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Abstract—Clustering based on Adaptive Resonance Theory 
(ART) has been actively studied. In previous studies, ART-based 
clustering algorithms with a topological structure have been 
proposed and showed their superior self-organizing ability. 
However, this method deteriorates the clustering performance at 
high noise ratios. In this paper, we propose a multilayer clustering 
algorithm based on a topological ART-based clustering for 
improving a noise reduction ability. Simulation experiments show 
that the proposed algorithm achieves excellent clustering 
performance on a 2D synthetic dataset in high noise environments. 

Keywords—Adaptive Resonance Theory (ART), Multilayer 
Clustering, Correntropy, Noisy Environment 

I. INTRODUCTION 
With recent technological advances, robots can obtain a 

massive amount of information through various types of sensors 
for environmental perception. These robots require intelligent 
technology to extract useful information from data continually 
and efficiently. 

Clustering is a simple and promising method that can 
continually extract knowledge hiding in data. Therefore, 
clustering has been applied to several studies in the robotics field, 
such as an extraction algorithm of geometric information of an 

environmental map generated by Simultaneous Localization and 
Mapping (SLAM) [1], [2] and a knowledge extraction algorithm 
for humanoid robots [3]. In general, these studies use Growing 
Neural Gas (GNG)-based clustering algorithms (e.g., Adjusted 
Self-Organizing Incremental Neural Networks (ASOINN) [4]) 
thanks to their applicability and adaptability. However, GNG-
based clustering algorithms suffer from the plasticity-stability 
dilemma [5], i.e., the trade-off between catastrophic forgetting 
and continually learning new knowledge. 

In the research field of clustering, Adaptive Resonance 
Theory (ART) [6] is a successful approach for handling the 
plasticity-stability dilemma. Several types of ART-based 
clustering algorithms have already been proposed. Fuzzy ART 
(FA) [7] and Bayesian ART (BA) [8] are considered as 
fundamental algorithms. Kernel BA (KBA) [9] is an extension 
algorithm of BA that uses kernel Bayes’ rule [10] and 
Correntropy Induced Metric (CIM) [11] to realize a faster and 
more stable self-organizing ability than FA and BA. Local 
distribution-based clustering with BA is developed not only to 
improve its self-organizing ability but also to handle highly 
imbalanced data distributions [12]. TopoART [13] is developed 
by applying a hierarchical structure to FA for implementing a 
noise reduction ability and an implicit topological structure on 
FA. The hierarchical structure of TopoART effectively removes 
noise information without complicated functions. Recent studies 
have integrated a topological structure (i.e., edges between 
nodes) into the ART-based clustering to explicitly represent the 
relationship between nodes [14], [15], [16]. Specifically, Fast 
Topological CIM-based ART (FTCA) [16] is considered to be 
state-of-the-art ART-based topological clustering that shows a 
fast and stable self-organizing ability. However, FTCA cannot 
maintain its superior performance in a high noise environment. 

As mentioned earlier, TopoART can be effectively reduced 
noise information through its simple hierarchical approach. In 
this paper, we propose Multilayer FTCA (MFTCA) by 
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introducing a multilayer structure that is inspired by TopoART 
for improving noise reduction ability. Although the multilayer 
approach in this paper is inspired by TopoART, several 
advantages can be expected thanks to the superior self-
organizing ability of FTCA. The contributions of this paper are 
summarized as follows: 

(i) MFTCA demonstrates a strong noise reduction ability. 
(ii) MFTCA automatically generates the necessary and 

sufficient number of nodes for self-organization. 
(iii) The number of layers can be specified arbitrarily. 

This paper is organized as follows. Section II describes the 
details of the proposed algorithm. Section III presents simulation 
experiments to examine the self-organizing ability of the 
proposed algorithm under high noise environments. Section IV 
concludes this paper. 

II. PROPOSED ALGORITHM 
In this section, first, we briefly describe CIM and FTCA. 

Then, MFTCA is presented in detail. 

A. Correntropy Induced Metric 
Correntropy [11] is a nonlinear measure of similarity 

between two vectors x = (x1, x2, …, xd) and y = (y1, y2, …, yd) 
which is defined as follows: 

 , (1) 

where  is a kernel that satisfies the Mercer’s Theorem and 
induces a Reproducing Kernel Hilbert Space (RKHS), and E[·] 
represents the expectation operation. In practice, only a finite 
number of data points are available. In this case, the correntropy 
is defined as follows [11]: 

 . (2) 

Here we use the following Gaussian kernel because it is most 
frequently used in the correntropy in the literature. 

 , (3) 

where s denotes a kernel bandwidth. 
Correntropy Induced Metric (CIM) is induced by the 

correntropy and is defined as follows: 

 , (4) 

where ks(0) = 1/s . 

B. Learning in Fast Topological CIM-based ART 
The learning procedure of FTCA is roughly divided into 

five parts as follows: 1) Initialization Process, 2) Winner Node 
Selection, 3) Vigilance Test, 4) Node Learning, and 5) 
Topology Adjustment. 

Let us assume that we have a set of data points X = {x1, x2, 
…, xL} (xl  ℝd) where L denotes the number of data points. 
We denote a set of generated nodes in an FTCA network by Y 
= {y1, y2, …, yK} (yk  ℝd) where K denotes the number of 
nodes. In addition, in FTCA, all the nodes Y have the same 
value of the kernel bandwidth s. 

1) Initialization Process: By using N data points out of a set 
of the data points X, the kernel bandwidth s is specified in 
kernel density estimation with the Gaussian kernel [17]. When 
there is no node in the FTCA network, the first and second data 
points become nodes (i.e., y1 = x1 and y2 = x2) with the kernel 
bandwidth s. The kernel density estimation with the Gaussian 
kernel is defined as follows: 

 , (5) 

where Gi represents the standard deviation for the i-th 
dimension of the N data points, and si is the bandwidth for the 
i-th dimension. In CIM, the kernel bandwidth s is a scalar value. 
The median of S = {s1, s2, …, sd} is used as a value of s. 

2) Winner Node Selection: Once data point xl is presented 
to the network, the 1st and 2nd winner nodes are determined 
based on CIM as follows: 

 , (6) 

 , (7) 

where k1 and k2 denote the indexes of the 1st and 2nd winner 
nodes, respectively. 

3) Vigilance Test: Vigilance Test classifies the positional 
relationship between xl and the winner nodes into three cases.  
• Case Ⅰ 

 , (8) 

where V denotes a predefined similarity threshold. The 
condition (8) means that xl does not belong to either yk1 or yk2. 
• Case Ⅱ  

 , (9) 

 . (10) 

The conditions (9) and (10) mean that xl belongs to yk1 but 
not to yk2. 
• Case Ⅲ 

 , (11) 

 . (12) 
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The conditions (11) and (12) mean that xl belongs to both yk1 

and yk2. 
4) Node Learning: If xl is classified as Case Ⅰ by the 

vigilance test (i.e., (8) is satisfied), a new node is defined as 
yK+1 = xl. 

If xl is classified as Case Ⅱ by the vigilance test (i.e., (9) and 
(10) are satisfied), the location of the winner node yk1 is updated 
as follows: 

 , (13) 

where Mk1 is the number of data points that belong to yk1. 
Furthermore, Mk1 is updated as follows: 

 . (14) 

If xl is classified as Case Ⅲ by the vigilance test (i.e., (11) 
and (12) are satisfied), yk1 and Mk1 are updated by (13) and (14), 
respectively. Moreover, all neighbor nodes yk1

+, which are 
connected to yk1 by a single edge, are updated as follows: 

 , (15) 

where Mk1
+ denotes the number of data points that belong to yk1

+. 
Furthermore, in Case Ⅲ, a new edge between yk1 and yk2 is 
created if there is no edge between them. 

5) Topology Adjustment: The topology adjustment consists 
of Node Deletion and Edge Deletion. These operations are 
performed every l iteration (i.e., after l data points are 
presented). 

a) Node Deletion: Nodes that do not have any edges are 
removed.  

b) Edge Deletion: Edge intersections are checked by the 
cross-product-based detection algorithm [18]. If there is an 
edge intersection, the edge with the largest value of CIM is 
removed. 

C. Proposed Multilayer FTCA: MFTCA 
The proposed MFTCA algorithm has a multilayer structure 

of layers. Each layer has a self-organizing network. The learning 
procedure of a network in each layer is the same as FTCA. Let 
us denote the number of layers in MFTCA by H. In the first layer, 
all the data points are used for the learning. In the learning at the 
2nd layer, only the data points that satisfy (9) at the 1st layer 
become inputs. The same operation is performed in the learning 
from the 3rd layer to Hth layer. That is, the data points that 
satisfy (9) at the hth layer become inputs at (h+1)th layer. Fig. 1 
shows the transition mechanism for a data point from the hth 
layer to the (h+1)th layer. 

The overall learning procedure of MFTCA is presented in 
Algorithm 1. 
 

 

 
Algorithm 1: Learning Algorithm of MFTCA 
Input: 
the data point: xl  ℝd, 
the current level of layer: h, 
the total number of layers: H, 
the existing nodes at each layer: Yh = {y1, y2, …, yK}(yk  
ℝd), 
the number of data points that belong to each node at each 
layer: Mh = (M1, M2, …, MK), 
the kernel bandwidth for CIM at each layer: sh, 
the similarity threshold: V, 
and the topology adjustment cycle: l. 
Output: 
the updated nodes at each layer: Yh, 
and the number of data points that belong to each node at 
each layer: Mh = (M1, M2, …, MK). 
 
function LearningMFTCA(xl, h, Yh, Mh, sh, V, l) 
1. if K < 2 then 
2.  Create the new node as yK+1 = xl. 
3.  if h = 1 then 

4.   Set the kernel bandwidth sh to a median of  
S = {s1, s2, …, sd} calculated by (5). 

5.  else 
6.   Set the kernel bandwidth sh = sh – 1. 
7. else 

8.  Search the indexes of winner nodes k1 and k2 by (6) 
and (7), respectively. 

9.  if CIM(xl, yk1, s) > V then 
10.   Create the new node as yK+1 = xl. 
11.  else 
12.   Update the state of yk1 by (13). 
13.   Update the state of Mk1  by (14). 
14.   if h < H 

15.    LearningMFTCA(xl, h+1, Yh+1, Mh+1, 
sh+1, V, l). 

16.   if CIM(xl, yk2, s)  V then 

17.    Update the state of neighbor nodes yk1+ 
by (15). 

18.    Create a new edge between yk1 and yk2. 
19. if the number of data point inputs l is multiple of a 

topology adjustment cycle l then 
20.  forall k  1, …, K do 
21.   if yk does not have any edge then 
22.    Remove yk from Yh. 

23.  Remove an edge with an intersection based on a 
state of CIM. 

24. return Yh and Mh. 
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Fig. 1. Transition mechanism for a data point xl from the hth layer to the 

(h+1)th layer. 

III. SIMULATION EXPERIMENTS 
We compare MFTCA with FTCA [16], ASOINN [4], and 

TopoART [13]. As mentioned in section Ⅱ-C, the result of 
FTCA is the same as the result of MFTCA in the 1st layer. 

A. Experimental Conditions 
We examine the performance of the self-organizing ability 

from qualitative and quantitative perspectives. For evaluating 
the self-organizing ability, we use a 2D synthetic dataset as 
shown in Fig. 2. The dataset is divided into six distributions as 
A, B, C, D, E, and F as shown in Fig. 2(a), which consists of 90k 
data points in total (15k data points in each distribution). Here, 
A and B are 2D Gaussian distributions. C and D  
are concentric-ring distributions. E and F are sinusoidal 
distributions. The experiments are performed on the 2D 
synthetic dataset with the noise ratios of 0%, 10%, 20%, 30%, 
40%, and 50% (i.e., Figs. 2(a)-(f)). Data points are inputted 
randomly. Throughout Section III, parameters for each 
algorithm are set as listed in Table I. The parameters of FTCA 
are the same as in [16]. The total number of layers of MFTCA 
is set as H = 5. We remark that the total number of layers H can 
be set as any positive integer thanks to the multilayer approach 
of MFTCA. The rest of the parameters in MFTCA (i.e., a 
similarity threshold V and a topology construction cycle l) are 
set to the same value as FTCA for providing a fair comparison. 
The parameters of ASOINN and TopoART are set to the same 
value as in [15]. 

TABLE I.  PARAMETER SETTINGS FOR MFTCA, FTCA, ASOINN, AND 
TOPOART 

Algorithm Parameter Value 
MFTCA the total number of layers H 5 

 a similarity threshold V 0.2 

 a topology construction cycle l 50 

FTCA a similarity threshold V 0.2 

 a topology construction cycle l 50 

ASOINN a node insert cycle l 400 

 a maximum age of edge ageMAX 25 

 a parameter for node deletion c 0.5 

TopoART a node insert cycle t (300,300) 

 a learning rate b (1.00, 0.65) 

 a parameter for node deletion f (2, 2) 

 a vigilance parameter r (0.92, 0.96) 

 

Fig. 2. 2D synthetic dataset. 

B. Qualitative Evaluation 
We show the generated topological networks and visually 

evaluate whether the distributions of the data can properly be 
represented. 

The generated topological networks of MFTCA are 
presented in Figs. 3-8. Each figure shows the results for noise 
ratios of 0%, 10% 20%, 30%, 40%, and 50%. In the case that 
the noise ratio is 50%, we show the 6th to 10th layers to observe 
the effect of multilayer structures. The results of FTCA are the 
same as the result of the 1st layer of MFTCA. Figs. 9 and 10 
show the generated topological networks of ASOINN and 
TopoART, respectively. 

Focusing on the self-organizing results with 0% noise ratio, 
each algorithm successfully finds six distributions of data. 
However, as the noise ratio increases, the topological networks 
of FTCA, ASOINN, and TopoART tend to connect between 
different distributions. As a result, these algorithms generate 
over-connected networks. TopoART tends to make a lot of 
nodes (i.e., hyper rectangles) because TopoART does not have 
a mechanism to remove the isolated node like FTCA. On the 
other hand, MFTCA can generate well-organized networks even 
in high noise environments by removing noise information 
through multilayer structures. It means that MFTCA succeeded 
in acquiring a strong noise reduction ability. In particular, in the 
dataset with a noise ratio of 40% (i.e., Fig. 7, Fig. 9(e), and Fig. 
10(e)), FTCA, ASOINN, and TopoART cannot reduce noise 
information at all. In contrast, MFTCA successfully organizes 
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the network according to the distributions of data through 
multilayer structures. However, one drawback of MFTCA is 
that when the level of the layer is too large (i.e., Fig. 8(i)-(j)), 
the number of the nodes decreases and the connections are 
excessively cut. The cause of this drawback is that due to the 

transition mechanism for data points (i.e., Fig. 9), the larger the 
number of layers is, the less the number of input data points is. 
Therefore when the number of layers is too large, the number 
of input data points highly decreases. As a result, the nodes and 
the edges are not generated well.

 
Fig. 3. Generated networks of MFTCA (noise ratio: 0%). 

 
Fig. 4. Generated networks of MFTCA (noise ratio: 10%). 

 
Fig. 5. Generated networks of MFTCA (noise ratio: 20%). 

 
Fig. 6. Generated networks of MFTCA (noise ratio: 30%). 

 
(a) 1st layer (b) 2nd layer (c) 3rd layer (d) 4th layer (e) 5th layer

 

(a) 1st layer (b) 2nd layer (c) 3rd layer (d) 4th layer (e) 5th layer

 
(a) 1st layer (b) 2nd layer (c) 3rd layer (d) 4th layer (e) 5th layer

 
(a) 1st layer (b) 2nd layer (c) 3rd layer (d) 4th layer (e) 5th layer
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Fig. 7. Generated networks of MFTCA (noise ratio: 40%). 

 

 
Fig. 8. Generated networks of MFTCA (noise ratio: 50%) 

 
Fig. 9. Generated networks of ASOINN 

 
Fig. 10. Generated networks of TopoART 

 

(f) 6th layer (g) 7th layer (h) 8th layer (i) 9th layer (j) 10th layer

 
(a) 1st layer (b) 2nd layer (c) 3rd layer (d) 4th layer (e) 5th layer

 
(a) 1st layer (b) 2nd layer (c) 3rd layer (d) 4th layer (e) 5th layer

 (a) Noise 0% (b) Noise 10% (c) Noise 20% (d) Noise 30% (e) Noise 40% (f) Noise 50%

 (a) Noise 0% (b) Noise 10% (c) Noise 20% (d) Noise 30% (e) Noise 40% (f) Noise 50%
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C. Quantitative Evaluation 
We use the generated topological networks as classifiers and 

perform classification tasks. In this experiment, Normalized 
Mutual Information (NMI) [19], Micro and Macro F-measures 
[20], and Adjusted Rand Index (ARI) [21] are used as 
performance indicators. 

Specifically, the label information is assigned to data points 
of each distribution A to F in Fig. 6 as class 1 to 6, respectively. 
Then, 90% of the data points in Fig. 6 are randomly selected as 
training data to generate a topological network. We add noise 
data by replacing the part of the training data with uniformly 
distributed random data points. The remaining 10% of data 
points are used as test data for the classification task. The label 
information for each cluster is determined by majority vote from 
labeled data points that are considered to belong to the 
connected-nodes (i.e., a cluster). To reduce the influence of the 
random sampling of data points, 10-fold cross-validation is used. 
Furthermore, all the experiments are conducted five times to 
obtain consistent averaging results. 

Table II shows the average and standard deviation of NMI, 
Micro and Macro F-measures, and ARI on the classification 
tasks. The best value for each metric is indicated in bold. A 
symbol † represents the results that have a statistically 
significant difference (p < 0.05) from the best result by the 
Wilcoxon signed-rank test. Table Ⅲ shows that the average 
number of nodes and clusters with standard deviations in 
parentheses. MFTCA presented the best results for any noise 
ratios. TopoART generated a lot of clusters due to the influence 
of noise data. On the other hand, MFTCA provides excellent 
evaluation values of all indicators while maintaining the optimal 
number of clusters (i.e., six clusters in this experiment). Since 
ART-based clustering makes input data regarded as a new 
cluster, FTCA and TopoART tend to generate an excessive 
number of nodes as the noise ratio increases. In contrast, 
MFTCA successfully controls the number of nodes by removing 
noise information. However, the performance of MFTCA 
deteriorates as the number of layers increases in the cases where 
the noise is low (i.e., 0% and 10%). This is because that when a 
data point in the hth layer is input to the (h+1)th layer, the data 
point is used to define a new node in the (h+1)th layer. As a 
result, the number of data points decreases as the number of 
layers increases (i.e., rows of the number of nodes in Table Ⅱ). 

IV. CONCLUSION 
In this paper, we proposed the multilayer clustering 

algorithm, called MFTCA based on ART-based topological 
clustering to realize a strong noise reduction ability. 
Experimental results showed that MFTCA has high self-
organizing ability even when the noise ratio is high. However, 
our experimental results also showed that the performance of  
MFTCA was deteriorated when the number of layers (H) is 
unnecessarily large. 

As mentioned in section III-A, parameter specification is an 
important future research issue in MFTCA. We will work on the 
development of a mechanism to automatically specify the 
number of layers based on the internal information obtained 
from the generated topological networks. 

REFERENCES 
[1] M. W. M. G. Dissanayake, P. Newman, S. Clark, H. F. Durrant-Whyte, 

and M. Csorba, “A solution to the simultaneous localization and map 

building (SLAM) problem,” IEEE Transactions on Robotics and 
Automation, vol. 17, no. 3, pp. 229–241, Jun. 2001.  

[2] D. Viejo, J. Garcia-Rodriguez, and M. Cazorla, “Combining visual 

features and growing neural gas networks for robotic 3D SLAM,” 

Information Sciences, vol. 276, pp. 174–185, Aug. 2014. 

[3] D. Kimura, R. Nishimura, A. Oguro, and O. Hasegawa, “Ultra-fast 

multimodal and online transfer learning on humanoid robots,” in 
ACM/IEEE International Conference on Human-Robot Interaction, 2013, 

pp. 165–166. 

[4] F. Shen and O. Hasegawa, “A fast nearest neighbor classifier based on 

self organizing incremental neural network,” Neural Networks, vol. 21, 

no. 10, pp. 1537–1547, 2008. 

[5] G. A. Carpenter and S. Grossberg, “The ART of adaptive pattern 

recognition by a self-organizing neural network,” Computer, vol. 21, no. 

3, pp. 77–88, 1988. 

[6] S. Grossberg, “Competitive learning: From interactive activation to 

adaptive resonance,” Cognitive Science, vol. 11, no. 1, pp. 23–63, 1987. 

[7] G. A. Carpenter, S. Grossberg, and D. B. Rosen, “Fuzzy ART: Fast stable 

learning and categorization of analog patterns by an adaptive resonance 

system,” Neural Networks, vol. 4, no. 6, pp. 759–771, 1991. 

[8] B. Vigdor and B. Lerner, “The Bayesian ARTMAP,” IEEE Transactions 
on Neural Networks, vol. 18, no. 6, pp. 1628–1644, 2007. 

[9] N. Masuyama, C. K. Loo, and F. Dawood, “Kernel Bayesian ART and 

ARTMAP,” Neural Networks, vol. 98, pp. 76–86, Feb. 2018. 

[10] K. Fukumizu, L. Song, and A. Gretton, “Kernel Bayes’ rule: Bayesian 

inference with positive definite kernels,” Journal of Machine Learning 
Research, vol. 14, no. 1, pp. 3753–3783, 2013. 

[11] W. Liu, P. P. Pokharel, and J. C. Príncipe, “Correntropy: Properties and 

applications in non-Gaussian signal processing,” IEEE Transactions on 
Signal Processing, vol. 55, no. 11, pp. 5286–5298, 2007. 

[12] L. Wang, H. Zhu, J. Meng, and W. He, “Incremental local distribution-

based clustering using bayesian adaptive resonance theory,” IEEE 
Transactions on Neural Networks and Learning Systems, vol. 30, no. 11, 

pp. 3496–3504, 2019. 

[13] M. Tscherepanow, “TopoART: A topology learning hierarchical ART 

network,” in Proc. International Conference on Artificial Neural 
Networks, Berlin, Germany, Springer, 2010, pp. 157–167. 

[14] N. Masuyama, C. K. Loo, and S. Wermter, “A kernel Bayesian adaptive 

resonance theory with a topological structure,” International Journal of 
Neural Systems, vol. 29, no. 5, p. 1850052 (20 pages), 2019. 

[15] N. Masuyama, C. K. Loo, H. Ishibuchi, N. Kubota, Y. Nojima, and Y. 

Liu, “Topological clustering via adaptive resonance theory with 

information theoretic learning,” IEEE Access, vol. 7, pp. 76920–76936, 

2019. 

[16] N. Masuyama, N. Amako, Y. Nojima, Y. Liu, C. K. Loo, and H. Ishibuchi, 

“Fast topological adaptive resonance theory based on correntropy 

induced metric,” Proc. of 2019 IEEE Symposium Series on 
Computational Intelligence, Xiamen, China, 2019, pp. 2215–2221. 

[17] D. J. Henderson and C. F. Parmeter, “Normal reference bandwidths for 

the general order, multivariate kernel density derivative estimator,” 

Statistics & Probability Letters, vol. 82, no. 12, pp. 2198–2205, 2012. 

[18] T. H. Cormen, Introduction to Algorithms. MIT press, 2009. 

[19] A. Strehl and J. Ghosh, “Cluster ensembles – A knowledge reuse 

framework for combining multiple partitions,” Journal of Machine 
Learning Research, vol. 3, pp. 583–617, Dec. 2002. 

[20] M. Sokolova and G. Lapalme, “A systematic analysis of performance 

measures for classification tasks,'” Information Processing & 
Management, vol. 45, no. 4, pp. 427–437, 2009. 

[21] L. Hubert and P. Arabie, “Comparing partitions,” Journal of 
Classification, vol. 2, no. 1, pp. 193-218, 1985. 

978-1-7281-6926-2/20/$31.00 ©2020 IEEE



 

T
A

BL
E 

II
. C

O
M

PA
RI

SO
N

S 
O

F 
P

ER
FO

RM
A

N
CE

 O
N

 C
LA

SS
IF

IC
A

TI
O

N
 T

A
SK

S.
  

N
oi

se
 

R
at

io
 

M
ea

su
re

m
en

t 
 

 
M

FT
C

A
 

 
 

FT
C

A
 

A
SO

IN
N

 
To

po
A

R
T 

1s
t l

ay
er

 
2n

d 
la

ye
r 

3r
d 

la
ye

r 
4t

h 
la

ye
r 

5t
h 

la
ye

r 
0 

[%
] 

N
M

I 
0.

99
8 

(0
.0

01
) 

0.
99

7†
(0

.0
01

) 
0.

99
7†

(0
.0

01
) 

0.
99

5†
(0

.0
05

) 
0.

98
9†

(0
.0

14
) 

0.
99

8 
(0

.0
01

) 
0.

99
3 

(0
.0

14
) 

0.
99

6 
(0

.0
06

) 
 

M
ic

ro
 F

-m
ea

su
re

  
1.

00
0 

(0
.0

00
) 

0.
99

9†
(0

.0
00

) 
0.

99
9†

(0
.0

00
) 

0.
99

8†
(0

.0
02

) 
0.

99
5†

(0
.0

08
) 

1.
00

0 
(0

.0
00

) 
0.

98
6 

(0
.0

35
) 

0.
99

7 
(0

.0
08

) 
 

M
ac

ro
 F

-m
ea

su
re

 
1.

00
0 

(0
.0

00
) 

0.
99

9†
(0

.0
00

) 
0.

99
9†

(0
.0

00
) 

0.
99

8†
(0

.0
02

) 
0.

99
5†

(0
.0

09
) 

1.
00

0 
(0

.0
00

) 
0.

98
2 

(0
.0

47
) 

0.
99

7 
(0

.0
09

) 
 

A
R

I 
  

0.
99

9 
(0

.0
01

) 
0.

99
8†

(0
.0

01
) 

0.
99

8†
(0

.0
01

) 
0.

99
6†

(0
.0

06
) 

0.
98

9†
(0

.0
18

) 
0.

99
9 

(0
.0

01
) 

0.
98

5 
(0

.0
37

) 
0.

99
5 

(0
.0

12
) 

10
 [

%
] 

N
M

I 
 

0.
98

3 
(0

.0
31

) 
0.

99
8 

(0
.0

01
) 

0.
99

7†
(0

.0
01

) 
0.

99
6†

(0
.0

04
) 

0.
99

2†
(0

.0
10

) 
0.

98
3 

(0
.0

31
) 

0.
77

1†
(0

.1
43

) 
0.

98
0†

(0
.0

23
) 

 
M

ic
ro

 F
-m

ea
su

re
  

0.
96

3 
(0

.0
77

) 
0.

99
9 

(0
.0

00
) 

0.
99

9†
(0

.0
00

) 
0.

99
9†

(0
.0

02
) 

0.
99

7†
(0

.0
05

) 
0.

96
3 

(0
.0

77
) 

0.
60

5†
(0

.1
61

) 
0.

98
0†

(0
.0

39
) 

 
M

ac
ro

 F
-m

ea
su

re
  

0.
95

1 
(0

.1
04

) 
0.

99
9 

(0
.0

00
) 

0.
99

9†
(0

.0
00

) 
0.

99
9†

(0
.0

02
) 

0.
99

7†
(0

.0
05

) 
0.

95
1 

(0
.1

04
) 

0.
51

6†
(0

.1
77

) 
0.

97
5†

(0
.0

50
) 

 
A

R
I 

 
0.

96
1 

(0
.0

79
) 

0.
99

9 
(0

.0
01

) 
0.

99
8†

(0
.0

01
) 

0.
99

7†
(0

.0
05

) 
0.

99
3†

(0
.0

12
) 

0.
96

1 
(0

.0
79

) 
0.

51
1†

(0
.2

27
) 

0.
97

2†
(0

.0
47

) 
20

 [
%

] 
N

M
I 

 
0.

91
7†

(0
.0

72
) 

0.
99

6†
(0

.0
05

) 
0.

99
7 

(0
.0

02
) 

0.
99

4†
(0

.0
06

) 
0.

98
9†

(0
.0

18
) 

0.
91

7†
(0

.0
72

) 
0.

41
1†

(0
.1

92
) 

0.
89

3†
(0

.0
68

) 
 

M
ic

ro
 F

-m
ea

su
re

  
0.

81
3†

(0
.1

55
) 

0.
99

6†
(0

.0
10

) 
0.

99
9 

(0
.0

01
) 

0.
99

8†
(0

.0
04

) 
0.

99
5†

(0
.0

11
) 

0.
81

3†
(0

.1
55

) 
0.

30
3†

(0
.0

62
) 

0.
84

3†
(0

.1
29

) 
 

M
ac

ro
 F

-m
ea

su
re

   
0.

75
3†

(0
.2

03
) 

0.
99

5†
(0

.0
14

) 
0.

99
9 

(0
.0

01
) 

0.
99

8†
(0

.0
04

) 
0.

99
5†

(0
.0

11
) 

0.
75

3†
(0

.2
03

) 
0.

19
1†

(0
.0

66
) 

0.
80

6†
(0

.1
66

) 
 

A
R

I 
 

0.
81

0†
(0

.1
55

) 
0.

99
5†

(0
.0

12
) 

0.
99

8 
(0

.0
02

) 
0.

99
5†

(0
.0

08
) 

0.
98

9†
(0

.0
23

) 
0.

81
0†

(0
.1

55
) 

0.
11

7†
(0

.0
55

) 
0.

80
9†

(0
.1

34
) 

30
 [

%
] 

N
M

I 
 

0.
81

1†
(0

.1
36

) 
0.

97
8 

(0
.0

32
) 

0.
99

5 
(0

.0
07

) 
0.

99
5†

(0
.0

05
) 

0.
99

0†
(0

.0
12

) 
0.

81
1†

(0
.1

36
) 

0.
06

0†
(0

.1
27

) 
0.

75
7†

(0
.1

03
) 

 
M

ic
ro

 F
-m

ea
su

re
  

0.
64

3†
(0

.1
95

) 
0.

94
9 

(0
.0

80
) 

0.
99

6†
(0

.0
12

) 
0.

99
8 

(0
.0

03
) 

0.
99

6†
(0

.0
06

) 
0.

64
3†

(0
.1

95
) 

0.
18

5†
(0

.0
44

) 
0.

64
9†

(0
.1

60
) 

 
M

ac
ro

 F
-m

ea
su

re
  

0.
54

6†
(0

.2
33

) 
0.

93
3 

(0
.1

06
) 

0.
99

5†
(0

.0
15

) 
0.

99
8 

(0
.0

03
) 

0.
99

6†
(0

.0
06

) 
0.

54
6†

(0
.2

33
) 

0.
06

8†
(0

.0
44

) 
0.

57
2†

(0
.1

95
) 

 
A

R
I 

 
0.

61
4†

(0
.2

28
) 

0.
94

6 
(0

.0
83

) 
0.

99
4†

(0
.0

14
) 

0.
99

6 
(0

.0
06

) 
0.

99
1†

(0
.0

14
) 

0.
61

4†
(0

.2
28

) 
0.

01
7†

(0
.0

36
) 

0.
57

5†
(0

.1
81

) 
40

 [
%

] 
N

M
I 

 
0.

44
1†

(0
.1

36
) 

0.
90

3†
(0

.0
32

) 
0.

98
0 

(0
.0

07
) 

0.
99

1 
(0

.0
05

) 
0.

98
6†

(0
.0

12
) 

0.
44

1†
(0

.1
36

) 
0.

00
0†

(0
.0

00
) 

0.
55

5†
(0

.2
04

) 
 

M
ic

ro
 F

-m
ea

su
re

  
0.

36
3†

(0
.1

95
) 

0.
79

3†
(0

.0
80

) 
0.

95
9 

(0
.0

12
) 

0.
99

1†
(0

.0
03

) 
0.

99
2 

(0
.0

06
) 

0.
36

3†
(0

.1
95

) 
0.

16
6†

(0
.0

03
) 

0.
43

0†
(0

.1
41

) 
 

M
ac

ro
 F

-m
ea

su
re

  
0.

23
6†

(0
.2

33
) 

0.
72

9†
(0

.1
06

) 
0.

94
6 

(0
.0

15
) 

0.
98

8†
(0

.0
03

) 
0.

99
2 

(0
.0

06
) 

0.
23

6†
(0

.2
33

) 
0.

04
7†

(0
.0

01
) 

0.
31

5†
(0

.1
46

) 
 

A
R

I 
 

0.
27

8†
(0

.2
28

) 
0.

78
6†

(0
.0

83
) 

0.
95

6 
(0

.0
14

) 
0.

98
7 

(0
.0

06
) 

0.
98

4†
(0

.0
14

) 
0.

27
8†

(0
.2

28
) 

0.
00

0†
(0

.0
00

) 
0.

34
0†

(0
.2

01
) 

50
 [

%
] 

N
M

I 
 

0.
14

9†
(0

.1
36

) 
0.

77
3†

(0
.0

32
) 

0.
92

5†
(0

.0
07

) 
0.

96
9 

(0
.0

05
) 

0.
97

3 
(0

.0
12

) 
0.

14
9†

(0
.1

36
) 

0.
00

0†
(0

.0
00

) 
0.

16
6†

(0
.2

03
) 

 
M

ic
ro

 F
-m

ea
su

re
  

0.
22

2†
(0

.1
95

) 
0.

60
2†

(0
.0

80
) 

0.
83

8†
(0

.0
12

) 
0.

94
3 

(0
.0

03
) 

0.
96

9 
(0

.0
06

) 
0.

22
2†

(0
.1

95
) 

0.
16

5†
(0

.0
04

) 
0.

22
0†

(0
.0

74
) 

 
M

ac
ro

 F
-m

ea
su

re
  

0.
10

0†
(0

.2
33

) 
0.

49
4†

(0
.1

06
) 

0.
78

7†
(0

.0
15

) 
0.

92
5 

(0
.0

03
) 

0.
96

2 
(0

.0
06

) 
0.

10
0†

(0
.2

33
) 

0.
04

7†
(0

.0
01

) 
0.

10
8†

(0
.0

67
) 

 
A

R
I 

 
0.

07
5†

(0
.2

28
) 

0.
58

2†
(0

.0
83

) 
0.

83
2†

(0
.0

14
) 

0.
93

6 
(0

.0
06

) 
0.

95
7 

(0
.0

14
) 

0.
07

5†
(0

.2
28

) 
0.

00
0†

(0
.0

00
) 

0.
06

2†
(0

.1
18

) 

T
he

 b
es

t 
va

lu
e 

fo
r 

ea
ch

 m
et

ri
c 

is
 i

nd
ic

at
ed

 b
y 

bo
ld

. A
 s

ym
bo

l 
† 

re
pr

es
en

ts
 t

he
 r

es
ul

t 
w

hi
ch

 h
as

 a
 s

ta
ti

st
ic

al
ly

 s
ig

ni
fi

ca
nt

 d
if

fe
re

nc
e 

(p
<

0.
05

) 
fr

om
 t

he
 b

es
t 

re
su

lt
 b

y 
th

e 
W

il
co

xo
n 

si
gn

ed
-r

an
k 

te
st

. 

 
 

T
A

BL
E 

II
I.

 R
ES

U
LT

S 
O

F 
N

U
M

BE
R 

O
F 

N
O

D
ES

 A
N

D
 C

LU
ST

ER
S 

O
N

 C
LA

SS
IF

IC
A

TI
O

N
 T

A
SK

S.
 

N
oi

se
 

R
at

io
 

M
ea

su
re

m
en

t 
 

 
M

FT
C

A
 

 
 

FT
C

A
 

A
SO

IN
N

 
To

po
A

R
T 

1s
t l

ay
er

 
2n

d 
la

ye
r 

3r
d 

la
ye

r 
4t

h 
la

ye
r 

5t
h 

la
ye

r 
0 

[%
] 

N
um

be
r 

of
 N

od
es

 
21

6.
40

 (
21

.3
7)

 
20

6.
00

 (
20

.3
5)

 
19

7.
10

 (
19

.7
6)

 
18

9.
00

 (
15

.1
2)

 
18

3.
00

 (
11

.3
8)

 
21

6.
40

 (
21

.3
7)

 
36

3.
70

 (
12

.0
5)

 
36

2.
30

 (
7.

32
) 

 
N

um
be

r 
of

 C
lu

st
er

s 
6.

00
 (

0.
00

) 
6.

00
 (

0.
00

) 
6.

10
 (

0.
27

) 
6.

40
 (

0.
78

) 
6.

70
 (

1.
24

) 
6.

00
 (

0.
00

) 
5.

90
 (

0.
21

) 
17

.0
0 

(5
.1

7)
 

10
 [

%
] 

N
um

be
r 

of
 N

od
es

 
24

3.
10

 (
16

.6
7)

 
21

2.
90

 (
18

.9
3)

 
19

9.
00

 (
19

.1
5)

 
19

0.
00

 (
15

.3
4)

 
18

3.
00

 (
12

.1
2)

 
24

3.
10

 (
16

.6
7)

 
35

7.
50

 (
12

.4
8)

 
41

2.
80

 (
9.

91
) 

 
N

um
be

r 
of

 C
lu

st
er

s 
5.

90
 (

0.
55

) 
6.

00
 (

0.
06

) 
6.

00
 (

0.
13

) 
6.

20
 (

0.
43

) 
6.

60
 (

1.
02

) 
5.

90
 (

0.
55

) 
3.

60
 (

0.
96

) 
37

.3
0 

(7
.6

1)
 

20
 [

%
] 

N
um

be
r 

of
 N

od
es

 
26

2.
00

 (
12

.3
2)

 
22

1.
20

 (
17

.6
9)

 
20

5.
40

 (
18

.9
0)

 
19

2.
20

 (
14

.6
6)

 
18

2.
70

 (
11

.4
6)

 
26

2.
00

 (
12

.3
2)

 
36

5.
90

 (
14

.0
6)

 
50

5.
20

 (
15

.0
7)

 
 

N
um

be
r 

of
 C

lu
st

er
s 

5.
10

 (
0.

99
) 

6.
00

 (
0.

13
) 

6.
10

 (
0.

32
) 

6.
20

 (
0.

51
) 

6.
50

 (
0.

83
) 

5.
10

 (
0.

99
) 

1.
80

 (
0.

38
) 

81
.7

0 
(1

1.
60

) 
30

 [
%

] 
N

um
be

r 
of

 N
od

es
 

28
2.

30
 (

8.
91

) 
23

0.
50

 (
11

.4
0)

 
20

8.
00

 (
15

.6
2)

 
19

3.
00

 (
11

.1
9)

 
18

2.
60

 (
10

.0
2)

 
28

2.
30

 (
8.

91
) 

34
9.

40
 (

18
.4

1)
 

60
3.

40
 (

15
.0

8)
 

 
N

um
be

r 
of

 C
lu

st
er

s 
4.

60
 (

1.
33

) 
5.

80
 (

0.
50

) 
6.

10
 (

0.
29

) 
6.

30
 (

0.
51

) 
6.

60
 (

0.
79

) 
4.

60
 (

1.
33

) 
1.

10
 (

0.
25

) 
10

5.
20

 (
12

.7
0)

 
40

 [
%

] 
N

um
be

r 
of

 N
od

es
 

31
1.

30
 (

11
.6

9)
 

25
3.

70
 (

17
.5

5)
 

21
7.

70
 (

18
.1

3)
 

19
7.

10
 (

14
.3

9)
 

18
1.

40
 (

12
.5

2)
 

31
1.

30
 (

11
.6

9)
 

31
6.

20
 (

18
.4

1)
 

68
3.

40
 (

15
.0

8)
 

 
N

um
be

r 
of

 C
lu

st
er

s 
3.

10
 (

1.
59

) 
5.

00
 (

1.
28

) 
6.

10
 (

1.
12

) 
6.

40
 (

0.
99

) 
6.

70
 (

1.
13

) 
3.

10
 (

1.
59

) 
1.

00
 (

0.
25

) 
85

.1
0 

(1
2.

70
) 

50
 [

%
] 

N
um

be
r 

of
 N

od
es

 
34

5.
40

 (
14

.1
6)

 
27

1.
60

 (
17

.2
3)

 
22

9.
90

 (
14

.1
1)

 
20

2.
20

 (
11

.1
1)

 
18

3.
10

 (
10

.9
8)

 
34

5.
40

 (
14

.1
6)

 
29

1.
00

 (
16

.0
8)

 
73

9.
70

 (
13

.3
6)

 
 

N
um

be
r 

of
 C

lu
st

er
s 

2.
00

 (
1.

34
) 

4.
00

 (
1.

40
) 

5.
30

 (
1.

28
) 

6.
20

 (
1.

35
) 

6.
70

 (
1.

14
) 

2.
00

 (
1.

34
) 

1.
00

 (
0.

00
) 

61
.2

0 
(1

1.
77

) 

 

978-1-7281-6926-2/20/$31.00 ©2020 IEEE




