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Abstract—Taking inspiration from the structure and behaviour
of the human visual system and using the Transposed Convo-
lution and Saliency Mapping methods of Convolutional Neural
Networks (CNN), a spiking event-based image segmentation
algorithm, SpikeSEG is proposed. The approach makes use of
both spike-based imaging and spike-based processing, where the
images are either standard images converted to spiking images or
they are generated directly from a neuromorphic event driven
sensor, and then processed using a spiking fully convolutional
neural network. The spiking segmentation method uses the spike
activations through time within the network to trace back any
outputs from saliency maps, to the exact pixel location. This
not only gives exact pixel locations for spiking segmentation,
but with low latency and computational overhead. SpikeSEG
is the first spiking event-based segmentation network and over
three experiment test achieves promising results with 96%
accuracy overall and a 74% mean intersection over union for
the segmentation, all within an event by event-based framework.

Index Terms—Spiking Neural Network, SNN, Convolution,
STDP, Segmentation

I. INTRODUCTION

A fundamental aspect of image understanding is semantic
segmentation [1], [2] , building on the progress of recognition
and detection systems to not only identify but localise features
in a scene. Recent research has shown convolutional neural
networks (CNN) to be well suited to this task with State-of-
the-art semantic segmentation deep convolutional neural net-
works (DCNNs) combine two separate modules: the encoder
and the decoder. The encoder module uses a combination of
convolution and pooling operations to extract DCNN features.
The decoder module recovers the spatial details from the sub-
resolution features, and predicts the object labels (i.e. the
semantic segmentation) [3].

However, the underlying issues of deep learning for this
approach lie within the sheer computational and time com-
plexity. Due to run-time complexity semantic segmentation
typically takes hundreds of milliseconds to run with only more
recent models edging closer to real time implementations [4],
[5]. However, this problem is only exacerbated in application
scenarios especially on deployable or embedded systems [6].
Considering real-time semantic segmentation has important
applications, e.g., street scene understanding, autonomous
driving and augmented reality for wearables. Research on

Fig. 1: SpikeSEG Network Diagram: Sizes refer to filter sizes
used, with s referring to the stride, as two different strides
where used in testing the alternative was marked with *

accelerating semantic segmentation is a popular area, which
is seeing the use of common techniques including: network
pruning, distillation, quantization, compression, factorization
of standard convolution and efficient redesign of DCNNs to
cut down on runtime. [3]–[5], [7] Some with specific focus
on real-time application, speed and memory [4], [5]. Within
our approach we suggest not just a redesign, but a systematic
rethinking of task. The aim similar to the aforementioned
research is to find the most efficient way to process the visual
information, our approach just takes inspiration from cortical
visual processing system with a Neuromorphic engineering
approach [8]. A paradigm shift away from synchronous and
discrete processing, Neuromorphic engineering first aims to
reduce the amount of redundant visual information with a
Neuromorphic event-based Sensor (EBS) [9], [10] and exploits
the asynchronous spike-based output, with a similar modality
processing structure of the Spiking Deep Convolutional Neural
Network (SpikeCNN) [11].

In this paper we present a novel spike-based event seg-
mentation system SpikeSEG seen in Figure 1, where the
proposed framework can exploit the sparse event driven nature
of a Neuromorphic Vision Sensor to deliver fast and accurate
class segmented spiking images. This is due to SpikeSEG’s
spiking fully convolutional version of a SpikeCNNs ability to
deal with the events in a timely manner. The system shows
the vast reduction in computational complexity that could be
delivered by an end to end spiking segmentation approach,
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while maintaining the temporal advantage of an EBS and
feature extraction ability of a CNN.

The rest of the paper is as follows: Section 2 covers
the background on SNNs and event-based sensors, section 3
introduces several current implementations of the key com-
ponent of our contribution. Section 4 gives an overview of
the contribution of this paper in context, section 5 covers the
experimental set-up with section 6 showing the results and
section summarises with a conclusion.

II. BACKGROUND

A. Spiking Neural Networks

Asynchronous spiking event-based computations like SNNs
only compute on the currently active parts of the network,
which in comparison to Artificial Neural Networks (ANN) can
achieve orders of magnitude lesser power consumption [12].
SNNs differ from normal computation processing and take
inspiration from closer to biology, where expensive memory
access operations are negated due to computations and mem-
ory being exclusively local [13]. Instead of using numerical
representations like traditional methods, SNNs use spikes to
transmit information with a key emphasis on the timing of
those spikes. A number of methods exist to train SNNs, with
recent implementations seeing a conversion from CNN to SNN
[14]–[17] yield promising results and open SNN architectures
to the wider Machine and Deep Learning audience. However,
this method is still burdened with the training computational
overhead and does little to utilise the efficiency of event driven
computations. The SNN’s Spike Time Dependent Plasticity
(STDP) and spike-based back-propagation learning have been
demonstrated to capture hierarchical features in SpikeCNNs
[18]–[23] Both of these methods better equip the network to
deal with event driven sensors, where the significant gains over
CNNs could be realised.

B. event-based Vision

As discussed, to best exploit this asynchronous event-based
computation, a change to an asynchronous event-based sensing
modality would also be required. Conveniently, Neuromorphic
Vision Sensors (NVS) (event-based Vision Sensors) [10], [24]
have become more popular and widespread. These camera-
like devices are bio-inspired vision sensors that attempt to
emulate the functioning of biological retinas. As opposed to
conventional cameras, which record all the information the
sensor sees at set intervals, these sensors output only when a
change is detected by the sensor. So, instead of the capturing
the luminosity at a set point in time, a NVS allows for a
continuous temporal derivative of luminosity to be output.
Whenever this happens, an event e = [x, y, ts, p] is created
indicating the x and y position along with the time ts at which
the change has been detected and its polarity, p ∈ {1,−1} i.e.,
if the brightness a positive or negative change. The result is a
sensor able to produce a stream of asynchronous events that
sparsely encodes changes with microseconds resolution and
with minimum requirements in terms of power consumption
and bandwidth. The growth in popularity of these type of

sensors, and their advantages in terms of temporal resolution
and reduced data redundancy, have led to fully exploit the
advantages of event-based vision for a variety of applications
albeit not using SNNs, e.g., object tracking [25], [26].

III. RELATED WORK

A. Adaptive Neuron Thresholding

Adaptive Neuron Thresholding is a common practice within
the SNN and often seen as a necessity with STDP [27]. It
was also shown in [28] the importance of thresholds when
converting deep neural networks to spiking, as the hierarchical
layers clearly have a cascading affect. Research by Falez et
al [23] showed using Time target threshold adaptation, within
a STDP trained 2 Conv Layer network provided promising
results. A method where an ideal time to fire is learned and
used to adapt the thresholds according to try and achieve
this. Most approaches use homoeostasis mechanisms based
on intrinsic plasticity [29]. [27] was the only research which
used synaptic scaling with recent research [17] showing a
modern interpretation and combining with an intrinsic rule.
Our approach takes a novel engineering approach to synaptic
scaling to serve as a homoeostasis rule.

B. Neuromorphic Vision Sensor - Dynamic Vision Sensor

Neuromorphic Vision Sensors have been used successfully
in multiple research areas within traditional computer vision
and have utilised CNNs for Classification, Motion Estimation
and Optical Flow [9]. Though some of the traditional computer
vision techniques aim to exploit the sparse event driven nature
of the sensor, there has been less focus on this with the CNN
approach [30]–[32]. The asynchronous CNN fcYOLE [31] in
particular aims to replicate benefits of a SNN by converting
an already trained CNN into an asynchronous version with
two methods. First leaky surface which essentially works as
a leaky integrate and fire buffer layer, and second a change
in the convolution and pooling layers to allow then to only
process areas activated by events similar to a SNN.

C. Spiking Neural Networks

STDP has been shown to be a useful learning mechanism
for unsupervised learning with a biological context with good
results in [18], [23] showing its ability within the 2-3 conv
layer range to be able to learn extract useful features for
classification type task. STDP as the name suggests, directly
accounts for time explicitly, meaning it is well suited for
learning from asynchronous sensor, with single layer networks
having shown impressive results [22], [33], [34]. SpikeCNNs
have also shown to be able to be used a auto-encoders [11],
[35] providing the only examples of a non-converted spiking
auto-encoders. Panda and Roy shows some interesting results
and a step forward for SpikeCNNs in terms of network
complexity with multiple conv and pool layers, but has yet
to be tested with an event driven input.
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D. Saliency Mapping and Segmentation - Feature visualisa-
tion and mapping to pixel space

The visualisation technique in this framework uses a multi-
layered Fully Convolutional Network (FCN) [3] structure
which with the help of ideas from Deconvolutional Network
(deconvnet) [36] and SegNet [37], to project the feature
activations back to the input pixel space. More recently the de-
convolution term (used to describe the backwards pass through
a convolution kernel) have been referred to as Transpose
Convolutions and are an essential part of most well know
systems for Saliency Mapping [38] and Segmentation. The
other useful development from this papers was the unpooling
method of ’Switches’ a way of recording the mapping in the
pooling stage so that the process can be undone later.

IV. PROPOSED SPIKING SEGMENTATION NETWORK -
SPIKESEG

The novel process of performing semantic segmentation
with a SpikeCNN and a spiking event-based image through
the use of saliency maps is now presented. This method can be
utilised in three ways: bounding box extraction from the seg-
mentation extremities, pixel level segmentation and finally an
intuitive understanding of how the network is working through
the saliency mapping. This is to the author’s knowledge
the first implementation of a fully convolutional SpikeCNN
network for either Segmentation or Saliency Mapping

A. System Architecture

The system can be broken down into two main sections
Encoding and Decoding as seen in Figure 1, with the Encoding
resembling a typical SpikeCNN but a fully convolutional
version and trained with a layer wise STDP mechanism with
integrate and fire neurons. The Decoding layer resemble that of
similar CNN approaches for Segmentation [3], [36], [37] with
unpooling and transpose convolution layers mapping the latent
space class layers back into the original event pixel space. This
encoding decoding structure symbolises a feature extraction
then shape generation process, with a learning processing to
extract common useful features, then remapping the learned
features over to the shape generation process to unravel the
latent space classification representation.

Fig. 2: Decoding using transposed convolutions with spike
activity mapping, resulting in active pixel saliency mapping

B. Adaptive Neuron Threshold

A progression of the Pre-Emptive Neuron Thresholding
(PENT) processes described in [39], with the adaptation
now being able to affect all encoding Conv layers within
the network. The thresholding is based on the homoeostasis
mechanism called synaptic scaling [40], normally taking effect
after hours or even days of high neuronal activity, to try
and reduce activity. However, the proposed method is a pre-
synaptic modifier looking at the number of events coming from
the sensor seen in the buffer stage between sensor and network.
Its objective is to help constrain the amount of information
coming into and passing through the network. Without altering
the settings of the camera, the inability to control the volume
of events from the sensor needs to be managed. A constraint
is set to the thresholding through experimental examination
of spike propagation and misrepresentation on pretesting data,
so a small variation in thresholds can be made during the
training process. With pre-captured data used it is an easier
constraint task with the max and min events already known
for the desired buffer time. This adaptive thresholding allows
the buffer to have a variable amount of events in contrast to
maintaining a fixed number of events with variable buffer rate.

C. Encoding

Starting with the basics of a SpikeCNN and its STDP
learning mechanism [18], a number of modifications are made
to the network. These include the removal of the global
pooling layer used classification, and leaving the final conv
layer as the pseudo classification. The number of features
maps available to the final conv layer is now mapped to
the number of classes of the training data, this allows a
convergence of the convolution layer to be able to delineate
between shape features of the second conv layer. The input
events are feed into the network via a temporal buffering
stage, to allow for a more plausible current computing so-
lution, while ideally they would just be a constant stream.
To internally mimic the continuous data the buffered data is
parsed into 20 steps. 10 of these are parsed event streams
dividing the temporal data into equal parts, and the other
10 steps ensure the all parsed event streams have time to
fully pass through network, since the network has 9 computa-
tional layers (Conv1-Pool1-Conv2-Pool2-Conv3-TransConv3-
UnPool2-TransConv2-UnPool1-TransConv1) as seen in Figure
1. For each time step in the encoding processing a spike
activity map Smt is also produced, where m is the feature
map and t is the time step. This allows an account of the
exact spatial time location of each active pixel used in the
decoding processing.

D. Decoding

The Decoding Process makes use of the same unpooling and
transpose convolutions as [3], [36], [37] taking pixels in the
latent classification space back into the original pixel space.
No learning mechanism is required as the mapping is based
on temporal active pixel saliency mapping, with the weights
and switches from the encoding layer being mapped directly to
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the decoding. However, a modification is required to deal with
the temporal component of the spiking network, as now the
latent pixel space representation must be unravelled with the
constraints and context of space and time. Changes are made
to both the transposed convolutions and the unpooling layers.
The transposed convolution still functions as a fractionally
strided convolution of the weight kernel as normal. However,
now an extra step of comparing the output mapping with a
temporal spike activity map of the post convolution pixel space
is required as illustrated in Figure 2. This is to ascertain which
pixels are allowed in line with the temporal causality gathered
from the twinned encoding layer with the matching time
differential of that decoding layer. Where Smt is the encoding
layer spike map, the decoding layer uses the equivalent t from
encoding processing step, such that t = t− tp, where tp is the
processing time steps between the equivalent layers. A similar
process for the unpooling also takes place utilising the switch
variables, however each switch now in the decoding is linked
to the equivalent encoding layer through the same value of t
and tp.

V. EXPERIMENTAL SET-UP

The testing of the segmentation network was split into three
sections to test its validity on the variety of different input
data types currently used with SNNs. The three sections are
split into one synthetic event dataset, and two real NVS event
datasets. The first dataset, the synthetic one is a Difference
of Guassian (DoG) filtered version of the CalTech Face
Motorbike dataset [18] we will call DoG CalTech. The filter
is used to generate pseudo events from the contrast edges of
the image being converted into latencies through an inverse of
their intensity.

The second dataset used actual event from a NVS, called
N-CalTech [41]. This dataset is a NVS recorded version of
the CalTech dataset where we extracted the same Face and
Motorbike images. A NVS was used to record the images off
a screen for 300ms with three saccade camera movements. A
comparison of the two event images compared to the original
is seen in Figure 3 with (a) the original dataset image, (b)
the synthetic DoG filtered image and (c) the N-CalTech face
image.

The last dataset called NVS-OrangePanda, was a self col-
lected binary classification of two desk ornaments using a
handheld NVS, the DVS346red. This dataset allowed testing of
the SpikeSEG network on event inputs generated on textured
3D objects, which in comparison to the screen recorded N-
CalTech provide a more realistic output of the NVS. It also
allowed event capture to test the segmentation of partially
overlapped classes. Examples from this dataset are shown
in Figure 4, with (a) showing the University of Syracuse
Orange Mascot, (b) showing a Martial Arts Panda in pose,
(c) showing the Orange Mascot partially obscuring the Panda
and (d) showing a picture of the two objects for context.

The parameters of the SpikeSEG network are listed in
Figure 1, with the only difference between the networks for
the three datasets being the stride of Pool2. During testing with

real NVS events a overlapping stride length of 4 was chosen
compared to the non-overlapping 7 used for the synthetic
DoG CalTech. This is to account for the sparse representation
that the actual NVS give out in comparison to the ideal
scenario with the DoG filtered images. Considering all the
network are given the same Conv1 layer weights to represent
Gabor features, it was known prior to the experiments that
although these are ideal filters, real NVS generated events
often don’t reach the minimum constraint of the adaptive
threshold during the first convolution. Thus propagate less
information through the network meaning the pooling can lead
to an over sparsification, resulting in no classification.

(a) CalTech (b) DoG CalTech (c) N-CalTech

Fig. 3: Image of a face from CalTech Face Motorbike dataset
along with the DoG filtered version (synthetic) and N-Caltech
version (NVS captured)

(a) (b) (c) (d)

Fig. 4: (a-c) Images of a NVS-OrangePanda dataset, desk or-
naments captures from hand-held DVS-346, 30ms integration
time and (d)Picture of objects for reference

VI. RESULTS

This sections breaks down the results from each of the
three experiments, with a breakdown of overall accuracy of
the network given along with mean Intersection over Union
(mIoU) for the segmented bounding boxes. A illustration of a
typical classification for each class is also given with a network
specific latent pixel space representation, with corresponding
active pixel saliency mapped segmentation output and layer
specific features maps.

A. Synthetic Events - DoG CalTech

The SpikeSEG network performs well on the synthetic
dataset with accuracy values of 97% and mIoU of 74%, with a
the results of all experiments shown in Table I . This accuracy
is inline with results from [18], [23] with a slight drop in
accuracy expected when coverting to a fully convolutional
network. The mIoU accuracy provides a good return for
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(a)
Input

(b)
Conv-1

(c)
Conv-2

(d)
Classifier

(e)
TransConv-2

(f)
TransConv-1

(g)
Output

(h)
Input

(i)
Conv-1

(j)
Conv-2

(k)
Classifier

(l)
TransConv-2

(m)
TransConv-1

(n)
Output

Fig. 5: Showing the latent space to segmentation mask of the DoG-CalTech face examples with pooling layers omitted for
illustrative purposes. (a) and (h) shows the spiking event input to the network per image, (b-d) and (i-k) show the encoding
layers of Conv-1 and 3 making a positive classifications of a face and bike, (e-f) and (l-m) show the decoding phase with
Transposed Conv-2 and 1 showing the most salient features allowed with the active pixel mapping. (g) and (n) showing the
most salient features mapped back to pixel space as a segmentation mask.

(a) Conv-1 Features

(b) Conv-3 Features (c) Conv-2 Features

Fig. 6: Features map representations of the convolution layers,
with colouring to match the latent space representation

(a) DoG Segmentation for Face (b) DoG Segmentation for Bike

Fig. 7: Segmentation overlays for the (a) Face and (b) Motor-
bike class from the CalTech dataset synthetic events

segmentation extremity based bounding box estimation, with
mIoUs of >50% seen as acceptable and over 75% being close
to state of the art in some application. Thought considering
the vast reduction in pixels due to the NVS this could be seen
as an easier task.

The average amount of spiking events per image for this
dataset is the highest value of all the experiments (when
taking into consideration pixel size) due to the DoG filter

giving a large number of edges to be converted into spiking
events. As these events have no real temporal significance and
are only an estimation of where the NVS would be likely
to see a contrasting edge it over estimates the amount of
spiking data. However, the dataset is easy to generate and
allows an insight into what type of features and network
parameters would work for the real NVS spiking events. As
previous mentioned only the stride of the second pooling
layer was altered between real and synthetic data. Both the
face and motorbike latent pixel space representations with
corresponding features maps are shown in Figures 5 and 6
with the saliency mapped segmentations shown in Figure 7.
The latent space representation show how the features are
collected in the encoding phase and how they map back to
the pixel space through the decoding stage. The pooling layers
are omitted in the illustration to save on space. Fig 5 (b) to
(f) showing the encoding layers and (i) to (m) showing the
decoding layers, with (a) and (h) showing the input events and
(g) and (n) showing output segmentations. The decoding stage
is a lossy upsampling due to the max pooling sparsification
meaning less features are represented in the decoding phase as
illustrated in Figure 5 (b-f) and (i-m). There is also a reduction
in displayed features due to the temporal causality as features
in section Fig 5 (b-c) and (i-j) of the image may have occurred
after the corresponding classification pixel of conv-3 Fig 5 (d)
and (k). The coloured pixels in each of the layers of Figure 5
are linked to the features shown in Figure 6 to allow for better
understanding of the features processed in the network. The
segmentation outputs of Fig 5 (g) and (n) are also seen again
superimposed upon the input image in Figure 7, showing the
areas where the active pixel saliency mapping segments as the
given class face or motorbike. These results are inline with that
the features maps in Figure 6 show to be as learned important
features from the STDP training.
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(a)
Input

(b)
Conv-1

(c)
Conv-2

(d)
Classifier

(e)
TransConv-2

(f)
TransConv-1

(g)
Output

(h)
Input

(i)
Conv-1

(j)
Conv-2

(k)
Classifier

(l)
TransConv-2

(m)
TransConv-1

(n)
Output

Fig. 8: Showing the latent space to segmentation mask of the N-CalTech face examples with pooling layers omitted for
illustrative purposes. (a) and (h) shows the spiking event input to the network with a 30ms buffer, (b-d) and (i-k) show the
encoding layers of Conv-1 and 3 making a positive classifications of a face and bike, (e-f) and (l-m) show the decoding phase
with Transposed Conv-2 and 1 showing the most salient features allowed with the active pixel mapping. (g) and (n) showing
the most salient features mapped back to pixel space as a segmentation mask.

(a) Conv-1 Features

(b) Conv-3 Features (c) Conv-2 Features

Fig. 9: Features map representations of the convolution layers,
with colouring to match the latent space representation

B. NVS Screen Recording - N-CalTech

The second experiment uses a subsection of the N-Caltech
dataset [41] using the same face and motorbike data as
the synthetic data for easier comparison. SpikeSEG reaches
accuracy values of 92% and mIoU of 67%, with all results
shown in Table I .

In comparison to the synthetic data each integration phase of
the event data from the NVS has on average less spiked events
when testing using a buffer-size of 30ms. Although often less
than 10ms of actual time was required, especially during the
saccade movement of the camera, to gain a positive classi-
fication, a key benefit of the SpikeSEG is the asynchronous
processing of an asynchronous input. When compared to a
fixed time or fixed event number for processing, this method
should always lead to the least amount of information to gain a

(a) Segmentation for Face (b) Segmentation for Bike

Fig. 10: Segmentation overlays for the (a) Face and (b)
Motorbike class from the N-CalTech dataset events

classification, as it can operate essentially on an event by event
basis. The segmentation performance along with the latent
space representations and features maps are shown in Figure
9. Considering many of the parameters of the network are
the same as the previous experiment the actual feature maps
produced within Figure 9 for this dataset and Figure 6 for
the synthetic data are reasonably different. The features from
the N-CalTech data seem less detailed with face parts shown
in Fig 9 (c) looking more like crude outlines in comparison
to Fig 6 (c). This might help to put the performance drop
of this dataset into context. Though considering the lower
performance the mIoU score still reaches a performance to
give merit to the SpikeSEG network with Figure 10 showing
successful segmentations of both the face and motorbike.
Examining the results further shows the drop, especially in
mIoU often down to missing sections in the segmentation
mapping, with usual culprit being the chin section for the face
and back wheel for the motorbike. This insight is reflected
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in the displayed features of Fig 9 (b) showing more eyes
plus top of head for the face like features and feature that
resembles the front wheel of the motorbike. Given that low
latency in segmentation networks for CNNs are difficult to
achieve these results show the potential a fully spiking event
driven segmentation network could have when paired with a
NVS.

(a) Actual image of the overlap-
ping objects

(b) Segmentation of the two ob-
jects (red) Panda (blue) Orange
Mascot

Fig. 11: Segmentation overlays for the overlapped segmen-
tation example, with (a) showing a photo illustrating the
actual scene and (b) showing the segmentation overlaid on
the spiking image

(a) (b)

(c) (d)

Fig. 12: (a) Original Spikes, followed by segmentations masks
of (b) All Classes, (c) Orange, and (d) Panda

TABLE I: Results from the three Datasets

Dataset Classification Accuracy (%) mean Intersection of Union (%)
DoG CalTech 97 74

N-CalTech 92 67
NVS-OrangePanda 99 81

C. DVS346 Data - Orange/Panda

The last experimental dataset tested uses NVS-
OrangePanda. This data wanted to test the validity of
the network on 3D objects as the curvature and textures of

the objects directly affect the light interaction, therefore will
affect the perceived contrast at the edges. SpikeSEG was able
to deliver accuracy results of 99% and mIoU of 81%, with
all results shown in Table I .

A further test carried out within this dataset was cases
of overlapping objects. SpikeSEG was able to successfully
segment the scene when the classes have a spacial overlap
of around 50%, with an example shown in Figure 11. Fig 11
(a) shows a colour image of the scene, while 11 (b) shows the
NVS image with overlaid red and blue segmentation masks
for each class. The individual class segmentations can also be
seen in Figure 12. With the original spiking input shown in (a),
the fully output of the system (b) and the semantic segmented
masks for the two classes Orange (c) and Panda (d).

Our network was able to show that a SpikeCNN in fully
convolutional format can perform segmentation using only
clustered features formed from STDP. Giving this is the first
implementation it provides a good argument for SpikeCNNs
use for segmentation especially is low latency and low com-
putation overhead are important factors.

VII. CONCLUSION

This paper presented a new spiking fully convolutional neu-
ral network used for semantic event-based image segmentation
through the use of active pixel saliency mapping, SpikeSEG.
Utilising an event driven neuromorphic vision sensor in an
efficient manner to provide promising results on the mean in-
tersection over union, while maintaining a temporal advantage
through the event driven nature of the processing. We also
show how adaptive thresholding allows for the network to deal
with the wide variety of event in an effective manner, though
further implementations of homoeostasis methods would only
improve the performance. SpikeSEG provides a low latency
and computational overhead network to perform event by
event-based segmentation exploiting the feature extraction
abilities of a CNN and combining with the temporal and
computational benefits of a SNN. Overall the results within
this paper show that SpikeCNNs can be utilised for semantic
segmentation with overall accuracies of 96% and mIoU of
74%. when coupled with an sensor have the ability to deliver
accuracy, low latency and a low computational overhead in
one neuromorphic sensing and processing package.
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