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Abstract—The World Health Organization (WHO) registered
around 3 million deaths caused by Chronic Obstructive
Pulmonary Disease (COPD), representing 5% of all deaths
registered in 2015. Computed tomography (CT) is among the
main exam for clinical diagnosis of lung diseases. However,
the first challenge experienced by the radiology specialist is to
define the region of interest. Thus, the identification of diseases
using systems of computer-aided diagnosis (CAD) medical via
image processing techniques offers more accuracy and agility
for diagnosis. In this paper, we propose a new automatic
segmentation of lungs in CT images. Our method uses a deep
learning technique called Mask Region-Based Convolutional
Neural Network (Mask R-CNN), combined with an adaptive
active contour method called Fast Morphological Geodesic Active
Contour (FGAC). The proposed method was evaluated with 72
lung images, consisting of 24 images of healthy volunteers and 48
of unhealthy patients. Our approach achieved promising results
with Accuracy of 98.93%, Matthews Correlation Coefficient of
95.84%, Hausdorff Distance of 5.48, DICE of 96.47%, and
Jaccard of 93.24%. Thus, our method surpasses a recent classic
approach that also uses FGAC as a segmentation method.

Index Terms—FGAC, Lung Image Segmentation, Mask
R-CNN, Artificial Intelligence

I. INTRODUCTION

The lung is one of the organs most commonly affected by
diseases worldwide. Chronic Obstructive Pulmonary Disease
(COPD) is the leading causes of respiratory mortality globally
[1], and it was the third leading cause of death in the world,
according to the World Health Organization (WHO), in 2016
[1]. In addition, according to the WHO, about 3.2 million
deaths were caused by COPD in 2015, and over 90% of these
deaths were in low and middle-incomecountries. It is estimated
that in 2020, 200 million people worldwide will be diagnosed
with COPD, and many more with these undiagnosed diseases
[2].

Currently, several medical areas perform diagnostic
imaging. It is mainly used to allow diagnoses to be made
in a less invasive way, and to assist in the accuracy of
their results, being applied in the acquisition of images of
lung, heart, brain, arteries, bones, among others. Among the
equipment for acquiring these images, Computed Tomography
(CT) stands out [3]–[7]. CT scans allow the visualization of
internal organs and the monitoring of disease evolution, in

addition to reducing the number of possible diagnostic errors
[8]–[10].

Diagnosis by CT exam can be improved through
computer-aided diagnosis (CAD) systems. For this reason, a
vast number of research studies investigate the use of CAD
systems in the diagnosis of pulmonary diseases [11], [12]. In
this way, segmentation techniques are applied to find regions
of interest from an image. In the case of medical images, it
is common to use segmentation methods to demarcate organs
and associate them with the study of pathologies.

Among the techniques applied to automate the task
of marking pulmonary regions, we can mention Digital
Image Processing (DIP) techniques, such as morphology
[13], region growing [14], and watershed transform [15].
However, traditional techniques do not obtain consistent
segmentation for regions with low contrast parenchyma,
leading to inappropriate results when applied on CT exams
[16].

Successfully recent works using Convolutional Neural
Network techniques for classification, segmentation and
detection of objects of interest in images have been proposed
[17], [18]. However, for conducting the proper training of these
deep models requires a large set of medical images and this
remains a challenge medical domain [19]. Despite this, several
studies using deep learning methods for automatic detection of
objects of interest in medical images have been developed. For
example, a type of CNN called Mask R-CNN [20] is automatic
detection and classification of the tear in the knee meniscus
was presented in [21]. In Medeiros et al. [22] a new approach
using Mask R-CNN to automatic initialization to segmentation
of left-ventricle was successfully adopted.

Active Contour Method (ACM), also known as Snakes,
demonstrates to be efficient when applied to medical images,
even with the presence of noise in 2D images, due to its
adaptive potential [23]–[25]. This segmentation method is
based on segments of lines that evolve, forming a curve in
the image domain. The curve adapts according to the shape of
the region around the starting point and develops within the
limits of the object of interest. The evolution of the curve aims
to minimize the total energy formed by energies that depend
on the active contour geometry, the internal energy, and image
characteristics that form the external energy [26].

978-1-7281-6926-2/20/$31.00 ©2020 IEEE



Traditionally, ACMs need an initial contour definition, in
which the segmentation result can change according to the
location where the contour was defined. When the starting
contour is applied in regions with concavity, protrusions, or
bifurcations, it can lead to unexpected results [16]. In the case
of CT scans of the lung, a possible treatment is to pre-process
the images to enhance and standardize the texture of the lung,
guiding the segmentation method to reduce noise interference.

Thus, to surpass these limitations, this work provides a
new approach to lung segmentation based on a recent method
called Fast Morphological Geodesic Active Contour (FGAC),
proposed by Medeiros et al. [27]. Additionally, combined with
FGAC, we present an automatic initialization method that
detects the lungs and initializes a curve for each one. These
curves resemble the edges of the region of interest, presenting
impressive progress in the segmentation step. Therefore,
it accelerates the convergence time of the approach. Our
approach uses the recent deep learning called Mask R-CNN.
Finally, we compare it with other lung segmentation methods.

This work is divided into sections. Section 2 presents
a bibliographic review of the main topics related to this
work. In Section 3, we present the FGAC approach to lung
segmentation based on morphological geodesic active contour.
In Section 4, we discuss the details of the proposed approach
used as an initialization for FGAC. We present the results and
discussions in the Section 5 and the conclusions in Section 6.

II. RELATED WORKS

Different segmentation methods based on ACM have been
proposed in the literature. This section shows the main works,
based on ACM and FGAC, used for comparison in the section
of results and discussion.

Gradient Vector Flow (GVF) proposed by Xu and Jerry
L [28] is based on gradient vectors for the evolution of the
curve in regions with low definition edges. However, GVF has
limitations when initialized at regions distant from the center
of the object or in concave and invariant regions. The vector
flow can be canceled because the gradient tends to zero, and
the curve stops prematurely.

Vector Field Convolution (VFC) proposed by Li and Scott
T [29] considers that external energy can be a convolution
operation. Compared to GVF, VFC has advantages regarding
computational cost, since it is reduced. Besides, it has greater
robustness as to the initialization position of the curve, in
addition to handling better when subjected to Gaussians
and noisy images. However, when the curve initialization
is inserted in an object that does not have a good contour
definition, VFC goes beyond its edges, evolving the curve to
edges of high intensity.

ACM Crisp proposed by Rebouças et al. [23] different
from the previous methods, presents a new approach in
which it considers the internal structures of the pulmonary
parenchyma, such as vessels, airways, and pulmonary wall.
These structures, when reproduced in the image, can generate
false borders and confuse the evolution of the curve. The
AMC Crisp is inspired by the density of lung tissues to

establish image analysis ranges, based on Hounsfield units
(HU). The method incorporates heuristics related to knowledge
of the intensity ranges in HU. However, although innovative
in density analysis, the method has limitations when the initial
curve is established in decentralized regions and suffers from
changes in topology in the image [30].

Adaptive ACM Crisp (CRAD) proposed by Rebouças et
al. [30] an improvement on the Crisp [23] method, presents
optimizations regarding the limitations of decentralized
initializations in the region of interest. However, this method
requires defining the set of categories according to the density
of the tissues and the previous training of the classifier,
imposing time limitations to reach a solution.

According to Barros [31] the Optimum Path Snakes (OPS)
is a technique inspired by the classifier Optimum Path Forest
(OPF). In this method, each point on the curve, taken as
an explorer point, is able to analyze the neighborhood and
determine the optimal path to evolve. Similar to CRAD,
the OPS method is based on the optimization of the OPF
classifier and, likewise, requires prior training of the points
that represent the class prototypes.

To improve the segmentation methodology, the works using
transforms as the Radial Hilbert Transform (RHT) proposed
by Felix et al. [32] were also used for comparison.

A recent work proposed by Medeiros et al. [27] uses
the FGAC method for lung segmentation with an automatic
initialization that approximates the initial contour of the
desired segmentation region. However, proposed initialization
to FGAC presents high sensitivity to the calculation of the
gradient present near edges of objects of interest when they
are close, which leads to an unwanted segmentation. In this
sense, our work presents an adaptive approach for localization
of the region of interest. Our method is based on the analysis
of local regions using a recent pixel classification technique,
which is inspired by Convolutional Neural Networks based on
region, known as Mask R-CNN.

III. MATERIALS

This section describes the methods that substantiate this
work, as well as the description of the dataset and evaluation
metrics.

A. A fast segmentation via Morphological Geodesic Active
Contour

Osher-Sethian [33] proposed the representation of a
deformable curve C as a embedded curve in a φ function.
The φ function is known as level set. Posteriorly, Caselles et
al. [34] proposed the geodesic active contour as a deformable
model inspired by the Osher-Sethian level set. As an evolution
of Caselles et al. method, Medeiros et al. [34] proposes
the Fast Morphological Geodesic Active Contour (FGAC).
This image segmentation method is based on the equivalence
of morphological operators with differentiable functions,
proposed by Marquez-Neila et al. [35].

Unlike traditional active contours, FGAC does not depend
on the parameterization of each point on the curve. The
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evolution of the C curve points is based on the deformation
of the geometric shape that defines the segmentation
level set. The minimization of energy functional designates
the reduction of the geodesic distance. This reduction
deformities geometric shape that determines the deformation
of segmentation level set. The Equation 1 defines the energy
functional:

E(C) =

∫ length(C)

0

Ω(I)(C(s))ds (1)

where C(s) is the segmentation curve and Ω(I) detects high
gradient regions in the image.

The FGAC segmentation method represents the level set
as a group of pixels in a binary image. However, to identify
the initial level set, FGAC presents high sensitivity to the
calculation of the gradient present at the edges of objects when
they are very close to each other, which leads to an unwanted
segmentation.

B. Mask R-CNN

He et al. [20] proposed a method called Mask R-CNN for
detection, classification, and segmentation of objects based
on Region-based Convolutional Neural Network architectures,
such as R-CNN [36], Fast R-CNN [37], and Faster
R-CNN [38]. Two competing CNNs form the structure of the
Mask R-CNN: a Region Proposal Network (RPN), used to
detect and classify objects, and a Fully Convolutional Network
(FCN), that has the function of generating object segmentation
masks [20]. The improvement of the net result is performed
using the loss function described in Equation 2,

L = Lclc + Lbbox + Lmask (2)

where L is the total training loss, Lclc is the object
classification loss, Lbbox is the object detection loss, and Lmask

is the segmentation mask error.

C. Image acquisition

The proposed method was evaluated using a CT dataset
of lung diseases, provided by Walter Cantidio University
Hospital, in Fortaleza, Brazil. This dataset consists of 24
images of healthy lungs and 48 of unhealthy lungs: 24
with fibrosis and 24 with pulmonary emphysema. The same
dataset was used in previous experiments, such as disease
classification [39]–[41] and image segmentation [27], [42].
The exams were obtained by two different types of equipment:
Toshiba Aquilion GE Medical System LightSpeed 16 and
Philips Brilliance 10. Since the exams were collected by
different equipment, they showed irregularities in lighting and
contrast. However, all exams have a resolution of 512 x 512
pixels with 16 bits.

D. Evaluation Metrics
In order to evaluate the average generalization of the

proposed initialization method combined with FGAC, we use
the following evaluation metrics for segmentation: Accuracy
(ACC) [43], [44], Sensitivity (Se) [43], [44], Dice Coefficient
(DICE) [45], Matthews Correlation Coefficient (MCC) [46],
Jaccard Index (JAC) [47] and Hausdorff Distance (HD) [48].

IV. ADAPTIVE LEVEL SET WITH REGION ANALYSIS VIA
MASK R-CNN.

Previous studies on segmentation methods based on
deformable models indicate that the initialization stage is a
critical stage for the performance of the method. Techniques
based on the image gradient, for instance, can converge early
on uniform regions of the image. In this section, we present
a new approach for calculating the region of interest, based
on the classification of local regions. This approach involves
the FGAG method adding an adaptive potential to detection
of region of interest. It combines the representative potential
of Mask R-CNN to detect regions of interest with the ability
of FGAC to deform the segmentation curve. Thus, we call our
method as R-FGAC.

In Figure 1, we show the structure of the proposed method,
consisting of three main steps, which will be described in the
following subsections.

A. Pre-processing
Pre-processing is a critical step for CT images since it

helps in subsequent steps of segmentation. Contrast Limited
Adaptive Histogram Equalization (CLAHE) has produced
excellent results on medical images [49]. Several works have
been done using CLAHE for image enhancement, such as
[50]–[53]. As shown in Step 1 of Figure 1, the exams are
pre-processed using the CLAHE filter. In this way, the regions
of interest become more noticeable. The improvement with the
application of this pre-processing in the images contributes to
achieving better initialization results obtained by Mask R-CNN
after training the model.

B. Classification
1) Augmentation: Computed tomography images,

especially chest projections, present organs in shapes
that vary according to the analysis plan. In this respect, it is
necessary to train the model with varied samples aiming to
improve the generalization potential of the classifier. In this
work, the image dataset was expanded, generating samples
under applications of rotation, mirroring, and translation of
the original image. Figure 2 illustrates the different changes
on a CT scan and their synthetic variations.

2) Mask R-CNN Training Stage: We used Mask R-CNN
with Inception Resnet v2 for training, as can be seen in the
overview of this models 1. Since there were just over 270
images of the lung, we opted for pre-trained weights. The
pre-trained weights on the COCO dataset 2 were used as initial

1https://github.com/tensorflow/models/blob/master/research/object
detection/g3doc/detection model zoo.md

2http://cocodataset.org/
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Fig. 1. Overview of the steps of proposed approach to lung segmentation via
RMask-FGAC.

Fig. 2. Dataset regularization technique via data augmentation.

weights in training. For attribute extraction, we set the batch
size to 1. Also, we established an Intersection over Union
(IoU) threshold of 0.7 to filter detections with poor quality.
Additionally, we assigned 0.9 to momentum without Dropout.

For conduct adequate training of the deep model for
extraction representative features from the data, in the training
stage, it performed 100,000 iterations over the augmented data.
Initially, the learning rate was 0.003, decreasing to 0.0003 after
70,000 iterations. The total training time was 12 hours, using
the augmented image set. At the end of the training, the Total
Loss was uniform and below 2%.

C. Adaptive Level Set

According to the work of Medeiros et al. [27] and Rebouças
Filho [54], the initialization stage presents itself as a critical
step for segmentation methods based on deformable models.
In this work, we propose the identification of Level Set zero
as a binary component obtained by analyzing local regions
and detecting candidate regions from the output of the Mask
R-CNN.

After Mask R-CNN training, the model is able to detect and
segment objects that were presented during its training. Step
2 of Figure 1 illustrates the processes done by Mask R-CNN,
from its input to its output. Firstly, we show the pre-processed
image as an input to RNP, where an ROI Align is performed
to generate the input for the Fully Connected Layers and for
the FCN. Then, the Fully Connected Layers perform the class
and bounding box predictions, whereas the FCN is responsible
for creating the segmentation masks.

The two binary components identified in Step 2 are used
as an initial level set. They cover a region overlapping the
thoracic concavity, thus representing a region where the lung
will be contained. In this sense, these components form the
initial level set that must be deformed in order to find the
borders that represent the pulmonary walls.

D. FGAC with Adaptive Initialization

Finally, the last step of Figure 1 represents the initialization
of the active contour R-FGAC, using the adaptive level set
identified in the previous step through the Mask R-CNN.
At this stage, the active contour R-FGAC initializes its
segmentation curve, i.e., level set zero, and contracts the curve
towards the lung walls where there is a greater incidence of
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the gradient in the image. This evolution is an iterative process
and continues until the perimeter of the curve stops evolving.

V. RESULTS AND DISCUSSION

In this section, we discuss the results of different classic
approaches for locating the region of interest proposed in
methods such as GVF [28], VFC [29], Crisp [23], CRAD
[30], OPS [31], and original FGAC [27]. All methods were
applied to the same lung samples of the dataset to a equivalent
comparison. Our method is compared with the previous
approaches, according to the similarity between their results
and the expert segmentation.

The results are divided into three parts: quantitative indexes
(Sen, ACC, and MCC), similarity indexes (HD, DICE, and
JAC), and segmentation time. We use only the quantitative
and similarity indices to determine the best configuration for
our method. In order to compare with the other methods
mentioned, we use all three types of results.

All experiments were conducted on Ubuntu 18.04 operating
system with 16GB RAM, Intel Core i7 processor, and NVIDIA
GeForce GTX 1660 TI GPU.

According to Medeiros et al. [27] geodesic active contour
requires three parameters: σ as the Gaussian derivatives, v as
the ballon force, and α as a weight factor to the gradient. As in
their work, we set the α parameter to 1000. Then, we perform
a grid search to find the best combination for the parameters
σ and v. The search interval for σ was defined between 1 and
5 with a variation of 1, and v was defined between 0.25 and
0.50 with a variation of 0.05. Table I presents the results for
the proposed combinations and the respective values for the
parameters mentioned above.

The best combination values found within the determined
ranges were σ equal to 3.0 and v equal to 0.25. With this
combination, it is possible to obtain the best lung segmentation
for this data set compared to the ground truth provided by the
specialist.

Table II shows the shortest average time of execution
for each method. The proposed approach achieved 4.3±0.04
seconds for the best combination of parameters. GVF had
the longest time and standard deviation, with 240.00±3.05 s.
FGAC had the shortest time, with only 001.85±0.50 s.
The proposed method surpasses GVF, VFC, OPS Euclidian,
and SISDEP, which had segmentation time of 240.00±3.05,
030.00±2.67, 008.27±2.63, 005.86±1.96, and 004.90±2.02
seconds, respectively. Our approach achieved the lowest
standard deviation, indicating greater stability in the time to
obtain segmentation.

Table III presents the mean values and standard deviations
of the quantitative measures ACC, MCC, and Se. The
configuration of the proposed R-FGAC combination that
obtained the best results equaled or surpassed the average
accuracy achieved by VFC, GFV, THR mod, THR multi, OPS
Euclidean, SISDEP, CRISP, and the recent FGAC. The only
exception was CRAD, which was 0.06 higher. Considering the
MCC index, our method reached 95.84±01.90%, surpassing
all methods, except for OPS Euclidian, SISDEP, and CRAD.

TABLE I
GRID SEARCH OF GAUSSIAN DERIVATIVES (σ) AND BALLON FORCE (ν)

TO FIND THE BEST PARAMETERS. THE BEST COMBINATION OF THE
VALUES σ AND ν IS HIGHLIGHTED IN GREEN. THE RESULTS WERE

EVALUATED ACCORDING TO ACCURACY (ACC), MATTHEWS
CORRELATION COEFFICIENT (MCC), SENSITIVITY (SE), HAUSDORFF

DISTANCE (HD), DICE COEFFICIENT (DICE), AND JACCARD INDEX (JAC).

σ ν ACC MCC Se HD DICE Jac
1.0 0.25 98.81 95.33 95.00 5.63 96.02 92.41
1.0 0.30 98.82 95.42 96.33 5.66 96.11 92.57
1.0 0.35 98.81 95.45 97.46 5.67 96.14 92.62
1.0 0.40 98.79 95.39 97.91 5.70 96.10 92.52
1.0 0.45 98.77 95.36 98.24 5.66 96.07 92.48
1.0 0.50 98.74 95.30 98.45 5.66 96.02 92.38
2.0 0.25 98.91 95.76 95.33 5.48 96.40 93.11
2.0 0.30 98.90 95.74 95.5 5.47 96.38 93.08
2.0 0.35 98.87 95.64 96.32 5.50 96.31 92.94
2.0 0.40 98.85 95.65 97.79 5.54 96.32 92.93
2.0 0.45 98.83 95.60 98.25 5.47 96.27 92.84
2.0 0.50 98.82 95.59 98.48 5.49 96.26 92.82
3.0 0.25 98.93 95.84 95.46 5.48 96.47 93.24
3.0 0.30 98.92 95.84 95.52 5.45 96.46 93.23
3.0 0.40 98.91 95.57 96.20 5.47 96.41 93.12
3.0 0.45 98.86 95.67 97.57 5.46 96.34 92.98
3.0 0.50 98.85 95.69 98.28 5.40 96.35 92.99
4.0 0.25 98.92 95.83 95.43 5.45 96.46 93.22
4.0 0.30 98.92 95.83 95.43 5.45 96.46 93.22
4.0 0.35 98.91 95.81 95.42 5.47 96.44 93.21
4.0 0.40 98.92 95.81 95.48 5.45 96.44 93.20
4.0 0.45 98.92 95.79 96.08 5.51 96.43 93.16
4.0 0.50 98.87 95.69 96.28 5.52 96.36 93.01
5.0 0.25 98.91 95.76 95.31 5.54 96.39 93.11
5.0 0.30 98.91 95.76 95.31 5.54 96.39 93.11
5.0 0.35 98.91 95.76 95.31 5.54 96.39 93.11
5.0 0.40 98.89 95.75 95.39 5.53 96.38 93.09
5.0 0.45 98.91 95.75 95.36 5.53 96.39 93.09
5.0 0.50 98.90 95.73 95.96 5.58 96.37 93.06

TABLE II
AVERAGE SEGMENTATION TIME OF THE PROPOSED METHOD AGAINST

OTHER METHODS.

Methods Average time (s)
GVF 240.00±3.05
VFC 030.00±2.67
OPS 008.27±2.63

OPS Euclidean 005.86±1.96
SISDEP 004.90±2.02
CRAD 002.00±0.16
FGAC 001.85±0.50

R-FGAC 004.3±0.04

However, the highest MCC, reached by OPS Euclidean, was
only 0.3 higher. Besides, the proposed method achieved a
better average time performance compared to OPS Euclidian.

Regarding the sensitivity index, our approach reached
95.46±03.64%, which was below the average of the other
approaches. Unlike the other methods, we configured FGAC
to perform the evolution of the curve to contract and adjust the
outer edges of the lung. Due to the physiognomy of the lungs
having many concavities and non-uniform regions, FGAC
was not able to contract in order to adjust to very concave
and narrow regions. Thus, in some exams that presented
such characteristics, the final segmentation obtained remained
external to these details, impairing sensitivity.
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Fig. 3. Comparison between R-FGAC and the segmentation methods that obtain initializations via classic methods. The first line shows healthy lungs and
highlighted segmentation. The second line shows the lungs with pulmonary fibrosis and highlighted segmentation.

Fig. 4. Comparison between R-FGAC and the segmentation methods that obtain initializations via supervised algorithms. The first line shows healthy lungs
and highlighted segmentation. The second line shows the lungs with pulmonary fibrosis and highlighted segmentation.

TABLE III
QUANTITATIVES INDEXES TO COMBINATION OF R-FGAC AGAINST

OTHERS SEGMENTATION METHODS.

Quantitative indexes
ACM Acc MCC Se

R-FGAC 98.93±00.44 95.84±01.90 95.46±03.64
FGAC 98.86±0.46 95.54±1.92 99.21±0.66
VFC 97,88±01,29 92,13±03,20 98,26±01,31
GVF 96,79±03,61 90.00±06,45 96,75±05,10

THR mod 97,56±01,63 91,34±03,09 98,22±01,28
THR multi 95,77±3,96 85,38±11,85 97,68±03,45

OPS Euclidean 98,93±0,53 96,14±1,29 99,00±0.79
SISDEP 98,89±0,52 95,87±1,13 98,99±0,65
CRISP 98,04±0,89 92,67±2,73 98,01±1,23
CRAD 98,99±0,57 96,13±1,86 99,45±0,43

For similarity indexes, Table IV presents the mean values
and standard deviations of the HD, DICE, and Jaccard
values. The R - FGAC reached 5.48±1.13%, 96,47±01,91%,
and 93,24±03,38% for HD, DICE, and Jaccard metrics,
respectively. Considering the HD index, R - FGAC had

a better performance than FGAC, VFC, GVF, THR mod,
THR multi, and CRISP methods. Also, the proposed method
achieved results similar to OPS Euclidian, SISDEP, and
CRAD, being only 0.34 below CRAD. Similarly, for DICE
and Jaccard indexes, R - FGAC surpassed FGAC, VFC, GVF,
THR mod, THR multi, and CRISP. The R-FGAC reached
equivalent results to OPS Euclidian, SISDEP, and CRAD,
regarding DICE and Jaccard indexes. For the DICE measure,
for example, the results show that the biggest difference is only
0.29 between the OPS Euclidian and R - FGAC. Likewise, for
the Jaccard measure, the difference between OPS Euclidian
and R - FGAC is only 0.51.

For purposes of visualization and comparison of
segmentation methods, Figures 3 and 4 show the final
segmentation of R-FGAC, comparing it to other methods, for
healthy lungs and lungs with pulmonary fibrosis.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we propose a new robust technique for
automatic lung segmentation in CT scans of the lung. In
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TABLE IV
SIMILARITY INDEXES TO R-FGAC AGAINST OTHERS SEGMENTATION

METHODS.

Similarity Indexes
ACM HD DICE Jaccard

R-FGAC 5.48±1.13 96,47±01,91 93,24±03,38
FGAC 5.57±1.17 96.19±1.93 92.73±3.43
VFC 6.92±1.50 93,33±2,82 87,62±4,81
GVF 7.55±2.29 91,76±4,84 85,11±7,71

THR mod 6.93±1.79 92,81±2,21 86,65±3,79
THR multi 8.23±2.91 87,29±11,18 78,82±14,43

OPS Euclidean 5,29±1,14 96,76±1,12 93,75±2,09
SISDEP 5,46±1,15 96,52±1,01 93,3±1,87
CRISP 6,33±1,32 93,73±2,7 88,31±4,56
CRAD 5,14±1,17 96,73±1,73 93,72±3,15

this approach, we combine the morphological geodesic active
contour with a new adaptive initialization via deep learning
technique. Our approach applied the Fast Morphological
Geodesic Active Contour (FGAC) at the final output of the
Mask R-CNN network.

We analyzed different studies that carried out to
automatically identify and segment the lung region. Among
the ones that use a classic initialization, FGAC stood out. This
method achieved Accuracy of 98.86%, Matthews Correlation
Coefficient (MCC) of 95.54%, Hausdorff Distance (HD) of
5.57, DICE of 96.19%, and Jaccard (Jac) of 92.73%. On the
other hand, our approach combines a deep learning technique,
via Mask R-CNN, with FGAC. As a result, we achieved
higher metrics values, such as Accuracy of 98.93%, Matthews
Correlation Coefficient of 95.84%, Hausdorff Distance of 5.48,
DICE of 96.47%, and Jaccard of 93.24%.

Given that a typical CAD system for the diagnosis of
pulmonary diseases consists primarily of a lung segmentation
stage, the development of lung segmentation techniques is
relevant. This work introduced an innovative technique for
automatic lung segmentation in medical images using a recent
and powerful approach to achieve more accurate and agile
results. Instead of the pulmonary regions in CT scans being
marked manually by an expert, our approach will support the
specialist in this step, providing more efficient segmentation
quality.

Thanks to the generalization power of Mask R-CNN for
object segmentation, for future works, we intend to apply the
technique to another set of lung data with greater volume
and variability in order to improve the prediction of Adaptive
Level Set with Mask R-CNN. We also intend to evaluate new
deep learning techniques based on the region’s classification.
Finally, we also intend to evaluate these techniques in other
sets of medical images, given the high power of generalization
learning.
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ativo crisp: nova técnica de segmentação dos pulmões em imagens de
TC, Revista Brasileira de Engenharia Biomédica 27 (4) (2011) 259–72.

[24] P. P. Rebouças Filho, P. C. Cortez, J. H. d. S. Felix, T. d. S. Cavalcante,
M. A. Holanda, Modelo de Contorno Ativo Crisp Adaptativo 2D
aplicado na segmentação dos pulmões em imagens de TC do tórax de
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Lung diseases classification by analysis of lung tissue densities, IEEE
Latin America Transactions (2018).

[41] P. P. R. Filho, E. de S. Rebouças, L. B. Marinho, R. M. Sarmento,
J. M. R. Tavares, V. H. C. de Albuquerque, Analysis of human tissue
densities: A new approach to extract features from medical images,
Pattern Recognition Letters 94 (2017) 211 – 218. doi:https:
//doi.org/10.1016/j.patrec.2017.02.005.

[42] A. G. Medeiros, S. A. Peixoto, A. C. S. Barros, V. H. C. de Albuquerque,
P. P. Rebouças Filho, Uma nova abordagem para a segmentação
de pulmões utilizando o método de contorno ativo não paramétrico
optimum path snakes em imagens de tomografia computadorizada, in:
Anais do XVII Workshop de Informática Médica, SBC, 2017.
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