
On Ensemble Techniques for Data Stream
Regression

Heitor Murilo Gomes∗, Jacob Montiel∗, Saulo Martiello Mastelini†, Bernhard Pfahringer∗ and Albert Bifet∗‡
∗ Department of Computer Science, University of Waikato, Hamilton, New Zealand

Email: {heitor.gomes,jmontiel,bernhard,abifet}@waikato.ac.nz
† Institute of Mathematics and Computer Sciences, University of São Paulo, São Carlos, Brazil

Email: mastelini@usp.br
‡ LTCI, Télécom Paris, Institut Polytechnique de Paris, Paris, France

Abstract—An ensemble of learners tends to exceed the pre-
dictive performance of individual learners. This approach has
been explored for both batch and online learning. Ensembles
methods applied to data stream classification were thoroughly
investigated over the years, while their regression counterparts
received less attention in comparison. In this work, we discuss
and analyze several techniques for generating, aggregating, and
updating ensembles of regressors for evolving data streams. We
investigate the impact of different strategies for inducing diversity
into the ensemble by randomizing the input data (resampling,
random subspaces and random patches). On top of that, we
devote particular attention to techniques that adapt the ensemble
model in response to concept drifts, including adaptive window
approaches, fixed periodical resets and randomly determined
windows. Extensive empirical experiments show that simple tech-
niques can obtain similar predictive performance to sophisticated
algorithms that rely on reactive adaptation (i.e., concept drift
detection and recovery).

Index Terms—data streams, regression, ensemble, random
patches, random subspaces

I. INTRODUCTION

The application of machine learning to data streams has
grown in importance in recent years due to a large amount of
real-time data generated by networks, mobile phones, and the
wide variety of sensors currently available. Building predictive
models from data streams are central to many applications.
One example is the Internet of Things (IoT) applications,
where connected sensors yield a large amount of data in short
periods. To build predictive models from streaming data, we
need to either settle for traditional offline learning or employ
algorithms capable of learning incrementally. A significant
setback with the offline learning approach is that it is slow
to react to changes in the domain, and these changes can have
a catastrophic impact on the predictive model performance
since the patterns in which the model was trained on are no
longer valid.

Often, the application of a single decision model may lead to
subpar performance in online scenarios, given the previously
mentioned challenges. As a consequence, algorithms that
combine several models, i.e. ensemble methods, are a trend
for supervised learning for both static and streaming data.
Ensembles enable leveraging the power of multiple learners
towards the same goal, whereas alleviating their individual
limitations.

Ensemble learning has been thoroughly investigated for data
stream classification [1]. Consequently, several methods were
proposed [2], [3] to this end. Recently, more methods were
proposed for data stream regression, such as the Adaptive Ran-
dom Forest Regressor (ARF-Reg) [4]. There are at least three
relevant aspects to be considered when proposing an ensemble
learner, either for regression or classification: combination,
generation, and the update dynamics. The combination (or
voting) strategy describes how the individual predictions are
aggregated to obtain the ensemble prediction. For classifica-
tion, a common method is majority vote, while for regression,
the mean is commonly used. The generation method defines
how the base models are trained, commonly including some
mechanism to enforce diversity among the base learners. A
traditional approach is to train learners on different subsets
of instances (e.g., Bagging [5]), features (e.g., the Random
Subspaces Method [6]) or both (e.g., Random Patches [7] and
Random Forests [8]). The update dynamics is fundamental
when dealing with streaming data, specifically evolving data
streams, as it defines how (and when) base models will be
reset or updated to reflect changes to the underlying data
distribution.

These three aspects of ensemble learning were thoroughly
investigated for data stream classification. For example, the
Adaptive Random Forest (ARF) for classification algorithm [3]
includes an empirical comparison between majority vote
against a weighted majority vote. Conversely, the regression
version of ARF, namely ARF-Reg [4], presents only results
considering a simple linear combination (the mean) of the
predictions. Therefore, there is room for the investigation of
other combination techniques, the impact of different reset
strategies to deal with concept drifts, and how to generate
diverse learners for a regression problem.

The main contributions of this work are the following:
• We discuss and analyze several techniques to train base

learners, combine their predictions and update them ac-
tively (or reactively) to address concept drifts.

• We benchmark existing algorithms and the proposed en-
semble variants using 17 datasets. This lead us to insight-
ful conclusions, such as the high performance obtained
by relatively simple models (e.g., k Nearest Neighbors) in
comparison to ensemble models that implement complex

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

drift detection and recovery.
• We provide empirical evidence that indicate that using

reactive strategies to adapt to concept drifts might not
be necessary given an ensemble where base learners are
trained using windows of varying sizes, thus reset at
different time intervals.

The remainder of this work is organized as follows. In Sec-
tion II, we review ensemble methods for data stream regression
and classification. Section III contains the description of strate-
gies to build, combine and update ensemble models designed
for evolving data stream regression. Section IV, introduces the
four sets of experiments that provide an insightful analysis of
the presented ensemble strategies. Finally, in Section V we
present our concluding remarks and directions for future work.

II. RELATED WORK

The Fast and Incremental Model Trees (FIMT-DD) [9] is
the most widely used algorithm to build incremental regression
trees for streaming data. Similarly to the Hoeffding Tree
algorithm [10], FIMT-DD starts with an empty tree that keeps
statistics from arriving data until a grace period is reached. The
features are ranked according to their variance w.r.t the target
variable to decide for splits, and if the two best-ranked differ
by at least the Hoeffding Bound [11], the node splits. FIMT-
DD includes a change detection scheme that periodically flags
and adapts subbranches of the tree where significant variance
increases are observed. In [12], the authors propose the On-
line Regression Trees with Options (ORTO) algorithm,
that introduces ‘option’ nodes, which allow an instance to
follow all the branches available in a tree node. The Adaptive
Model Rules (AMRules) [13] learns both an ordered and an
unordered rule set from a data stream. To detect and adapt
to concept drifts, each rule is associated with a Page-Hinkley
drift detector [14], which prunes the rule set given changes in
the incoming data.

The development of ensembles of regressors attracted less
attention than ensembles of classifiers for streaming data, even
though there is a sizeable amount of literature on this topic
for batch learning [15]. For streaming data, Ikonomovska et
al. [16] proposed the online random forest (ORF) and online
bagging (OBag) ensembles that use the FIMT-DD as the
base learner. Based on empirical experiments, the authors con-
cluded that the ORTO-A (online option trees with averaging)
outperformed both OBag and ORF in terms of mean squared
error (MSE). More recently, the Adaptive Random Forest
regressor (ARF-Reg) [4], an adaptation of the data stream
classifier [3] of the same name was proposed. ARF-Reg builds
a forest of FIMT-DD trees as ORF, the main difference be-
tween both algorithms is that ARF-Reg employs one instance
of the Adaptive WINdow (ADWIN) algorithm [17] per tree to
detect concept drifts. The way in which randomization is added
during model generation in a random forest is particular to
decision trees. A more general approach is to use the random
subspaces method [6] as in Heuristic Updatable Weighted
Random Subspaces (HUWRS) [18] and Streaming Random
Patches (SRP) [19] algorithms. SRP trains each base learner

on a subset of features and instances from the original data,
namely a random patch [7]. This strategy to enforce diverse
base models is similar to the one in the random forest, yet
it is not restricted to using decision trees as base learner.
Moreover, in [19] the overall results (in terms of accuracy)
for SRP outperformed the adaptive random forest (ARF) [3]
in a multitude of datasets.

In this work, we introduce techniques that can be applied
to ensembles of regressors for streaming data. We focus on
four aspects: combination, generation, base learner, and reset
strategies. For generation, we explore techniques that induce a
diverse set of base models by training them on different subsets
of instances (bagging), features (random subspaces) or both
(random patches). To combine the predictions, we investigate
the benefits of using the median instead of the mean. We also
investigate the impact of different base learners (incremental
trees and k-nearest neighbors) or variations of these (i.e.,
adapting the leaves of the tree). Finally, we challenge the
well-established strategy of resetting base learners according
to some drift detection algorithm [3], [4], [19] against simpler
strategies, such as fixed windows of varying sizes.

III. ENSEMBLE STRATEGIES FOR DATA STREAM
REGRESSION

In simple terms, an ensemble learner is a set of base models
and an integration method to combine their predictions. When
applied to stream data, it may also incorporate some reset
dynamics to adapt the ensemble to potential changes in the
data distribution. There is a vast literature concerning strategies
to improve ensemble classifiers for streaming data [1], yet
not as many approaches have been thoroughly investigated for
ensembles of regressors. In this section, we discuss strategies
that can potentially leverage an ensemble learner for data
stream regression.

A. Generation - Training and Diversity Induction

There are different approaches for generating (training)
base models. The motivation for the development of such
strategies is to enforce diversity into the ensemble. If all the
base models make homogeneous predictions, it is clear that
their combination is no better than just using one of them.
Many algorithms provide mechanisms to induce diversity
implicitly by training each base model on different subsets
of the data. Canonical examples include bagging [5], the
random subspaces method [6], random forests [8], and random
patches [7]. These techniques were successfully adapted and
applied to data stream classification [2], [3], [18], [19], and
some of them to regression [4], [16]. We employ generation
techniques that do not rely on a specific algorithm as the
base learner. Precisely, we explore Random Subspaces (RS),
Bagging (BAG)1, and Random Patches (RP). These generation
techniques enforce that each base model is trained with dif-
ferent subsets of instances (BAG), features (RS) or both (RP).

1We refer to it simply as BAG. However, we are in fact using the
resampling strategy introduced in [20] where Poisson(λ = 6) is used instead
of Poisson(λ = 1), as in the original Online Bagging adaptation by Oza [2].

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

On top of that, these are techniques that modify the training
data presented to each base learner without explicitly changing
the base learner algorithm (e.g., random forests manipulate the
individual tree construction algorithm). A similar approach is
explored in [19] for data stream classification.

B. Combination

We analyze two strategies for aggregating the predictions,
the mean and the median. Aggregating the ensemble prediction
as the mean of its members’ predictions is a simple and often
effective strategy used in a multitude of algorithms [15]. One
drawback of the mean as a measure of central tendency is
that it can be affected by any single value that is either too
high or too low in comparison to the rest of the sample. In
our context, it is desirable to avoid situations where a single
model prediction can have a potentially harmful influence on
the overall prediction. For example, after resetting a base
model, the relatively ‘new’ model may produce predictions
that deviate too far from others, simply because it has not
been trained on a sufficiently large amount of data. However,
the other way around can be true as well, i.e., a single
learner’s prediction positively influence the overall combined
vote. To investigate further we propose comparing the mean
aggregation against a median aggregation. Using the median
to aggregate ensemble predictions was used in the Bragging
(bootstrap robust aggregating) algorithm, a variant of Bagging
proposed by Bühlmann in [21].

C. Reset Strategy

The reset strategy in an ensemble, designed to cope with
evolving data streams, is an utterly important component. The
strategies for maintaining learning algorithms up-to-date even
when faced with concept drifts are often categorized as explicit
(or reactive) and implicit (or proactive). Reactive methods
rely on an algorithm (i.e., drift detector) that indicates the
need to reset the base models, while active methods constantly
resets the base models according to some predefined strategy.
Reactive strategies are popular and often employed alongside
ensemble methods for data stream classification [3], [22] and
regression [4], [9].

We now describe three strategies for resetting the ensemble
model, depicted in Figure 1. All of them follow the same
principles of replacing an active base model with a model that
has been trained without influencing the ensemble decisions
(namely, a background model). The intuition behind training
a model before adding it to the ensemble is to avoid an un-
derfitted model interfering with the ensemble predictions. The
differences among these strategies lie on how they determine
the start of the training for the background model (ts) and the
replacement (tr) of the current model.

• Adaptive Window. A drift detection algorithm monitors
the error of each base learner, and whenever a drift is
signaled the associated base learner is reset (thus ending
its training window);

• Fixed Window. The length of each training window is
predefined, such that each model is reset after reaching
the maximum number of instances.

• Random Window. This approach adds another level of
randomization by determining the window length of each
learner randomly.

The adaptive window depends on the change detection
algorithm used to identify potential drifts (warnings) and
actual drifts. We use the ADaptive WINdow (ADWIN) [17]
algorithm, but other detectors could be used as well. The error
of each base model is monitored by a different instance of
ADWIN. A warning signal determines when to start training
the background model (ts), and a drift signal determines
when to replace the model (tr). Effectively, ts and tr are
automatically set, but the detection algorithm itself adds some
hyperparameters (i.e., the confidence λ for ADWIN), thus it
is not entirely automatic. This strategy has been explored in
multiple works for both regression [4] and classification [3],
[19].

In the fixed window strategy, we avoid simultaneously
resetting the base models by adding a small shift to the
hyperparameters ts and tr, such that the training of the
background model and the replacement of the current model
are slightly different for each base model. This way, we also
avoid replacing all members of the ensemble at the same
time, which effectively represents resetting the ensemble. We
can associate ts and tr with the warning and drift detection
from the adaptive window. This strategy is similar to how
data is buffered to sequentially train batch learners in the Fast
and Slow Framework [23], where batch and stream learning
methods operate together.

To generate random windows that are neither too short
nor too large, we constraint the length of the window l
to be a positive integer approximately in the interval l ∈
(t0− 1/W, t0 +1/W). Given hyperparameters t0 and W , the
probability that the window of training ends after observing t
instances is given by Eq. 1.

Pr[reset] = 1/(1 + e−4(t−t0)/W)) (1)

As the number of instances observed t approaches t0−W/2,
the probability that a reset is triggered starts increasing,
reaching Pr[reset] = 0.5 when t = t0, and approaching
Pr[reset] = 1.0 after t0 + W/2. Other similar approaches,
such as uniformly choosing a random number between t0 −
W/2 and t0 +W/2, could be used, but we remark that they
would produce similar results.

The question that we want to answer with both the fixed
and random window approaches is:

Does signaling when to reset base models using an accurate
drift detector positively influences the predictive performance
of the ensemble, OR the positive effects are caused by period-
ically resetting the base learners?

In [24], the authors presented a similar empirical study to
verify the relevance that a drift detector plays on a classifi-
cation system. The conclusions obtained by the authors were

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

mn

m2

m1
b1

ts
1

tr
1

b2

ts
2

tr
2

bn

ts
n

tr
n

instances

...

(a) Adaptive Window.

mn

m2

m1
b1

ts
1

tr
1

instances

b2

ts
2

tr
2

bn

ts
n

tr
n

...

(b) Fixed Window.
instances

m1

mn

m2
b2

Ws
2

Wr
2

b1

Ws
1

Wr
1

bn

Ws
n

Wr
n

...
(c) Random Window.

Fig. 1: Reset model strategies. Let mi denote the i-th model in the ensemble, in all strategies a background model bi starts
training at tsi and it replaces mi at time tri . After a model is replaced, the reset process starts again. In Fig. 1a the ADWIN
drift detector is used, tsi and tri are set according to changes in the performance of a model i as detected by ADWIN. In
Fig. 1b a fixed-size window is used between tsi and tri . We vary the size of such window for each member i of the ensemble,
to ensure that background models are trained on different number of instances and to avoid replacing all members of the
ensemble at the same time. In Fig. 1c two adjacent windows Wsi , Wri are defined. These windows correspond to the range in
which the training of the background model starts (tsi) and when the model replacement takes place (tri). Both events happen
at random within the corresponding window.

that a fine-tuned fixed window length was able to overcome
a system that relies on an adaptive window length (drift
detector). The caveat is that it is not trivial to determine the
window length ahead of time in an optimal way. However, one
may want to avoid too short or too large (or infinite) window
lengths. Windows that are too short do not allow the base
model to learn any concept effectively, resulting in suboptimal
performance. Conversely, windows that are too large imply the
risk of keeping old concepts within the ensemble.

D. Base learner

We experiment with two popular regression algorithms as
the base learners for the ensemble variations. The first is the
Hoeffding Tree Regressor (HTR), which is a variation to its
classifier counter-part by Domingos and Hulten [10]. Similarly
to FIMT-DD [9], HTR split decisions are based on the variance
information, and the aggregation at the leaves can either be
performed by a linear model (i.e., a perceptron) or the mean
target values of examples reaching the leaf. Nonetheless, HTR
does not include mechanisms for concept drift adaptation as
FIMT-DD. This fact, though making HTR not coping with
non-stationary distributions when working standalone, shall
improve its computation resource usage over FIMT-DD. The
second algorithm is k nearest neighbors (KNN). KNN is a
common baseline for both classification and regression. The
basic kNN regressor searches for the k instances that are
closer (w.r.t. a given distance metric) to an instance whose
target value has to be predicted. The predicted value is the
unweighted mean of the k nearest instances found. KNN is
known to be a stable learner, i.e., given a small variation in
the training sample for two KNN models, their predictions
will be fairly similar. There are different approaches to enforce
instability to KNN models, such as injecting randomness to

the distance metrics [25] or using different random subspaces
to build the training samples [26].

It was observed in [16] and [19] that as Hoeffding trees
grow larger they become more similar w.r.t. their predictions.
We shall observe a similar behavior if KNN is employed with
bagging. In this work, we refrain from applying adaptations to
the base models with the sole intention of inducing diversity
as we lack the space for appropriate analysis and discussion
of such an important topic. Furthermore, we rely on ensemble
generation strategies to enforce diverse predictions for KNN
and HTR, precisely by using random subspaces and random
patches.

IV. EXPERIMENTS

For every experiment we apply a test-then-train evaluation
strategy, i.e., each instance is used for testing and then
used for training. We analyze how the learning algorithms
performs in terms of Root Mean Square Error (RMSE) in
different scenarios including real and synthetic data. There
are 17 datasets used in the experiments, including real (7) and
synthetic datasets (10), such as Hyperplane (Hyper) and Radial
Basis Function (RBF) variations. We use three variations of
Hyper and RBF synthetic datasets, each of them simulating
a different type of drift. Synthetic datasets variants identified
with (G) and (A) simulates gradual and abrupt drifts every
125K instances (i.e., 125K, 250K and 375K). The window
of change for abrupt drifts is 1, and 20, 000 for gradual drifts.
Variants (I) simulate incremental concept drifts. The summary
statistics of the datasets are shown in Table I.

Some hyperparameters were fixed throughout all experi-
ments. The ensemble variants (e.g., ARF-Reg) were executed
with 30 base learners and a subspace size of 60%. Most
of the base learners are based on variants of a Hoeffding

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

TABLE I: Characteristics of the evaluated datasets. Simulated
Drifts: (A) Abrupt, (G) Gradual, (I) Incremental. The first
group (top) contains the real-world datasets, and the second
group (bottom), the synthetic datasets.

Dataset #Instances #Numeric
features

#Categorical
features

Abalone 4977 7 1
Bike 17379 12 0
CalHousing 20500 8 0
House8L 22784 8 0
House16H 22784 16 0
MetroTraffic 48204 4 3
Pol 15600 48 0

Ailerons 13750 40 0
Elevators 16599 18 0
Fried 40768 10 0
MVDelve 40967 7 3
Hyper(A) 500000 10 0
Hyper(G) 500000 10 0
Hyper(I) 500000 10 0
RBF(A) 500000 20 0
RBF(G) 500000 20 0
RBF(I) 500000 20 0

Tree, including the HTR and FIMT-DD. In these cases, we
used a configuration that has been successful for ensemble
classifiers, i.e., a grace period of 50 and a higher confidence
(δ = 0.01). BAG, RP, and RS, their variants and base learners,
were executed and implemented2 in scikit-multiflow [27]. The
remaining considered algorithms are available in MOA [28].
Unless otherwise indicated, all the algorithms were performed
using their standard hyperparameters, according to their im-
plementations.

To facilitate the identification of the ensemble variants,
we introduce the following naming convention. Generation:
random patches (RP), bagging (BAG), random subspaces (RS);
Combination: mean (µ), median (med); Reset strategy: adap-
tive window (a), fixed window (f), random window (r); Base
learner: Hoeffding Tree regressor with mean leaves (HTRm);
Hoeffding Tree regressor with perceptron leaves (HTRp); k-
Nearest Neighbors regressor with mean aggregation (KNN).
For example, when identifying a variant of Random Patches
using Mean aggregation, Adaptive Window reset strategy, and
HTR with perceptron at the leaves, we write RPaµ-HTRp.

Our goal is to present and discuss the impact of the
strategies discussed in Section III, as well as compare some
of them against existing algorithms. It is infeasible to re-
port all possible configurations due to the large number of
combinations. Therefore, we organize the experiments in four
groups to balance a breadth analysis with an in-depth analysis.
In the first set of experiments we analyze the impact of
the Generation and Combination strategies. We follow that
experiment with an analysis of the impact of the base learner

2https://github.com/jacobmontiel/StreamingRandomPatchesRegressor

to some of the ensemble variations and how they compare
against single instances of the base leaner algorithms. The
third experiment was designed to answer the question posed
in section III, which challenged the importance of hybrid
solutions that combined drift detectors to the ensemble (i.e.,
adaptive window reset strategies). Finally, the last set of
experiments compare some of the ensemble variants against
algorithms from the literature.

A. Generation and Combination

To verify the impact of both the generation and combination
strategies we present the experiments in Table II. For this
analysis, we fixed the base learner as HTRm. We observe that
the BAG variants obtain the best results overall. Therefore,
for the given datasets, it is not possible to conclude that
improvements could be observed in terms of RMSE when
employing random subspaces as part of the generation process.
One possible cause can be that the majority of the datasets
contain mostly relevant features, i.e., by building models
on subsets of the feature set, it is not possible to obtain
reasonably accurate models, which in turn negatively impacts
the aggregated predictions. In general, the median combina-
tion approach was not more accurate than the mean, which
shows that even though the mean is a less stable measure of
central tendency, it does not seem to influence the ensemble
performance negatively. Therefore, the hypothesis that extreme
values may lead the combination astray could not be observed
in these experiments. A possible explanation is the type of
base learner, i.e., HTRm, produced predictions that are more
stable than the predictions from HTRp.

TABLE II: Generation and combination analysis (genera-
tion=[BAG | RP | RS], combination=[mean (µ) | median
(med)], base learner=HTRm), reset strategy=adaptive (a).

Dataset BAGaµ BAGamed RPaµ RPamed RSaµ RSamed

Abalone 2.5911 2.6346 2.5230 2.5794 3.0465 3.0629
Bike 81.0924 82.0560 92.1240 89.1398 100.9140 98.1813
CalHousing 63000.7071 63447.0723 66238.8810 65327.8682 72371.6388 73694.5632
House8L 36357.7785 37425.4647 36674.6710 37662.6646 37238.0024 38038.3599
House16H 39807.9324 40503.2810 40974.8801 41893.5338 41366.8500 41694.6820
MetroTraffic 1864.3562 1878.4567 1868.4516 1881.3474 1909.7701 1926.9327
Pol 39.8561 40.9659 40.0456 40.9348 42.5239 43.0442
Ailerons 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Elevators 0.0048 0.0050 0.0048 0.0049 0.0046 0.0047
Fried 2.8504 2.8436 3.3891 3.4347 4.7477 5.1362
MVDelve 2.7978 2.3556 3.4039 2.8376 7.2215 7.4087
Hyper(A) 4.7393 4.7695 5.1514 5.2270 5.6156 5.7496
Hyper(G) 4.7314 4.7739 5.1578 5.2315 5.6322 5.7745
Hyper(I) 73.8283 75.1720 75.1034 75.5369 75.7321 76.3416
RBF(A) 24.3243 26.4591 22.6989 23.8939 29.6176 29.9555
RBF(G) 24.5419 26.2645 24.9022 26.5333 29.6681 29.9662
RBF(I) 29.2339 29.2461 29.1266 29.1732 30.4916 30.6660

Avg. rank 1.59 2.88 2.59 3.65 4.65 5.65
Avg. rank real 1.29 3.00 2.57 3.71 4.71 5.71
Avg. rank synth. 1.80 2.80 2.60 3.60 4.60 5.60

B. Base learners

To analyze the impact of the base learner we compare
variations of BAGaµ with KNN, HTRm and HTRp. On top of
that, we also present the stand-alone results for these three
algorithms with the purpose of presenting a clear baseline
(i.e., it is not reasonable to use an ensemble if a single model
is more accurate). The results are depicted on Table III. We

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

highlight that KNN obtained a low RMSE for many datasets,
and in overall it was on pair with BAGaµ-HTRp. It was not
possible to leverage the good individual results of KNN in
BAGaµ-KNN. One possible explanation is that KNN is a stable
learner and just by slightly changing the subset of instances
being used by each of the models it was unable to produce
better results. In fact, by comparing KNN and BAGaµ-KNN,
they are quite similar and often the best result is in favor
of KNN. When comparing BAGaµ-HTRm and BAGaµ-HTRp
against HTRm and HTRp we can observe that the ensemble
models were able to outperform a single base learner. In
general, using the perceptron improves the performance in
comparison to using the mean to aggregate the predictions at
the leaves. This fact can be observed when comparing HTRm
and HTRp, as well as their ensemble versions.

TABLE III: Base learner analysis (generation=BAG, com-
bination=mean (µ), learner=[KNN | HTRm | HTRp], reset
strategy=adaptive (a)).

Dataset KNN HTRm HTRp BAGaµ-KNN BAGaµ-HTRm BAGaµ-HTRp

Abalone 2.3264 3.0540 2.8726 2.3268 2.5911 2.5719
Bike 62.3067 108.0877 85.1775 62.3440 81.0924 69.0090
CalHousing 89876.9806 85204.2071 72327.5408 90212.1338 63000.7071 63307.2304
House8L 51046.4284 40883.3315 40874.6389 51026.8462 36357.7785 35860.5305
House16H 51164.6143 43890.7514 44301.9024 51151.9541 39807.9324 40028.5144
MetroTraffic 1945.0847 1951.2740 1910.3972 1945.8638 1864.3562 1858.1606
Pol 18.2383 26.4236 26.5224 23.1435 39.8561 36.1823
Ailerons 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Elevators 0.0069 0.0054 0.0052 0.0068 0.0048 0.0048
Fried 2.6746 2.7908 2.8103 2.6731 2.8504 2.9802
MVDelve 8.3187 3.8745 3.8762 8.4289 2.7978 3.6996
Hyper(A) 3.0400 5.9205 5.0287 9.7130 4.7393 4.5308
Hyper(G) 3.3039 5.9094 5.0714 9.3744 4.7314 4.5717
Hyper(I) 50.9431 79.8120 54.4025 50.9248 73.8283 65.4014
RBF(A) 17.9073 23.2324 20.4353 17.9242 24.3243 14.8843
RBF(G) 18.7157 23.1230 20.5220 18.7317 24.5419 14.5837
RBF(I) 29.2988 28.0289 28.0496 29.2921 29.2339 28.4256

Avg. rank 3.06 4.18 3.65 3.94 3.47 2.71
Avg. rank real 3.43 4.57 3.86 3.86 2.86 2.43
Avg. rank synth. 2.80 3.90 3.50 4.00 3.90 2.90

C. Reset strategy

We apply three techniques to continuously reset the base
models, and, thus, keep the ensemble up-to-date with the
latest concepts. Each of these techniques are highly influenced
by their hyperparameters, which directly influence how many
instances will be used for training each base model before it is
reset. We experimented with three variations of hyperparam-
eters for the fixed and random windows, alongside a version
that never resets the base models (no-reset), and one that uses
an ADWIN change detector (adaptive window). More details
about these variations are presented below.

• fixed (fs) and random (rs) small. Trigger background
learner creation: ts = 400; Trigger replace: tr = 700;
random window: Ws =Wr = 200

• fixed (fm) and random (rm) medium. Trigger back-
ground learner creation: ts = 1500; Trigger replace:
tr = 2500; random window: Ws =Wr = 800

• fixed (fl) and random (rl) large. Trigger background
learner creation: ts = 2500; Trigger replace: tr = 5000;
random window: Ws =Wr = 2000

• adaptive. Trigger background and replace according to
the drift detector.

• no-reset. The base models are never reset.

One of the goals of the fixed and random reset strategies was
to avoid resetting the base models simultaneously. The fixed
window reset learners at different times and with different
window sizes, the hyperparameters only define the length
of the ‘first’ ensemble member, the others have increasing
window lengths. Similarly, the random window strategy reset
learners with about the same window size, but at slightly
different times (depending on hyperparameter W).

Table IV presents the results for the different reset strategies.
We observe that using larger windows, for both fixed and
random, improve the overall results. Analyzing the RMSE over
time in Figure 1, it is noticeable that the fixed and random
windows tend to adapt to concept drifts fast and without
major (and long) variations to the average RMSE. This can
be attributed to the fact that the base learners are reset at
different times, which generates a mix of learners trained
only on the latest concept and learners trained on a larger
window. A counter-intuitive result is that no-reset outperforms
the adaptive strategy for most of the synthetic datasets with
simulated concept drifts in Table IV. Complementing the
analysis with the plots from Figure 1, we can observe that the
adaptive (a) variation closely resembles the no-reset results,
and often recovers from concept drifts faster (Figures 2a and
2b). The ability to adapt to new concepts even if the base
learners are never reset is justified by the use of no-reset with
Hoeffding trees that are allowed to keep growing indefinitely.
Even though this allows the trees to adapt to new concepts,
it applies a heavy toll on the computational resources. The
best average rankings are obtained when using a fixed window
and the ‘large’ parametrization (fl), which has a reasonable
compromise between smaller and longer windows, i.e., a
configuration in-between ‘small’ (fs) and no-reset (nr).

D. Comparison against other algorithms

In Table V, we compare two variations of the ensemble
techniques discussed in this paper against algorithms from
the literature. Precisely, we use BAGf-l

µ -HTRp and BAGaµ-
HTRp, which differ only on the reset strategy used. From
these experiments we highlight that ARF-Reg tends to out-
perform all others in the synthetic datasets, including those
with simulated concept drifts, while BAGf-l

µ -HTRp obtains the
best results for the real datasets. We highlight that, contrary
to what was observed in the experiments varying the reset
strategy, the ARF-Reg algorithm, which includes an active
drift detection strategy, was able to outperform other methods
in the synthetic datasets that simulate concept drifts. However,
if we compared it against the no-reset (nr) from Table IV, it
would not differ much in terms of RMSE. We also replicate
the results for KNN in Table V to highlight how well it
performs in comparison to algorithms specially designed to
address evolving data streams, such as FIMT-DD, ORTO, and
AMRules.

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

TABLE IV: Reset strategy (generation=RP, combination=median, learner=HTRp, reset strategy=fixed | no-reset | random |
adaptive (a)).

Dataset fs fm fl no-reset rs rm rl adaptive

Abalone 2.2405 2.2851 2.2804 2.2813 2.2154 2.2592 2.2870 2.2862
Bike 92.7782 81.9534 72.1119 67.0228 108.2110 100.1860 93.8778 73.4341
CalHousing 61709.5065 63947.9028 65687.8560 65809.6456 60076.6916 62724.3415 62055.3426 66349.6414
House8L 39343.1472 37711.8951 37184.1753 37137.5179 41328.1239 39208.1627 38596.7054 37718.3326
House16H 43781.4843 42412.0779 42122.2324 43091.4831 45354.9294 43583.8446 42921.1098 41855.8577
MetroTraffic 1811.5875 1824.2094 1842.6123 1852.6115 1782.2871 1811.0393 1818.1665 1859.2225
Pol 25.7078 22.3910 22.8605 23.1437 29.9345 25.1886 24.1786 24.8740
Ailerons 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Elevators 0.0054 0.0052 0.0051 0.0050 0.0054 0.0054 0.0054 0.0050
Fried 3.3059 3.0930 2.9059 2.5176 3.6136 3.2882 3.1752 3.0728
MVDelve 4.2186 3.3576 3.3580 4.7204 5.2824 4.1712 3.9506 2.5276
Hyper(A) 4.6818 4.3225 4.1641 5.1618 5.0834 4.6458 4.5177 4.9436
Hyper(G) 4.8392 4.4764 4.2935 5.1692 5.2234 4.8038 4.6746 4.9526
Hyper(I) 51.9050 51.4357 52.1003 67.0243 53.0485 51.6913 51.6470 67.2361
RBF(A) 22.6324 17.8684 15.4194 13.5661 25.8346 22.3086 20.7128 14.8983
RBF(G) 22.9855 18.3157 15.7911 13.6283 26.0139 22.6718 21.1338 15.2901
RBF(I) 28.8979 28.7884 28.7029 28.3937 29.0184 28.8918 28.8548 28.5633

Avg. rank 5.12 3.29 3.00 3.94 6.29 5.12 4.76 4.47
Avg. rank real 4.71 3.86 3.43 4.14 5.00 4.86 4.86 5.14
Avg. rank synth. 5.40 2.90 2.70 3.80 7.20 5.30 4.70 4.00

0 100 200 300 400 500
#instances 1e3

0

2

4

6

8

10

rm
se

nr
a

fl
fm

fs
rl

rm
rs

(a) Hyper(A).

0 100 200 300 400 500
#instances 1e3

0

2

4

6

8

10

rm
se

nr
a

fl
fm

fs
rl

rm
rs

(b) Hyper(G).

0 100 200 300 400 500
#instances 1e3

0

5

10

15

20

25

30

rm
se

nr
a

fl
fm

fs
rl

rm
rs

(c) RBF(A).

0 100 200 300 400 500
#instances 1e3

0

5

10

15

20

25

30

rm
se

nr
a

fl
fm

fs
rl

rm
rs

(d) RBF(G).

Fig. 2: RMSE over time for varying reset strategies.

V. CONCLUSION

Ensembles are a popular approach in supervised learning
since they improve performance by leveraging the predicting
capabilities of a group of weak learners. Regression for
evolving data streams, although relevant to many real-world
applications and posing specific challenges, has not received
as much attention by the research community as classification.

In this paper, we study ensemble techniques for regression
and show that, although performance is improved, special
considerations must be taken in the context of regression,
e.g., combination techniques that integrate well with the base
learner. To this end, we focused our analysis on techniques for
training the base learners, combining predictions, the role of
base learners, and the reset strategy that provides robustness

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

TABLE V: Comparing BAGaµ-HTRp and BAGf-l
µ -HTRp against others.

Dataset FIMT-DD ORTO AMRules ARF-Reg KNN HTRm HTRp BAGaµ-HTRp BAGf-l
µ -HTRp

Abalone 2.6227 8.3230 2.3284 2.8277 2.3264 3.0540 2.8726 2.5719 2.2506
Bike 572.2625 2882.6485 134.5418 93.5983 62.3067 108.0877 85.1775 69.0090 68.3269
CalHousing 77589.2502 141419.9559 72436.8602 64253.7315 89876.9806 85204.2071 72327.5408 63307.2304 62820.2290
House8L 40945.7784 84042.0749 41388.1129 36325.3640 51046.4284 40883.3315 40874.6389 35860.5305 35966.3236
House16H 46798.5857 96237.2919 46072.4447 39435.5565 51164.6143 43890.7514 44301.9024 40028.5144 39461.4041
MetroTraffic 18719714.8607 6017208.9625 8798.4883 1762.3839 1945.0847 1951.2740 1910.3972 1858.1606 1842.0460
Pol 50.3320 90.6362 25.9851 17.8487 18.2383 26.4236 26.5224 36.1823 18.9284
Ailerons 0.0037 0.0070 0.0020 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000
Elevators 0.3380 0.0715 0.0047 0.0046 0.0069 0.0054 0.0052 0.0048 0.0049
Fried 2.7390 7.8746 2.4735 2.2410 2.6746 2.7908 2.8103 2.9802 2.3569
MVDelve 2.9448 12.0426 3.8574 1.5152 8.3187 3.8745 3.8762 3.6996 2.1918
Hyper(A) 1.8803 15.8049 1.9713 3.3463 3.0400 5.9205 5.0287 4.5308 3.6148
Hyper(G) 2.2675 15.9225 2.3780 3.6790 3.3039 5.9094 5.0714 4.5717 3.7817
Hyper(I) 48.2369 126.0124 50.6482 48.0818 50.9431 79.8120 54.4025 65.4014 48.3118
RBF(A) 17.2946 57.5298 23.0847 13.9592 17.9073 23.2324 20.4353 14.8843 15.6089
RBF(G) 17.3575 58.0759 22.9520 14.9155 18.7157 23.1230 20.5220 14.5837 15.9212
RBF(I) 29.3239 38.9952 29.9269 28.3527 29.2988 28.0289 28.0496 28.4256 28.6819

Avg. rank 5.47 8.88 5.06 2.59 4.76 6.00 5.29 4.00 2.94
Avg. rank real 7.00 8.86 5.57 2.86 4.86 5.86 4.86 3.29 1.86
Avg. rank synth. 4.40 8.90 4.70 2.40 4.70 6.10 5.60 4.50 3.70

against concept drifts. We conclude that resetting the base
models has a positive effect in the predictive performance.
Based on the experiments, we notice that a reactive strategy
(based on a drift detector) may not produce the best results all
the time. Simpler reset strategies such as periodically replacing
members of the ensemble with new models trained on different
windows can also boost performance in the ensemble. Another
relevant observation was that random subspaces and random
patches were not as effective for regression as when they were
applied for classification.

For future works, we are considering a further analysis of
ensembles of k-Nearest Neighbors for regression, and how to
minimize the impact in the computational resources caused by
an unbounded growth of the Hoeffding Tree algorithms.

REFERENCES

[1] H. M. Gomes, J. P. Barddal, F. Enembreck, and A. Bifet, “A survey on
ensemble learning for data stream classification,” ACM CSUR, 2017.

[2] N. C. Oza and S. Russell, “Experimental comparisons of online and
batch versions of bagging and boosting,” in ACM SIGKDD, 2001.

[3] H. M. Gomes, A. Bifet, J. Read, J. P. Barddal, F. Enembreck,
B. Pfahringer, G. Holmes, and T. Abdessalem, “Adaptive random forests
for evolving data stream classification,” Machine Learning, 2017.

[4] H. M. Gomes, J. P. Barddal, L. E. B. Ferreira, and A. Bifet, “Adaptive
random forests for data stream regression.” in ESANN, 2018.

[5] L. Breiman, “Bagging predictors,” Machine learning, vol. 24, no. 2, pp.
123–140, 1996.

[6] T. K. Ho, “Random decision forests,” in International Conference on
Document Analysis and Recognition, vol. 1. IEEE, 1995.

[7] G. Louppe and P. Geurts, “Ensembles on random patches,” in ECML.
Springer, 2012, pp. 346–361.

[8] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp.
5–32, 2001.

[9] E. Ikonomovska, J. Gama, and S. Džeroski, “Learning model trees from
evolving data streams,” Data mining and knowledge discovery, vol. 23,
no. 1, pp. 128–168, 2011.

[10] P. Domingos and G. Hulten, “Mining high-speed data streams,” in ACM
SIGKDD international conference on Knowledge discovery and data
mining, 2000, pp. 71–80.

[11] W. Hoeffding, “Probability inequalities for sums of bounded random
variables,” Journal of the American statistical association, 1963.

[12] E. Ikonomovska, J. Gama, B. Zenko, and S. Dzeroski, “Speeding-up
hoeffding-based regression trees with options,” in ICML. Citeseer, 2011,
pp. 537–544.

[13] E. Almeida, C. Ferreira, and J. Gama, “Adaptive model rules from data
streams,” in ECML. Springer, 2013, pp. 480–492.

[14] H. Mouss, D. Mouss, N. Mouss, and L. Sefouhi, “Test of page-hinckley,
an approach for fault detection in an agro-alimentary production system,”
in Asian Control Conference, vol. 2, 2004.

[15] J. Mendes-Moreira, C. Soares, A. M. Jorge, and J. F. D. Sousa,
“Ensemble approaches for regression: A survey,” Acm computing surveys
(csur), vol. 45, no. 1, p. 10, 2012.

[16] E. Ikonomovska, J. Gama, and S. Džeroski, “Online tree-based en-
sembles and option trees for regression on evolving data streams,”
Neurocomputing, vol. 150, 2015.

[17] A. Bifet and R. Gavalda, “Learning from time-changing data with
adaptive windowing,” in SIAM international conference on data mining,
2007, pp. 443–448.

[18] T. R. Hoens, N. V. Chawla, and R. Polikar, “Heuristic updatable
weighted random subspaces for non-stationary environments,” in ICDM.
IEEE, 2011.

[19] H. M. Gomes, J. Read, and A. Bifet, “Streaming random patches for
evolving data stream classification,” in ICDM. IEEE, 2019.

[20] A. Bifet, G. Holmes, and B. Pfahringer, “Leveraging bagging for
evolving data streams,” in PKDD, 2010, pp. 135–150.

[21] P. L. Bühlmann, “Bagging, subagging and bragging for improving some
prediction algorithms,” in Research Seminar für Statistik, Eidgenössische
Technische Hochschule (ETH), vol. 113, 2003.

[22] A. Bifet and R. Gavaldà, “Adaptive learning from evolving data streams,”
in International Symposium on Intelligent Data Analysis. Springer,
2009, pp. 249–260.

[23] J. Montiel, A. Bifet, V. Losing, J. Read, and T. Abdessalem, “Learning
fast and slow: A unified batch/stream framework,” in 2018 IEEE
International Conference on Big Data (Big Data), 2018, pp. 1065–1072.

[24] A. Bifet, “Classifier concept drift detection and the illusion of progress,”
in ICAISC. Springer, 2017, pp. 715–725.

[25] Z.-H. Zhou and Y. Yu, “Adapt bagging to nearest neighbor classifiers,”
Journal of Computer Science and Technology, vol. 20, no. 1, pp. 48–54,
2005.

[26] T. K. Ho, “Nearest neighbors in random subspaces,” in IAPR Interna-
tional Workshops on Statistical Techniques in Pattern Recognition and
Structural and Syntactic Pattern Recognition. Springer, 1998.

[27] J. Montiel, J. Read, A. Bifet, and T. Abdessalem, “Scikit-multiflow:
A multi-output streaming framework,” Journal of Machine Learning
Research, vol. 19, no. 72, 2018.

[28] A. Bifet, G. Holmes, R. Kirkby, and B. Pfahringer, “Moa: Massive online
analysis,” The Journal of Machine Learning Research, vol. 11, pp. 1601–
1604, 2010.

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

