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Abstract—Nonlinear time-series prediction is one of the chal-
lenging tasks in machine learning. Recurrent neural networks
and their variants have been successful in such a task owing to
its ability of storing past inputs in their dynamical states. Echo
state networks (ESNs) are a special type of recurrent neural
networks, which are capable of high-speed learning. To develop
this computational scheme, we propose an HP-ESN method which
combines ESNs with a preprocessing based on the Hodrick-
Prescott (HP) filter. This filter extracts different components
from a single time-series data. The extracted components are
processed by ESNs. We show that the proposed method yields
better prediction performance compared with other state-of-
the-art ESN-based methods in prediction tasks with real-world
time-series data. We also demonstrate that the computational
performance depends on the setting of the smoothing parameter
and the number of decompositions by the HP filter.

Index Terms—machine learning, reservoir computing, time-
series forecasting, HP-ESN

I. INTRODUCTION

As one of the classical machine learning tasks, nonlinear
time-series prediction aims at leveraging previous time-series
data to make predictions as close to true values in the future as
possible. In many previous studies, auto-regressive integrated
moving average (ARIMA) based models [1]–[3] were regarded
as the pragmatic paragons since they simply rely on linear
equations. However, for real-world time-series data with high
nonlinearity and fluctuations, linear relationship extracted by
ARIMA-based models is often not sufficient.

In the field of machine learning, recurrent neural networks
(RNNs) [4] have been widely and successfully used for nonlin-
ear time-series prediction. As a result of recurrent calculation
of hidden states, an RNN is able to own “memory” ability
which means that the hidden states reflect the past input
information as well as the current input. Several RNN-based
models such as long short term memory (LSTM) [5] and
gated recurrent unit (GRU) [6] have been proposed to fur-
ther enhance model’s memory capacity and temporal feature
extraction ability. However, these methods can encounter some
problems like exploding and vanishing gradients [7] in a
learning phase and often require large training costs.

 

 !

 

"#$

 

%&'(

 

Input layer Output layerReservoir layer

Fig. 1. The architecture of echo state network [9]

Reservoir computing (RC) [8] is a computational framework
derived from special types of RNN models, which can avoid
the above-mentioned problems in training RNNs. The echo
state network (ESN) [9] is one of the representative models of
reservoir computing as shown in Fig. 1. Three main parts,
including an input layer, a reservoir layer, and an output
layer, compose the basic architecture of ESN. The weight
matrices, Win, W and Wout are used to represent connection
weights between input units and reservoir units, those be-
tween reservoir units themselves, and those between reservoir
units and output units, respectively. The weight matrix Wback

represents the weights on the feedback connections from the
output layer to the reservoir layer. In the ESN, Win and W
are fixed and only Wout needs to be trained by a closed-
form linear regression method, which not only reduces the
learning cost compared with general RNNs but also simplifies
the training process. In this paper, we focus on nonlinear time-
series prediction by using ESN-based models.

Many ESN-based methods have been proposed to enhance

978-1-7281-6926-2/20/$31.00 ©2020 IEEE



prediction accuracy in time-series forecasting tasks. The adap-
tive ESN [10] was proposed to adjust Wout by the online al-
gorithm such that the prediction performance can be improved
for non-stationary time-series data. The multi-step learning
ESN [11] was proposed to reduce the prediction errors by us-
ing multiple ESN-based predictors and successively reducing
the prediction errors. The Robust ESN [12] was proposed to
leverage a Laplace likelihood function [13] in the readout layer
instead of the standard linear regression. Even though those
methods improve the prediction performance, their temporal
feature extraction ability still has potentials to be enhanced.
With the introduction of deep learning concepts into reservoir
computing, ESN-based models with multiple reservoirs such
as DeepESN [14], Deep-ESN [15], and Mod-deepesn [16]
have been proposed. The performances of these deep-layer
models outperform single-reservoir ESN models. However, the
corresponding computational costs of deep reservoir models
become larger when their architectures become deeper. All
the above-mentioned methods follow the same direction in
which the prediction performance is enhanced by strengthen-
ing the temporal feature extraction capability of the models
themselves. This direction will make models become complex
and poorly explainable.

In this work, we pay attention to another direction in which
input data are preprocessed before being fed into the ESN.
There are some existing methods in such a direction. For
example, PCA-ESN [17] with a preprocessing by principal
component analysis (PCA) was proposed for reducing input
dimension before handling by an ESN. However, PCA will
cause information loss which leads to inaccurate prediction.
DBEN [18] using feature extraction by multi-layer restricted
Boltzmann machines (RBMs) was proposed to enrich the
information representation of the input data to the ESN.
However, the training of DBN leads to extra training costs.
WESN [19] using a wavelet transform method was proposed
to separate original non-stationary signals into local spectral
and temporal information. Nonetheless, the suitable scaling
function is not easily determined depending on different kinds
of time-series data.

As an important element of time-series processing technolo-
gies, time-series decomposition [20] has been widely used in
the temporal data analysis. By the time-series decomposition,
one complex time series can be divided into multiple time-
series components. The Hodrick–Prescott filter (HP filter) [21]
is one of the popular time-series decomposition methods,
which decomposes a target time series into the trend and the
cyclic components. In the HP filter, the sensitivity of the trend
component to short-term fluctuations is simply adjusted by a
smoothing parameter. These merits made the HP filter become
a popular trend estimation method in the field of economics.

In this research, we propose a novel ESN-based method
called the HP-ESN by combining the ESN with successive
time series decompositions using the HP filter. In this hy-
brid model, the HP filter is adopted to disintegrate original
time series into trend and cycle time-series components. The
trend component is directly fed into an ESN for prediction,

whereas the cyclic component is further decomposed by the
HP filter. This process is carried out recursively. Each of the
decomposed signals is used for prediction by an ESN and
then the predicted results are integrated in the ensemble layer.
The prediction results for two real-world time-series datasets,
monthly sunspot series and daily minimum temperature in
Melbourne, show that the prediction performances obtained
by the proposed model are better than those of other ESN and
deepESN based models. Further, we analyze the computational
cost of the proposed model and show its high computational
efficiency. Finally, we investigate the performances of the pro-
posed model under variations in the number of decomposition
processes, the value of smoothing parameters, and the size of
reservoir.

The rest of this paper is organized as follows. The proposed
method is described in Sec. II. The pseudocode and compu-
tational cost of the proposed method are provided in Sec. III.
The details of numerical results are presented in Sec. IV. The
discussion is provided in Sec. V. Conclusion and future works
are given in Sec. VI.

II. PROPOSED METHOD

Before introducing the proposed method, a schematic di-
agram of the proposed HP-ESN is shown in Fig. 2. This is
the case where four time-series features are extracted through
three decompositions using the HP filter. These extracted
features are fed into four independent ESNs. The outputs of
those ESNs are integrated in the ensemble layer to generate
the final predicted time series. The three main parts in the
proposed method, the HP filter, the ESN, and the ensemble
layer, are described as below.

A. The HP filter

The HP filter is applied to a one-dimensional time-series
data. In the proposed method, it is recursively used to de-
compose an original time-series data into multiple time-series
components with different features. We assume that the target
data at j-th decomposition (j = 1, 2, . . . , NJ ) is a one-
dimensional time series denoted by

s(j) = [s(j)(1), s(j)(2), . . . , s(j)(NT )]. (1)

where NT represents the length of data and s(1) represents the
original time-series data.

The target data at j-th decomposition is decomposed as
follows:

s(j) = s
(j)
tre + s(j)cyc, (2)

where the trend component is given by

s
(j)
tre = [s

(j)
tre(1), s

(j)
tre(2), . . . , s

(j)
tre(NT )] (3)

and the cyclic component is given by

s(j)cyc = [s(j)cyc(1), s
(j)
cyc(2), . . . , s

(j)
cyc(NT )]. (4)
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Fig. 2. An example of the proposed HP-ESN with 3 decompositions.

The trend component stre is fed into an ESN model, while
the cyclic component scyc is recursively decomposed by the
HP filter by setting

s(j+1) = s(j)cyc for j = 1, 2, . . . , NJ − 1. (5)

The HP filter is characterized by a minimization of the
objective function given by

e = λ

NT∑
t=3

(
s
(j)
tre(t)− 2s

(j)
tre(t− 1) + s

(j)
tre(t− 2)

)2
+

NT∑
t=1

(
s(j)(t)− s(j)tre(t)

)2
, (6)

where λ is a smoothing parameter which takes a positive value.
The unique optimal solution minimizing the above objective
function can be obtained as follows:

(s
(j)
tre)

T = (I + λE)−1(s(j))T , (7)

where I ∈ RNT×NT is the identity matrix and E ∈ RNT×NT

is the band matrix given by

E =


1 −2 1 . . . 0 0
−2 4 + 1 −2− 2 . . . 0 0
1 −2− 2 1 + 4 + 1 . . . 0 0
. . . . . . . . . . . . . . . . . .
0 0 0 . . . 1 + 4 −2
0 0 0 . . . −2 1

 .

From the NJ decompositions, we obtain NJ trend time-
series components and one cyclic time-series component from

the original one-dimensional time-series data. We denote the
NJ+1 time-series components as follows:

u(1)

u(2)

...
u(NJ )

u(NJ+1)

 =


s
(1)
tre

s
(2)
tre
...

s
(NJ )
tre

s
(NJ )
cyc

 ∈ R(NJ+1)×NT (8)

where u(k) :=
[
u(k)(1), . . . , u(k)(NT )

]
is the input time series

to the k-th ESN for k = 1, . . . , NJ +1. The target time series
for the k-th ESN can be represented as follows:

d(k) :=
[
d(k) (1) , d(k) (2) , ..., d(k) (NT )

]
. (9)

The target time-series data d(k) is obtained by shifting u(k) by
one time step. To compute corresponding time-series predic-
tion data, these generated data will be used for the processing
with ESNs as described in the following subsection.

B. The ESN

Suppose that the NR-dimensional internal state of the k-th
ESN at the time t is defined as x(k) (t) ∈ RNR . The internal
state is updated as follows:

x(k) (t) = (1− α) x̂(k) (t) + αx(k) (t− 1) , (10a)

x̂(k) (t) = tanh
(
W

(k)
in u(k) (t) +W(k)x(k) (t− 1) + b(k)

)
,

(10b)
where the matrices W

(k)
in ∈ RNR×NU and W(k) ∈ RNR×NR

denote the input and internal connection weight matrices.
The vector b(k) ∈ RNR represents the bias. The parameter
α symbolizes the leaking rate which is used to control the
updating speed of reservoir dynamics. The input matrix W

(k)
in

is randomly assigned from the uniform distribution in the
range of [−1, 1], and re-scaled by the input scaling θ. The
internal matrix W(k) is randomly initialized from the uniform
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distribution in the range of [−1, 1], and then the fraction of
non-zero elements of W(k) is controlled by the density η. The
reservoir is required to satisfy an asymptotic stability property
called Echo State Property (ESP) [9]. In order to expect ESP,
the internal weight is set to satisfy the following condition:

ρ
(
(1− α) I+ αW(k)

)
< 1, (11)

where ρ (·) represents the spectral radius of a matrix argument
and I ∈ RNR×NR denotes the identity matrix. By this condi-
tion, the echo state network can obtain a short-term memory
as the finely-tuned recurrent neural network.

In the readout layer, the output at time t can be computed
by a linear operation as follows:

y(k) (t) = W
(k)
outx

(k) (t) , (12)

where W
(k)
out ∈ RNY ×NR denotes the output weight matrix,

y(k) (t) ∈ RNY represents the output of the k-th ESN at
time t, and NY is the dimension of output. In order to
avoid an ill-conditioned problem, we introduce the Tikhonov
regularization [22] to calculate the output weight matrix as
follows:

W
(k)
out = d(k)

(
X(k)

)T (
X(k)

(
X(k)

)T
+ βI

)−1

, (13)

where X(k) =
[
x(k) (1) ,x(k) (2) , ...,x(k) (NT )

]
∈ RNR×NT .

The regularization parameter β should be non-negative.

C. The Ensemble layer

Since each ESN only predicts a portion of final output, all
the generated prediction will be ensembled to be the final
output y in the ensemble layer as follows:

y =

NJ+1∑
k=1

y(k), (14)

where y(k) :=
[
y(k) (1) , y(k) (2) , ..., y(k) (NT )

]
. In Fig. 2,

we can clearly find that there are three decompositions in
the HP-ESN, and four generated time series are fed into the
ensemble layer. This strategy ensures that each decomposed
time-series data is extracted by each ESN separately and these
independent predicted results are integrated to produce the
final prediction.

III. ANALYSIS

In this section, the pseudocode and the computational cost
of the proposed HP-ESN are given.

A. Pseudocode

The pseudocode of the proposed HP-ESN is shown in
Algorithm 1. It is obvious that the original time-series data s(1)

is decomposed by the HP filter recursively by the processes
from 1 to 8. Each ESN is used for predicting corresponding
decomposed time-series data as presented in the processes
from 9 to 12. At the end, the predicted result is composed
at process 13.

Algorithm 1 HP-ESN

Input: original time-series data s(1), smoothing parameter
λ, density of internal weights η, size of reservoir NR,
leaking rate α, regularization parameter β, spectral radius
ρ, number of decompositions NJ .

Output: predicted time-series data y

Initialisation : input weight W(k)
in , internal weight W

(k)

,
parameter matrix E.

1: for j = 1 to NJ do
2: if (j == 1) then
3: s(j) = s(1)

4: else
5: s(j) = s

(j−1)
cyc

6: end if
7: Applying the HP filter recursively descried in Sec. II-A
8: end for
9: for k = 1 to NJ + 1 do

10: Gathering input and target data for the k-th ESN.
11: Processing with the ESN descried in Sec. II-B
12: end for
13: y = y(1) + y(2)+, ...,+y(NJ+1)

14: return y

B. Computational complexity

We suppose NJ decompositions and (NJ + 1) ESNs in the
proposed model. The computational complexity of each de-
composition of HP filter, CHP , can be formulated as follows:

CHP = O (NT ) . (15)

The computational complexity of reservoir part in each ESN
can be formulated as follows:

CRES = O
(
NTNR +NT (NR)

2
)
. (16)

Since the readout part adopts the Tikhonov regularization
for calculating output weights, the computational costs of

calculating d(k)
(
X(k)

)T
and

(
X(k)

(
X(k)

)T
+ βI

)−1

are

O (NTNR) and O
(
NT (NR)

2
+ (NR)

3
)

, respectively.

The calculation of multiplying d(k)
(
X(k)

)T
with(

X(k)
(
X(k)

)T
+ βI

)−1

costs O
(
(NR)

2
)

. Note that
NR � NT . In summary, the total computational cost of the
proposed HP-ESN can be summarized as follows:

Ctotal = NJ (CHP ) + (NJ + 1) (CRES + CREG)

≈ (NJ + 1) (CRES + CREG)

≈ O
(
(NJ + 1)

(
NTNR +NT (NR)

2
))

. (17)

From Eq. (17), we can see that the computational cost of
ESN dominates that of the proposed HP-ESN. Because of the
recursive processes, the computational cost of the proposed
model is higher than those of ESN-based models [8], [9], [23].
Since each ESN is independent, the input dimension of each
ESN in our proposed model is the same as the dimension
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TABLE I
DATA PARTITION FOR MONTHLY SUNSPOT AND DAILY MINIMUM

TEMPERATURE IN MELBOURNE

Training Validation Testing Washout
Monthly sunspot 2046 553 640 100

DMTM 2336 584 730 100

of s(1) whereas those of some deepESN based model [14],
[16] are enlarged to NR from the second reservoir layer,
which suggests that our proposed model is more time-efficient
than some of deepESN-based models. In practice, each ESN
is implemented parallelly following the HP filter, which can
greatly enhance computational efficiency.

IV. NUMERICAL EXPERIMENTS

In this section, we will provide comprehensive experimental
results about evaluating the proposed model on two real-world
benchmark time-series prediction tasks: monthly sunspot pre-
diction and daily minimum temperature prediction.

A. Dataset description

1) Monthly sunspot number series: Sunspots are dynam-
ically formed by strong magnetic field on the sun surface.
It has been widely demonstrated that the changes in the
number of sunspots directly affect the climate of earth [24]
and the series shows a high degree of non-linearity [25]. We
collected monthly smoothed sunspot series from January, 1749
to November, 2019 provided by Sunspot Index and Long-term
Solar Observations (SILSO)1. The time series is normalized
by 1000 as shown in Fig. 3(a).

2) Daily minimum temperatures in Melbourne: It is well
known that a temperature series can show chaotic behavior,
which makes them difficult to be forecasted accurately. We
adopt a benchmark temperatures dataset called Daily Mini-
mum Temperatures in Melbourne (DMTM)2 to evaluate the
prediction performance of our proposed model. There are 3650
minimum temperature points in Melbourne collected from
January 1st, 1981 to December 31th, 1990. The time series
is normalized by 10 as shown in Fig. 3(b).

The partition of training set, validation set, testing set,
and washout on the above-mentioned two time-series data
are listed in Table I. For fair comparison, we kept the same
split ratio for each dataset as reported in the study on Deep-
ESN [15].

B. Evaluation metrics

We evaluated our proposed model and all the compared
models by using three metrics, the root mean square error
(RMSE), the normalized root mean square error (NRMSE),

1Sunspot were downloaded from http://www.sidc.be/silso/datafiles.
2Data downloaded from https://www.kaggle.com/paulbrabban/daily-

minimum-temperatures-in-melbourne.
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(b) Daily minimum temperature in Melbourne

Fig. 3. Two real-world time-series datasets.

and the mean absolute percentage error (MAPE). They are
defined as follows:

RMSE =

√√√√ 1

NT

NT∑
t=1

(y(t)− ŷ(t))
2
, (18)

NRMSE =
RMSE√

1
NT

∑NT

t=1 (y (t)− y)
2
, (19)

MAPE =
1

NT

NT∑
t=1

|y(t)− ŷ(t)|
y(t)

, (20)

where y (t) indicates the t-th observation value in the NT -
length label data, ŷ (t) represents the t-th predicted value in
the NT -length prediction data, and y (t) denotes the mean
value of the NT -length label data. In order to avoid zero value
in the data, a small bias 0.001 was added to the values of each
data point.

C. Parameter settings

In the following experiments, the parameter setting of
the HP-ESN is listed in Table II. The input scaling θ,
spectral radius ρ, density of internal weights η, and reg-
ularizing factor β were set at 0.1, 0.95, 0.1, and 1e-6,
respectively. For each dataset, we tested the reservoir size
NR ∈ [100, 200, . . . , 1000], the number of decompositions
NJ ∈ [1, 2, . . . , 9], the leaking rate α ∈ [0.1, 0.2, . . . , 1]. The
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smoothing factor λ for each decomposition was searched em-
pirically in the set of [0.1, 1, 10, 50, 100, 200, 500, 1000, 1600].
The grid search strategy was applied for finding the best
parameter combination in the experiment. We repeated 20
independent trials for each parameter setting.

TABLE II
THE PARAMETER SETTINGS OF HP-ESN

Parameters Symbol Value
Input scaling θ 0.1

Density of internal weights η 0.1
Spectral radius ρ 0.95

Regularizing factor β 1e-6
Leaking rate α [0.1, 0.1, 1]

Reservoir size NR [100, 100, 1000]
Number of decompositions NJ [1, 1, 9]

Smoothing factor λ Listed in Set.IV-C

D. Simulation results

1) Monthly sunspot: The best prediction performance of
our proposed model and those reported in [15] are listed in
Table III. The best prediction performance of our proposed
method was obtained under the condition that NJ = 9,
α = 0.9, NR = 1000, and λ = 10. This is about five
times more accurate than the performance of Deep-ESN using
deep architecture. The predicted time series and corresponding
absolute errors are shown in Fig. 4(a).
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Fig. 4. Prediction performance on monthly smoothed sunspot and daily
minimum temperature in Melbourne.

2) Daily minimum temperatures in Melbourne: The best
prediction performance of our proposed model and those
reported in [15] are listed in Table IV. The best results
of the proposed method were obtained under the parameter
conditions: NJ = 9, α = 0.3, NR = 1000, and λ = 10. The
predicted performance of the proposed method outperforms
those of the compared models. The prediction time series and
corresponding absolute errors are presented in Fig. 4(b). These
simulation results illustrate the effectiveness our proposed
model.

V. DISCUSSION

In order to make a thorough investigation about how hyper-
parameters of our proposed method affect its prediction perfor-
mance, we evaluated the prediction performance of the HP-
ESN by changing the smoothing factors, the reservoir size,
and the number of decompositions. In this experiment, the
parameter settings for each dataset were inherited from the
best case reported in Sec. IV-D.

Figures 5(a) and 5(b) show the prediction performances
plotted against the reservoir size NR for different values of the
smoothing parameter λ in the tasks with the monthly sunspot
and the daily temperature dataset, respectively. Based on the
results shown in Fig. 5, the best prediction performances is
obtained for smoothing parameter λ = 10. In addition, a larger
reservoir size yields better prediction performances except the
case of λ = 0.1 as shown in Fig.5(b). We tested the case of
λ = 1600 which has been widely used in many literatures
about financial analysis [29]–[31]. However, in our work,
λ = 1600 yields the second worst prediction performance.
Based on the above results, it can be concluded that the
smoothing parameter has a big impact on the performance
of our proposed model and should be carefully adjusted to
obtain better prediction results.

Moreover, we investigated the effects of the number of
decompositions in the proposed model. In this investigation,
we focus on three different cases: NR = 100, 500, and 1000.
Figure 6 shows the prediction performance of the proposed
model for different number of decompositions from 1 to 9
on the two time-series datasets. In Fig. 6(a), it is clearly
found that RMSEs decay with an increase in the number of
decompositions from 1 to 8 for the monthly sunspots data.
However, when the number of decompositions is increased to
9, the RMSEs for NR = 100 and NR = 500 turn to increase
whereas that for NR=1000 continues to decrease. In Fig. 6(b),
the RMSEs for NR = 100, 500 and 1000 are monotonically
decreasing as the number of decompositions increases.

In order to figure out the reason why the RMSEs for
NR = 100 and NR = 500 are increased in Fig. 6(a) when
the number of decompositions is increased to 9. We show the
prediction performances of the trend and the cycle at different
decomposition for training and test sets of two datasets in
Fig. 7. There are only very small differences between training
errors and test errors on the trend and cycle of two datasets,
and therefore, it can be found that over-fitting does not occur.
Also, in Fig. 7(a), we can find that all the three compared
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TABLE III
COMPARISON OF AVERAGE RESULTS ON THE ONE-STEP-AHEAD PREDICTION FOR MONTHLY SUNSPOT SERIES.

Models RMSE NRMSE MAPE Layers
ESN [23] 1.30E-03 ± (7.43E-06) 2.08E-02 ± (1.16E-04) 4.96E-03 ± (8.74E-06) 1
ϕ-ESN [26] 1.25E-03 ± (2.28E-05) 1.93E-02 ± (3.51E-04) 4.77E-03 ± (4.00E-05) 2
R2 SP [27] 1.27E-03 ± (2.44E-05) 1.98E-02 ± (3.81E-04) 4.98E-03 ± (1.23E-04) 2
MESN [28] 1.26E-03 ± (3.08E-05) 1.94E-02 ± (4.72E-04) 4.87E-03 ± (9.15E-05) 3

Deep-ESN [15] 1.22E-03 ± (1.24E-09) 1.87E-02 ± (1.89E-04) 4.76E-03 ± (2.83E-05) 3
HP-ESN (best) 2.29E-04 ± (2.73E-06) 3.62E-03 ± (4.31E-05) 4.11E-03 ± (6.91E-05) 1

TABLE IV
COMPARISON OF AVERAGE RESULTS ON THE ONE-STEP-AHEAD PREDICTION FOR DAILY MINIMUM TEMPERATURE IN MELBOURNE.

Models RMSE NRMSE MAPE Layers
ESN [23] 5.01E-01 ± (3.70E-03) 1.39E-01 ± (1.02E-03) 3.95E-02 ± (2.37E-04) 1
ϕ-ESN [26] 4.93E-01 ± (3.86E-03) 1.41E-01 ± (1.10E-03) 3.96E-02 ± (3.74E-04) 2
R2 SP [27] 4.95E-01 ± (3.55E-03) 1.37E-01 ± (9.82E-04) 3.93E-02 ± (4.34E-04) 2
MESN [28] 4.78E-01 ± (3.39E-03) 1.36E-01 ± (9.67E-04) 3.77E-02 ± (3.36E-04) 2

Deep-ESN [15] 4.73E-01 ± (2.77E-03) 1.35E-01 ± (7.91E-04) 3.70E-02 ± (2.14E-04) 2
Mod-deepesn [16] 4.59E-01 ± (-) 1.32E-01 ± (-) 3.71E-02 ± (-) 4

HP-ESN (best) 3.31E-02 ± (4.66E-03) 7.62E-02 ± (1.13E-03) 2.52E-02 ± (4.72E-04) 1
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(a) The case of monthly sunspots
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(b) The case of daily minimum temperature

Fig. 5. The prediction performance of nine decompositions under different smoothing parameters λ and reservoir size NR on two different real-world
time-series datasets.
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(b) Daily minimum temperature

Fig. 6. The prediction performance of proposed method with reservoir size NR = 100, 500 and 1000 by changing different number of decompositions from
1 to 9.

cases show similar trends with a change in the number of
decompositions for the monthly sunspots dataset. Figure 8
presents the visualization of the trends generated from the 8-th

decomposition and the 9-th decomposition. We can find that
the trend at the 9-th decomposition is less stable than that at
the 8-th decomposition, which would increase the difficulty
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Fig. 7. The training and test errors of the proposed method with the case of reservoir size NR = 100, NR = 500 and NR = 1000 by changing the number
of decompositions from 6 to 9.

in forecasting accurately. In general, an ESN with a larger
reservoir size has a better temporal feature extraction ability.
Therefore, the reason for the increase of RMSEs for the cases
of NR = 100 and NR = 500 shown in Fig. 6(a) is concluded
that the size of reservoir is not sufficiently large. Extending
to the case of our proposed model, we should appropriately
increase the size of the reservoir for better performance.
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Fig. 8. Visualization of the trends of the 8-th decomposition (upper) and the
9-th decomposition (lower) in the HP-ESN with 9 decompositions.

VI. CONCLUSION

In this paper, a novel hybrid ESN-based method, HP-ESN,
has been proposed for nonlinear time-series prediction tasks.

The prediction performance of the proposed model evaluated
for the two real-world time-series datasets, monthly smoothed
sunspot and daily minimum temperatures in Melbourne, has
shown its effectiveness. Our analysis of the computational
cost has shown that the proposed model has lower com-
putational costs than some of deepESN-based models. The
investigation of the effects of various hyper-parameters, such
as the smoothing parameter, the number of decompositions
and the reservoir size on the computational performance,
have shown the importance of finding a suitable value of
the smoothing parameter and adding more decompositions
with large reservoir size, which can improve the prediction
performance.

We will continually study how to process multi-variate time-
series prediction tasks by the proposed model. Further, effects
of the other hyper-parameters on the performance of the HP-
ESN should be evaluated, such as the spectral radius and the
leaking rate.
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