involving 5 UAVs and 50
sheep. The green and red squares represent the positive and
negative values respectively. The larger the square the larger
the absolute value of the weight.

of LF and LMF UAVs (located at the north relative to others)
are likely to move clockwise toward the south to maintain the
formation. On the other hand, the MF, RMF, and RF UAVs,
which stay at the south of the neighbourhood, lightly move
south or stay at the same angle.

Our reliance on a simple Peceptron enabled the interpre-
tation above to ensure transparency of the formation model,
while allowing formation to adapt in real-time.

C. The Influence of Dynamic Formation on Swarm’s Move-
ment

The fixed and dynamic formations have different effects on
the collecting and herding ability of the UAV swarm. Figure 4
and 5 show the formations of UAV swarm and the move-
ment of sheep swarm under influence from a fixed formation
(baseline) and a dynamic formation produced from Perceptron
network optimized by PSO with the w-α-δ configuration.

The movement of the sheep swarm, reflected by the tra-
jectory of the sheep’s GCM, in 5 UAV case is less optimal
than the one produced by the dynamic formation. In all
experiments, the rates of decrease of the sheep’s radius are
similar, i.e. both methods can collect the sheep effectively.
However, while the baseline cannot showcase the stabilization
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TABLE IV: Number of steps and travel distance per UAV in 6 different configurations with 5, 7 and 9 UAVs operating on 50
sheep.

Method
Number of UAVs

5 7 9
#steps Travel distance/UAV #steps Travel distance/UAV #steps Travel distance/UAV

baseline 245.70±13.52 431.93±16.77 246.42±10.79 435.61±15.48 246.23±11.41 436.85±16.81
α 245.55±13.37 430.92±17.15 245.87±10.83 435.42±15.64 245.89±8.73 436.68±13.13
w 245.73±11.50 432.48±15.06 245.28±13.73 433.72±17.24 247.46±14.17 438.70±20.57
α-δ 247.90±10.39 425.48±13.17 247.28±11.22 430.69±13.30 248.74±13.32 436.44±17.54
w-δ 245.64±13.14 431.18±18.59 249.14±11.99 438.81±16.70 248.47±18.00 438.60±22.08
w-α-δ 247.65±17.77 418.87±21.35 248.66±12.95 420.55±16.51∗ 245.68±12.24 421.73±15.63∗

The figures in bold are better than their counterparts at significant level of 0.05.
The figures with ∗ are better than their counterparts at significant level of 0.01.

UAV Formation
Sheep’ GCM

Sheep Circle

(a) 5 UAVs

UAV Formation
Sheep’ GCM

Sheep Circle

(b) 7 UAVs

UAV Formation
Sheep’ GCM

Sheep Circle

(c) 9 UAVs

Fig. 4: Formations of UAVs (red) and the circles containing the whole sheep swarm (blue) of size 50 with baseline method.

UAV Formation
Sheep’ GCM

Sheep Circle

(a) 5 UAVs

UAV Formation
Sheep’ GCM

Sheep Circle

(b) 7 UAVs

UAV Formation
Sheep’ GCM

Sheep Circle

(c) 9 UAVs

Fig. 5: Formations of UAVs and the circles containing the whole sheep swarm (blue) of size 50 with dynamic method using
PSO to optimize w-α-δ configuration.

of the sheep swarm’s radius when driving them, our proposed
method can maintain a small sheep radius until the end of
the mission. When the sheep’s circle expands as a result of
instability of baseline method, the UAVs can be forced to hover
or fly backward to maintain a certain distance with the sheep’s
GCM, which raises the travel distance of the UAVs.

On the other hand, the dynamic formation created by our
optimized Perceptrons can adapt to the complex movement of
the sheep within the swarm, approach and modify the force
exerted on sheep to maintain the geometry and steady speed
of the sheep swarm. Hence, the travel distance of each UAV
can be reduced effectively by our proposed method.

D. Transfer Learning in Dynamic Formations

We conduct further studies in which we transfer the model
trained on a scenario where the size of sheep swarm is 50
to cases of larger sizes of sheep swarm. The performance of
the model for 100 and 200 sheep are still equivalent to the

performance of the baseline fixed model method (Table V).
The travel distance of each UAV on average for the specific
case of nine UAVs and 200 sheep is even significantly lower
than that of the baseline method (two-sample t-test at signifi-
cant level of 0.05). It can be concluded that even without the
retraining, the dynamic property of the formation produced
by the proposed method is elastic and is able to adapt to the
change in the size of sheep swarm, which provides equivalent
or even better performance than the baseline method.

VI. CONCLUSION AND FUTURE WORK

In this paper, we introduce a swarm-on-swarm guidance
with the use of UAVs as shepherds to influence a large size
of sheep swarm to guarantee a safe operation on a simulation
environment. Our proposed framework, producing forces for
UAVs to control their formation, uses five Perceptron model
whose outputs are the angles and the distances of the UAVs
relative to the sheep swarm. Each Perceptron-network is
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TABLE V: The number of steps and travel distance per UAV on average achieved by different number of UAVs with an
increase in the number of sheep.

#sheep Method
Number of UAVs

5 7 9

#steps Travel distance
per UAV #steps Travel distance

per UAV #steps Travel distance
per UAV

100 baseline 323.28±29.11 509.35±29.58 336.74±32.90 529.99±35.44 333.32±34.02 529.29±36.65
w-α-δ 327.39±32.22 507.31±30.75 343.72±46.03 524.71±46.79 340.82±43.48 525.28±43.95

200 baseline 348.72±32.34 535.79±33.44 366.29±22.01 560.10±24.45 369.96±27.77 567.83±29.26
w-α-δ 355.88±36.79 538.36±37.80 368.46±32.30 553.89±30.01 367.06±36.09 553.48±37.58

The figures in bold are better than their counterparts at significant level of 0.05.

evolved using PSO algorithm to specialize in different relative
positions in the formation, which significantly reduces the
search space for optimization, while still provide scalability
to different UAVs’fleet sizes.

Compared to the fixed formation produced by the base-
line method, our proposed model, with both learned weights
and scaling factors of the activation functions for outputting
subgoals with changing angles and distances, achieves better
performance in terms of travel distance by the UAVs which
can reduce the power usage. When testing the models with
more than five UAVs, the model scales up better than the other
methods.

Moreover, the investigation on the shape of the formation
and the movement of sheep swarm over time confirms that
the dynamic formation learning model produces more flexible
formations of UAVs and reduces fluctuation of the sheep
swarm. It is also concluded from the results that our proposed
method has potential to transfer to the environment with larger
number of sheep.

Our next step is to transfer the model to the Gazebo
simulation environment before implementing the model in our
UAV testing facilities. Currently, the model works on a level of
abstraction that is transferable to our UAV environment with
autonomy level 3. If the autonomy level is lower, the level of
abstraction of the current study may not be appropriate and
may not transfer easily.
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