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Abstract—In recent years, spiking neural networks (SNNs)
emerge as an alternative to deep neural networks (DNNs). SNNs
present a higher computational efficiency – using low-power
neuromorphic hardware – and require less labeled data for
training – using local and unsupervised learning rules such as
spike timing-dependent plasticity (STDP). SNNs have proven
their effectiveness in image classification on simple datasets such
as MNIST. However, to process natural images, a pre-processing
step is required. Difference-of-Gaussians (DoG) filtering is typ-
ically used together with on-center / off-center coding, but it
results in a loss of information that decreases the classification
performance. In this paper, we propose to use whitening as
a pre-processing step before learning features with STDP. Ex-
periments on CIFAR-10 show that whitening allows STDP to
learn visual features that are visually closer to the ones learned
with standard neural networks, with a significantly increased
classification performance as compared to DoG filtering. We also
propose an approximation of whitening as convolution kernels
that is computationally cheaper to learn and more suited to
be implemented on neuromorphic hardware. Experiments on
CIFAR-10 show that it performs similarly to regular whitening.
Cross-dataset experiments on CIFAR-10 and STL-10 also show
that it is stable across datasets, making it possible to learn a
single whitening transformation to process different datasets.

Index Terms—Convolutional neural networks, Pattern recog-
nition, Unsupervised learning

I. INTRODUCTION

In recent years, deep neural networks (DNNs) have become
a de facto standard in machine learning, thanks to their ability
to learn complex representations from large amounts of data.
They have demonstrated their superiority over other models in
many tasks, including image and video classification, speech
recognition, and natural language understanding. However,
they suffer from two major drawbacks that hamper their adop-
tion at a large scale. First, training a DNN is computationally
expensive, due to its large number of parameters and the large
amounts of data required to effectively estimate them. As a
consequence, DNN training is usually performed on GPUs or
TPUs, which consume large amounts of energy. Moreover,
DNNs mostly rely on supervised learning, which requires
these large amounts of data (e.g., millions of samples in the
case of image classification [1]) to be annotated manually
beforehand, making them difficult to apply to new tasks, unless
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one is willing to spend large amounts of time and money on
the labeling process. Spiking neural networks (SNNs) offer
an alternative to DNNs; they can be implemented efficiently
through low-power neuromorphic hardware [2], which solves
one issue of DNNs. Data labeling can also be avoided –
to some extent – through the use of unsupervised learning
rules. Spike-timing-dependent plasticity (STDP) is one of
those rules, that can enable effective unsupervised learning in
SNNs [3] and is compatible with neuromorphic hardware [4].

In our work, we aim at learning visual features through
SNNs trained with STDP, with the long-term goal of pro-
ducing end-to-end spiking architectures compatible with low-
power, neuromorphic, hardware. Such a system includes image
pre-processing, neural coding of the pre-processed images
into spikes, neuron and synapse models, learning rules, and
finally the feature classifier; all these elements should ideally
be implementable through neuromorphic hardware. In [5],
an in-depth study of STDP-based feature learning for image
recognition concluded that STDP-based SNNs cannot cur-
rently compete with traditional neural networks models of
visual feature learning (namely, auto-encoders), and pointed
out some reasons for the ineffectiveness of SNNs, especially
the pre-processing of images and the inhibition mechanisms.

In this paper, we specifically address the issue of image
pre-processing for visual feature learning and natural image
classification with STDP-based SNNs. To be processed by
STDP networks, natural images must first be pre-processed
so that the spike trains representing them can encode relevant
visual information. Indeed, directly encoding pixel values as
spikes leads to learning mostly patterns consisting of uniform
regions, as shown empirically in [5]. To prevent this, images
are usually converted to grayscale, then on-center / off-center
(OC/OC) coding [6], [7] (or some equivalent edge-extraction
method such as Gabor filters [8]) is applied. This coding
is inspired by biological vision, and is also related to the
SIFT keypoint detector widely used in computer vision [9].
It extracts edges from the images by applying a difference
of Gaussians (DoG) filter (see Figure 1(b)). The spike trains
can then encode edge information, which is richer than raw
pixel information. However, it prevents the STDP networks
from learning also visual patterns based on colors, as standard
deep neural networks do [1], [10]. Applying OC/OC coding to
the R, G, and B color channels independently (see Figure 1)
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does not solve this issue, as it only allows to learn edge
patterns specific to one of the three color channels rather than
actual color patterns. Consequently, OC/OC coding has been
empirically shown to be detrimental to image classification [5].

Instead, we propose to use whitening as a pre-processing
step to handle natural images with STDP-based SNNs. It is
commonly used in computer vision to pre-process images [10],
[11]. Generally speaking, whitening is used to standardize and
de-correlate data; it projects the data into a new, orthonormal,
space so that its components are centered, independent, and
have unit variance. When applied to images, it discards first-
order correlations, which correspond to the fact that pixels that
are spatially close to each other tend to have similar values;
visually, it highlights edges and high frequency features. It
helps learn non-trivial correlations between pixels [10].

The whitening transformation is typically computed from
a dataset using principal component analysis (PCA) or zero-
phase component analysis (ZCA) [12], and applied to whole
images. As we aim at training end-to-end STDP-based sys-
tems that can be implemented on energy-efficient hardware,
whitening cannot be applied as is, for three reasons:
• learning a PCA or ZCA transformation on whole images

is computationally expensive and involves operations
on dense matrices that cannot be implemented simply
through neuromorphic hardware;

• only applying a learned whitening transformation to
whole images cannot be implemented efficiently through
neuromorphic hardware either, because it is not local;

• the transformation is data-dependent, so a new transfor-
mation should be computed for every new dataset.

Using whitening as a pre-processing for SNN-based image
analysis is only valuable if these issues can be circumvented.

The contribution of this paper is three-fold.
1) We show that using whitening as a pre-processing step

allows STDP to learn patterns that are similar to what
standard deep neural networks can learn, and is superior
to OC/OC coding when performing image classification
based on features learned with STDP.

2) We propose an approximation of ZCA whitening based
on convolution kernels, that can be computed more
efficiently and fits the constraints of neuromorphic hard-
ware. Experiments show that this approximation yields
the same performances as standard ZCA whitening.

3) We show through cross-dataset experiments that it is
possible to pre-compute a single whitening transforma-
tion on one dataset and apply it to other datasets with
no significant impact on the classification performance.

II. RELATED WORK

a) SNN-based Visual Feature Learning: Image classifi-
cation and visual feature learning with SNNs have received
an increasing interest over the last years (see [13] for a recent
survey). Most authors focus on simple datasets like MNIST,
which offer limited challenges. Some models were evaluated
on more complex datasets of natural images such as CIFAR-
10, but they usually use training procedures that cannot be

implemented on neuromorphic hardware (e.g., converting pre-
trained DNN models to SNNs). Such models offer limited
benefits over DNNs, since training the model is the most com-
putationally expensive step. SNN models that can be trained
on energy-efficient hardware usually use STDP learning rules.
Their performances are still behind other models, especially
DNNs; as a consequence, most work still focuses on simple
datasets like MNIST [14]–[16] and ETH-80 [7], [8]. One
reason is the difficulty to train multi-layer STDP networks:
multi-layer models based on STDP [5], [7] have only been
proposed very recently. Another reason is the difficulty to
handle natural color images, due to the ineffectiveness of
OC/OC coding [5]. As a result, complex datasets of natural
images are seldom used to evaluate STDP-based SNNs; recent
examples include the Caltech Faces/Motorbikes dataset [7],
[17], and CIFAR-10, CIFAR-100 or STL-10 [5]. In this paper,
we aim at improving the ability of STDP-based networks to
learn from complex natural images.

b) Whitening for Feature Learning and Deep Learning:
Whitening has been especially studied as a pre-processing
step in unsupervised visual feature learning [10], [11]. The
reported results were sometimes contradictory: Krizhevsky
and Hinton [11] evaluated the role of whitening in im-
age classification based on raw pixels or on visual features
learned with restricted Boltzmann machines (RBM), and con-
cluded that whitened images do not provide any improvement,
whereas Coates et al. [10] reported significant and consistent
improvements in classification performance when learning
visual features on whitened images with k-means, mixtures
of Gaussians, auto-encoders, and RBMs. Whatever the actual
outcomes of whitening can be with traditional algorithms, the
debate is not relevant with STDP-based SNNs, as learning
from raw images is not an option in this case [5]. Whitening
can also be used to normalize network activations between
layers of a DNN [18], in a process similar to batch normal-
ization. However, this is not related to our goal, as we only
consider whitening as an alternative to OC/OC coding.

c) Whitening and SNNs: To our knowledge, only Bur-
bank [19] used whitening as a pre-processing step before
learning visual features from natural images with SNNs. No
specific reason for using whitening was provided, other than
re-using the data of Olshausen & Field [20]. The evaluation of
the resulting features does not include recognition performance
and the performance of whitening w.r.t. other pre-processing
methods (e.g., OC/OC coding) was not assessed.

III. BACKGROUND

A. Unsupervised Feature Learning and Image Classification

The problem of image classification can be modeled as
finding a function f : I → C which assigns to an image
I ∈ I the label c ∈ C of the class it belongs to. A typical
DNN-based approach would directly infer f from labeled
training data. Other approaches model f as the composition
of three individual functions: a feature extractor fe, a feature
aggregator fa, and a supervised classifier fc. The feature
extractor is a function fe : I → Rm×d that converts an

978-1-7281-6926-2/20/$31.00 ©2020 IEEE



(a) (b) (c) (d)

Fig. 1: Pre-processing for color images: (a) raw RGB image, (b) on-center / off-center coding on grayscale image (c) on-
center / off-center coding on color image, and (d) whitened RGB image.

image I into a set of m visual features representative of its
visual content (shape, color. . . ); each feature is modeled as a
vector of dimension d. The feature aggregator is a function
fa : Rm×d → Rd′ that aggregates the m feature vectors into a
single feature vector of dimension d′, typically through some
pooling operation. Finally, the classifier fc : Rd′ → C assigns
a class c ∈ C to an image I ∈ I based on its aggregated
feature vector (fa ◦ fe(I)) : c = fc ◦ fa ◦ fe(I).

In this work, the feature extractor fe is a convolutional
single-layer SNN that learns features from image data using
an unsupervised STDP learning rule. As we aim at evaluating
only the ability of STDP to learn visual features, we rely
on more classical tools for the feature aggregator fa (sum
pooling) and the classifier fc (SVM). The details of our
recognition system are provided in Section V-A.

B. SNN Model

An STDP-based SNN typically includes the following com-
ponents: a neural coding model, which converts input data into
spikes, a spiking neuron model, an STDP learning rule, and
homeostasis mechanisms that ensure that the activity of the
network remains consistent. Since we aim at learning visual
features for classification, we also need a ”neural decoding”
model that converts output spikes back into numerical values
that can be fed to the feature aggregator or the classifier. We
use the same components as in [17], which provide state-of-
the-art performance for STDP-based visual feature learning.

a) Neural Coding: We use latency coding [21], which is
one variant of temporal coding, to convert input values x into
spikes. Earlier spikes encode larger values. Spike timestamps
are generated as follows:

t = ts(1− x) (1)

with t the timestamp of the spike, x the input value, and ts the
duration of the exposition of a sample to the network. Hence,
there is at most one spike per input per sample.

b) Neuron Model: The SNN uses integrate-and-fire (IF)
neurons [22]. This model is defined as follows:

cm
∂v

∂t
= z(t), v ← vrest when v ≥ vth (2)

with v the membrane potential, vrest the resting potential, cm
the membrane capacitance, vth the threshold of the neuron,

and z(t) the input current of the neuron (z(t) = 1 if an input
spike is received at time t, and z(t) = 0 otherwise).

c) Synapse Model: Every time a neuron fires a spike,
the weights of its input connections are updated following a
STDP rule, according to the activity of the corresponding pre-
synaptic neurons. We use multiplicative STDP [14] to train
synaptic weights w:

∆w =


ηwe

−β w−wmin
wmax−wmin if 0 ≤ tpost − tpre ≤ tLTP

−ηwe−β
wmax−w

wmax−wmin otherwise
(3)

with wmin and wmax the bounds of the weights w, ∆w

the update applied the weight (wt+1 = wt + ∆w), ηw the
learning rate, and tpre and tpost the firing timestamps of the
pre-synaptic and post-synaptic neurons, respectively. β is a
parameter that controls the saturation effect of the learning
rule (increasing β reduces the saturation of weights).

d) Homeostasis: Homeostasis in the network is main-
tained by adapting neuron thresholds. Threshold values vth
are learned with the adaptation rule proposed in [17] and a
winner-takes-all (WTA) mechanism: when a neuron wins the
competition (i.e. it fires a spike first during the exposition of a
sample), it applies the STDP rule to update its synaptic weights
and it adapts its threshold vth with the following update:

∆1
th = ηth (4)

with ∆1
th the change applied to the neuron threshold vth and

ηth the learning rate of threshold adaptation. This rule ensures
that no neuron will always be the first to emit a spike. The
other neurons do not apply STDP and decrease their thresholds
as follows:

∆1
th = − ηth

|loutput|
(5)

with |loutput| the number of neurons in competition. This
second update promotes diversity in neurons by lowering the
thresholds of neurons that emit few or no spikes.

Moreover, each time a neuron fires a spike, all the neurons
in competition apply the following update to their threshold:

∆2
th = −ηth(t− texp) (6)

with ηth the threshold learning rate and t the timestamp at
which the neuron fired the spike. texp is a manually-defined
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timestamp objective at which neurons should fire spikes: it
controls the number of input spikes to be integrated before an
output spike is emitted, and, so, the nature of the filters to be
learned [5], [17].

e) Neural Decoding: Spikes generated at the output of
the SNN are converted back into numerical values as follows:

y = min

(
1,max

(
0, 1− t− texp

ts − texp

))
(7)

C. ZCA Whitening

Whitening is a data-dependent transformation that decorre-
lates and standardizes the data. Several whitening transforma-
tions can exist for a given dataset, as whitened data remains
whitened under rotations. Among these, ZCA whitening [12]
is the transformation that produces the whitened data that re-
mains the closest to the original data. When applied to images,
ZCA whitening produces images that are still recognizable by
the human eye (as opposed to, for instance, PCA whitening).

Let X be a centered data matrix and Σ its covariance matrix.
Σ can be decomposed so that:

Σ = U Λ U−1 (8)

with U the matrix of eigenvectors of Σ and Λ the diagonal
matrix of its eigenvalues (Λ = diag(λ1, λ2, . . . , λn)).

The ZCA transformation matrix Wwhiten for data X is
computed as follows:

Wwhiten = U
√

(Λ +ε)−1 UT (9)

with ε the whitening coefficient, which adds numerical stability
and acts as a low pass filter. As in PCA, it is possible to
retain only the k largest eigenvalues and their corresponding
eigenvectors, to eliminate the least significant components of
the data, which may correspond to noise. We note ρ ∈ [0, 1]
the ratio of the largest eigenvalues that are retained.

Finally, the ZCA whitened data Xwhiten is computed from
the ZCA transformation Wwhiten as:

Xwhiten = Wwhiten X (10)

IV. CONTRIBUTION

A. Encoding Whitened Data as Spikes

The first part of our contribution is to enable the conversion
of whitened data into spikes. The whitening transformation
outputs both positive and negative values, which correspond
to the positive or negative contributions of the data to the
components of the transformation; larger values correspond to
more significant contributions. These values must be converted
into spikes following the principle of temporal coding: larger
values must correspond to earlier spikes. Similarly to OC/OC
coding, we split the values into two channels, a positive one
and a negative one. The conversion process follows these steps:

1) The data matrix X is whitened using the learned ZCA
transformation.

2) The components of each sample in Xwhiten are scaled in
[−1, 1] according to the minimum and maximum values
of the sample.

3) Positive and negative values are split into two chan-
nels X+ and X-: X+ = max(0,Xwhiten), X- =
max(0,−Xwhiten).

The values can finally be converted into spikes by using
latency coding (Equation 1).

B. Approximating Whitening with Convolution Kernels
Applying the whitening transformation to images is com-

putationally expensive and is not easily implementable on
neuromorphic architectures. In opposition, the DoG filter of
OC/OC coding is a pre-processing which is already well-used
with SNNs and can be computed by simply convolving an
image with a suitable kernel. In this section, we show how to
approximate whitening by convolution kernels, to benefit both
from the ease of implementation of DoG filtering and from
the performance of whitening. Our approach also reduces the
cost of learning the whitening transformation matrix.

The general idea is to learn the whitening transform on small
patches rather whole images, then to approximate the patch
whitening transformation by the whitening transformation of
the central pixel of the patches, which can be expressed as
a convolution kernel. The overall process is illustrated in
Figure 2. First, np patches of dimensions [pw, ph, xd] (xd = 3
for RGB images) are extracted from the dataset (e.g. using
dense or random sampling), forming a data array Xp of
dimensions [np, pw, ph, xd]. The patches are vectorized to
form a data matrix X̃p of dimensions [np, pw × ph × xd].
A ZCA transformation matrix Wwhiten of dimensions [pw ×
ph×xd, pw×ph×xd] is computed from X̃p (Equations 8 and
9). Finally, Wwhiten is converted into xd convolution kernels
Kc of dimension [pw, ph, xd]. To do so, an impulse response
array Jc is created for each channel c with only its central
value in this channel set to 1:

Jc(i, j, k) =

{
1 if k = c and i = pw

2 and j = ph
2

0 otherwise (11)

with i ∈ [0, pw[, j ∈ [0, ph[, and k ∈ [0, xd[ the coordinates in
array Jc and c ∈ [0, xd[ the corresponding channel. Each array
Jc is vectorized into a vector J̃c of dimension pw × ph × xd.
A whitening kernel Kc is computed for each channel c as:

K̃c = Wwhiten J̃c −mean(Wwhiten J̃c) (12)

where K̃c is the vectorized version of Kc. An image can be
whitened by convolving it with the whitening kernels, each
providing the corresponding channel of the filtered image.
Each whitening kernel Kc corresponds to the whitening trans-
formation of the central pixel of a channel of the patches.
Examples of whitening kernels generated by this method and
the resulting filtered images are shown in Figure 3.

Computing the whitening transformation from a data ma-
trix of dimensions [M,N ] has time complexity O(MN2 +
Nα), α ∈ [2.3, 3], with α depending on the algorithm used
for matrix multiplication (computing the covariance matrix is
O(MN2) and eigenvalue decomposition and ZCA rotation are
O(Nα)). Our approach makes it faster to compute by several
orders of magnitude by decreasing N drastically, from the size
of an image to the size of a patch.
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(b) ZCA
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(d) Convolution

X+

X−

Xp

[np, pw, ph, xd]

Jc

[pw, ph, xd]

Wwhiten

[N,N ]

Kc

[pw, ph, xd]

(a) Patch extraction (c) Whitening approximation (e) Scaling and channel splitting

Fig. 2: Whitening approximation procedure (N = pw × ph × xd): computation of whitening kernels (a-c) and application of
whitening to images (d-e).

Kernel Kernel Kernel Whitened
channel R channel B channel G image

(a) pw, ph = 5× 5, ρ = 0.2, ε = 10−3.

(b) pw, ph = 9× 9, ρ = 0.6, ε = 10−3.

(c) pw, ph = 11× 11, ρ = 1.0, ε = 10−3.

(d) pw, ph = 9× 9, ρ = 1.0, ε = 10−1.

Fig. 3: Examples of whitening kernels approximating the ZCA
transformation on RGB images.

V. RESULTS

A. Experimental Protocol

a) Objectives: In these experiments, we evaluate:
• the performance of our whitening kernels versus standard

whitening, and its sensitivity to major parameters;
• the performance of whitening versus standard OC/OC

coding as a pre-processing step for feature learning;
• the stability of whitening kernels across datasets, by per-

forming cross-dataset experiments in which the whitening

transformation is trained on one dataset and applied to an-
other dataset for feature learning and image recognition.
b) Recognition System: Our recognition system follows

the same general procedure as [10] and [5]. The system is
depicted in Figure 4. The major stages of the system are:

1) Image pre-processing (Figure 4(a)) through OC/OC cod-
ing, standard whitening (see Section III-C), or whitening
kernels (see Section IV-B).

2) Feature extraction (fe) by a single-layer convolutional
SNN following the model presented in Section III-B (see
Figure 4(c)).

3) Feature aggregation (fa) through sum pooling over 2×2
non-overlapping image regions (see Figure 4(d)).

4) Feature vector classification (fc) with a linear SVM (see
Figure 4(e)).

c) Datasets: We use CIFAR-10 [11] as a reference
dataset. This dataset contains 60,000 color images of size
32×32, divided into 10 classes; it is split into a training set of
50,000 images and a test set of 10,000 images. We also use the
labeled part of STL-10 [10] for cross-dataset experiments. It
contains 13,000 96× 96 color images split into 5,000 training
images and 8,000 test images. Note that the scales of the
images in the two datasets are different, making cross-dataset
experiments more challenging for our whitening kernels.

d) Computation of the Whitening Transformations:
Whitening transformations are computed on the training set
of CIFAR-10 for regular experiments; for cross-dataset exper-
iments, they are computed on STL-10 (resp. CIFAR-10) when
feature learning and classification are performed on CIFAR-
10 (resp. STL-10). The standard whitening transformation is
learned using the whole training set. Patch-based whitening
transformations are learned on 106 patches densely sampled
with a stride of 2 from images of the training set.

e) Implementation Details: The parameters of the SNN
are set to the values in Table I, unless otherwise specified.
Average recognition rates and standard deviations over three
runs are reported. The simulator CSNNS1 [23] is used to
implement all the experiments.

1This tool is open-source and can be downloaded at https://gitlab.univ-lille.
fr/bioinsp/falez-csnn-simulator.
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SVM

(d) (e)

SNN

Fig. 4: Recognition system used in our experiments.

TABLE I: Default parameters used in the experiments.

Neural Coding
ts 1

Neuron
vth(0) ∼ G(10, 0.1) vrest 0

Threshold Adaptation
texp 0.97 ηth(0) 1

Training
α 0.95 nepoch 100

STDP
wmin 0 wmax 1
ηw(0) 0.1 w(0) ∼ U(0, 1)
β 1

Network architecture
filter size 5× 5 stride 1
padding 0

B. Standard Whitening vs Whitening Kernels

In this section, we compare standard whitening and whiten-
ing kernels in terms of the classification performance of our
system (see Figure 4); we vary the major parameters: texp and
the number of filters used in the convolution layer. Figure 5
shows that the behavior of both whitening processes is fairly
similar. The reported performances of whitening kernels were
obtained using 9× 9 patches, ε = 10−2 and ρ = 1.0. The
performances achieved for each texp and for each number of
filters considered are similar. This shows that the approxima-
tion of whitening by convolution kernels performs as well as
the original whitening transformation. For both methods, texp
seems optimal around 0.96.

An in-depth exploration of the parameters of whitening
kernels (patch size, whitening coefficient ε, and ratio of
eigenvectors ρ) was conducted. Table II shows the results
obtained with various kernel sizes, ε, and numbers of learned
filters (loutput). Several observations can be drawn from these
results. First, with 64 filters, the performances are overall
lower than with 256. However, no strong improvement is
observed when using 1024 learned filters. Second, for each
configuration using a fixed number of filters, the performances
are quite stable regardless of patch size. However, overall,
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(a) Standard whitening.
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(b) Whitening kernels.

Fig. 5: Classification performance on CIFAR-10 with standard
whitening (a) vs whitening kernels (b).

slightly better average performances are obtained when the
patch size increases (see 9 × 9 and 11 × 11 configurations).
A value of 10−2 for the whitening coefficient ε seems more
adequate when more filters are used.

Table III reports the performances with varying patch sizes,
ρ, and numbers of learned filters. Among all configurations
having a given number of filters, the performances are similar.
This shows once more the stability and the genericity of the
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TABLE II: Recognition rate (%) w.r.t. patch size and ε (ρ =
1.0).

|loutput| pw × ph
ε

10−1 10−2 10−3 10−4

64

5× 5 51.36±0.48 56.3±0.09 53.49±0.09 49.89±0.77
7× 7 53.04±0.31 56.74±0.21 54.93±0.29 49.74±0.88
9× 9 53.07±0.27 57.04±0.10 60.13±0.23 49.96±1.12

11× 11 53.65±0.14 57.04±0.05 55.2±0.29 50.29±0.44

256

5× 5 59.32±0.02 62.02±0.16 58.62±0.3 54.46±0.27
7× 7 60.05±0.26 62.55±0.19 58.76±0.61 54.56±0.27
9× 9 59.81±0.39 63.72±0.39 59.12±0.34 54.62±0.18

11× 11 60.13±0.29 62.83±0.63 58.99±0.19 55.19±0.56

1024

5× 5 60.13±0.37 62.91±0.34 57.98±0.2 53.94±0.13
7× 7 60.17±0.24 63.63±0.51 58.47±0.67 54.29±0.29
9× 9 60.72±0.37 63.78±0.13 58.71±0.40 53.54±0.42

11× 11 61.18±0.07 62.91±0.34 58.87±0.55 53.57±0.64

TABLE III: Recognition rate (%) w.r.t. patch size and ρ (ε =
10−2).

|loutput| pw × ph
ρ

0.25 0.50 0.75 1.00

64

5× 5 50.44±0.28 55.99±0.11 55.85±0.17 56.17±0.44
7× 7 53.32±0.45 56.83±0.04 56.72±0.17 56.60±0.23
9× 9 54.64±0.06 56.88±0.16 57.11±0.19 56.86±0.03

11× 11 55.76±0.07 57.28±0.23 57.12±0.28 57.33±0.06

256

5× 5 57.75±0.03 61.60±0.04 61.53±0.20 61.95±0.37
7× 7 59.43±0.45 62.19±0.17 62.25±0.14 62.41±0.36
9× 9 60.00±0.07 62.37±0.39 62.57±0.10 62.41±0.21

11× 11 61.35±0.29 62.56±0.91 62.97±0.28 62.70±0.63

1024

5× 5 57.9±0.30 62.87±0.32 62.80±0.35 62.88±0.45
7× 7 59.24±0.44 63.4±0.19 63.49±0.44 63.63±0.28
9× 9 59.11±0.27 63.70±0.09 63.39±0.46 63.61±0.38

11× 11 60.71±0.46 62.87±0.32 63.72±0.42 63.82±0.45

whitening kernels. We can also see that the steep increase
in performance from 64 to 256 learned filters is not present
when increasing the learning capacity from 256 to 1024 filters.
Values of 0.75 and 1.00 for ρ provide the best results.

These results show that the benefits brought by whitening
kernels are stable and can generalize to a wide set of settings.

C. On-center / Off-center Filtering vs Whitening

Table IV compares the performances on CIFAR-10 of
whitening to the baseline OC/OC coding, for |loutput| = 64
and |loutput| = 1024. Whitening provides much better results
than color OC/OC coding: +18% (+9 percentage points) with
64 filters and +11% (+6 pp.) with 1,024 filters. This may
be due to its ability to retain color information and all
spatial frequencies, whereas OC/OC coding only encodes edge
information and a limited range of spatial frequencies.

Figure 6 shows samples of features learned on CIFAR-
10 with STDP with the three pre-processing approaches, as
well as features learned by an auto-encoder with standard
whitening [10] and features learned by a regular DNN without
whitening on ImageNet [1]. Whereas the filters learned with
OC/OC coding (Figure 6(a)) are almost only oriented edges,
the filters learned with whitening (Figures 6(b) and 6(c))
include both oriented edges and oriented color patterns. These
filters are much closer to the ones that can be learned on
whitened data by an auto-encoder (Figure 6(d)), but also the
ones learned by DNNs on non-whitened data (Figure 6(e)).

TABLE IV: Performance of whitening versus on-center / off-
center coding on CIFAR-10.

Method 64 filters 1, 024 filters

On-center / off-center (grayscale) [5] 45.37% 52.77%
On-center / off-center (color) [5] 48.27% 56.93%
Standard whitening 57.66% 63.37%
Whitening kernels 57.07% 63.64%

TABLE V: Performances obtained in a cross-dataset configu-
ration (first header row: dataset used for classification, second
header row: dataset used to generate the whitening kernels).

|loutput|
CIFAR-10 STL-10

CIFAR-10 STL-10 ∆ STL-10 CIFAR-10 ∆

64 57.66±0.44 57.09±0.11 -0.57 57.08±0.44 56.97±0.34 -0.11
128 60.18±0.29 59.95±0.08 -0.23 58.93±0.25 58.74±0.48 -0.19
256 62.92±0.10 62.77±0.30 -0.15 59.86±0.32 59.74±0.43 -0.12
512 63.69±0.16 63.78±0.18 +0.09 60.73±0.46 60.72±0.42 -0.01
1024 63.37±0.21 63.80±0.56 +0.43 63.29±0.11 62.94±0.42 -0.35

The main difference with auto-encoder features is that they
are more localized, which may be due to our filters being
smaller in size (5× 5 pixels vs 8× 8 pixels in [10]).

D. Cross-dataset Experiments

Since computing whitening transformations is computa-
tionally expensive and not suited to neuromorphic hardware,
the learned transformations should fit different datasets, to
avoid re-training. To test this, whitening kernels are com-
puted independently from CIFAR-10 and STL-10, respectively.
Then, the CIFAR-10 dataset is pre-processed using whitening
kernels learned on STL-10, and reversely. We then measure
the accuracy of our system on each whitened dataset.

Table V shows the results obtained using different config-
urations. We used several numbers of filters. We fixed the
following parameters: ρ = 1, ε = 10−2, and patch size
= 9×9. We report the results obtained either using whitening
kernels computed on the same dataset or whitening kernels
computed on the other dataset. Regardless of the underlying
configuration, the difference of the recognition rates between
whitening kernels trained on same dataset and trained on a
different datasets is negligible. In all cases, the difference
between the two configurations is close to zero or statistically
not significant (within twice the standard deviation). Thus,
whitening kernels are dataset-independent and can be com-
puted once, then re-used on multiple datasets.

VI. CONCLUSION

SNNs trained with STDP are good candidates to produce
ultra-low power neural networks. However, their performances
are currently far behind DNNs. Notably, STDP cannot learn
effective features on real-world color images. OC/OC cod-
ing, used to pre-process images in this context, is partially
responsible for it, as it filters only a subrange of spatial
frequencies from the images. In this paper, we showed that
pre-processing images with whitening allows to learn more
effective features, visually closer to the ones learned with
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(a) OC/OC (color) + STDP (β = 3.0, texp = 0.90).

(b) Standard whitening + STDP (β = 3.0, texp = 0.97).

(c) Kernel whitening + STDP (β = 3.0, texp = 0.97).

(d) Standard whitening + autoencoders (images taken
from [10]).

(e) No whitening + CNN (images taken from [1]).

Fig. 6: Samples of filters learned on CIFAR-10 (a-d) or Ima-
geNet (e) with different pre-processing and learning methods.

standard neural networks. Implementing whitening on neuro-
morphic hardware may not be trivial, so we also propose to
approximate whitening with convolution kernels to facilitate
its implementation. It yields almost the same performance as
traditional whitening. Cross-dataset experiments show stable
performance of the whitening kernels over datasets, so it is
possible to learn a single set of kernels to process different
datasets, making it even more suitable in a low-power context.
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