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Abstract—1-bit matrix completion plays a significant role in
recommender systems. However, conventional 1-bit methods do
not consider the interactive clustering nature of customers and
products. To tackle the gap, we introduce Group-Specific 1-bit
Matrix Completion (GS1MC) by first-time consolidating cluster
effects in 1-bit matrix completion tasks. To empower GS1MC
even when grouping information is unobtainable, GS1MC is
extended as Cluster Developing Matrix Completion (CDMC) by
integrating subspace clustering techniques. CDMC can group en-
tities and utilize their cluster effects simultaneously. Experiments
show that GS1MC outperforms current 1-bit matrix completion
methods and CDMC successfully captures items’ genre features
only with sparse binary rating data. Notably, GS1MC provides a
new insight to incorporate and evaluate the efficacy of different
clustering methods while CDMC can be served as a new tool to
explore unrevealed social behavior or market phenomena.

Index Terms—Matrix Completion, Subspace Clustering

I. INTRODUCTION

Recommender systems aim at improving customers’ ex-
perience by maximizing the use of available information,
including (i) collaborative filtering (Deshpande and Karypis,
2004; Linden et al., 2003; Resnick et al., 1994; Sarwar et al.,
2001), which utilizes user-item interactive data, such as ratings
or clicking behavior; and (ii) content-based methods (Billsus
and Pazzani, 2000; Pazzani and Billsus, 1997; Shoham, 1997),
which utilizes attribute information, such as category or textual
profiles.

Collaborative filtering can be considered as a special case of
matrix completion task. It has become a cornerstone of most
powerful recommender systems while it is mainly founded on
two main streams of methods: neighbourhood-based methods
(Deshpande and Karypis, 2004; Linden et al., 2003; Resnick
et al., 1994; Sarwar et al., 2001) and model-based methods
(Bell et al., 2007; Breese et al., 1998; Koren, 2008; Paterek,
2007; Takács et al., 2008, 2009). Though neighbourhood-
based methods are easy to interpret and implement, they suffer
from low prediction accuracy when observed data is sparse.
Alternatively, model-based methods define a parameterized
model to capture the key features of training data. Numerous
model-based approaches were tested in previous research,
including Support Vector Machines (Grčar et al., 2006),
Maximum Entropy (Zitnick and Kanade, 2004), Boltzmann
Machines (Salakhutdinov et al., 2007) and Singular Value
Decomposition (SVD) (Koren, 2008; Paterek, 2007; Takács
et al., 2008, 2009).

Under the assumption that the continuation of data points
is convincing and compelling, standard collaborative filtering
methods take observed entries of a rating matrix as real
numbers. However, the adequacy of this measurement is
undoubtedly questionable when intervals between data points
are different. For instance, personal judgments from different
customers vary as a result of personality. Generous customers
tend to give fairly higher ratings than curmudgeon customers.
Thus, instead of taking data as continuous numbers, it is
more feasible considering them as categories, especially the
polarity case. Bhaskar and Javanmard (2015); Cai and Zhou
(2013); Davenport et al. (2014) use binary ratings generated by
the real-valued entries, and experiments show their approach
performs significantly better than continuous methods.

Although 1-bit matrix completion proves its success in
recommender systems, same as most other matrix comple-
tion methods, it suffers from a fundamental limitation: every
user/item is treated merely as standalone individuals, which
arrogantly ignores the homogeneity of products and the clus-
tering characteristic of social behaviors. For instance, some
fundamental management theory points out that people have
a propensity of conformity nature based on demographic,
psychographic and behavioral variables (Kotler, 2009). Recent
research is noticed focusing on integrating preliminary clusters
into continuous matrix completion task (Bi et al., 2017)
and experiments demonstrate that their approach outclasses
traditional SVD methods. However, so far there is not any
1-bit matrix completion methods taking cluster information
into consideration. Moreover, state-of-the-art recommender
systems either take clustering as an independent task or treat
cluster identities as preliminaries, there is not any existing
method for summarizing clusters along with matrix comple-
tion. Since the clustering nature of individuals plays a vital
role in social behavior research, it is consequently significant
to introduce a new method that learns the clusters and utilizes
the clustering effects for matrix completion at the same time.

In this work, we propose two methods: (i) group-specific
1-bit matrix completion (GS1MC), which integrates known
group identities into conventional methods ; and (ii) cluster
developing matrix completion (CDMC) which learns clus-
ter identities automatically. Experimentally, we show that
the proposed GS1MC outperforms its baselines and CDMC
successfully captures targets’ generic features and achieves
convergence of both user/item clusters.
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II. PRELIMINARIES

In this section, we discuss some preliminary knowledge of
our work, including traditional SVD-based matrix completion,
the framework of probabilistic 1-bit matrix completion and
sparse subspace clustering technique.

A. Matrix Completion

Traditional continuous matrix completion methods consider
an incomplete user-item interaction matrix R̂ = (r̂ui) ∈
Rm1×m2 for m1 users and m2 items, where each existing
entry r̂ui stands for an explicit rating given by user-u towards
item-i. The typical SVD-based method can be formulated as:

arg min
U,V

J =
1

2
‖R̂−UVT ‖2

s.t. Columns of U,V are mutually orthogonal.
(1)

The above formulation is extended in different directions.
For instance, a variety of regularization terms are applied for
specific considerations (Zhu et al., 2016), and biased version of
SVD methods (Koren and Bell, 2015; Paterek, 2007) are also
introduced to consider the general preference of each user and
discrimination of each item. Moreover, users/items can also be
allocated into clusters and aggregated with group effects. For
instance, taking preliminary cluster identities as inputs, a set
of latent variables representing the group bias (Bi et al., 2017)
can be learned.

B. 1-Bit Matrix Completion

Though matrix completion methods have been used for
recommender systems for long, 1-bit matrix completion (Dav-
enport et al., 2014) has been officially introduced lately. Varied
from the continuous model which applies numerical compu-
tation on discrete rating data improperly, original observation
is converted into an incomplete binary matrix Ŷ first. The
objective of the task is formalized as learning an n1 × n2

latent variable matrix M = (M̂ui) ∈ Rn1×n2 to estimate the
binary data via:

Yui =

{
+1, with probability f(Mui)

−1, with probability 1− f(Mui)
(u, i) ∈ Ω, (2)

where Ω is the set of all the observed entries and f can be a
sigmoid function defined as:

f(z) =
1

1 + exp{−z}
. (3)

Similar to other low-rank matrix completion methods, a
wide variety of approaches have been applied to constrain the
latent variable matrix (Bhaskar and Javanmard, 2015; Cai and
Zhou, 2013; Davenport et al., 2014). However, these methods
treat every instance as autonomous individuals, ignoring the
ground truth that users/items tend to have any baseline or be-
long to certain clusters. Furthermore, a severe gap is that there
is not any methodology that can both learn the cluster identities
and leverage their group effects for matrix completion at the
same time.

C. Subspace Clustering

Subspace clustering (Brbić and Kopriva, 2018; Elhami-
far and Vidal, 2013; Liu et al., 2010) aims at grouping
data points in their low-dimensional subspace via the self-
expressive matrix, which represents each instance by an affine
combination of other points within the same subspace. Assume
the noise-free dataset X ∈ RD×Nl can be separated into n
subspaces {Sl}nl=1 of dimensions D = {dl}nl=1. Each data
point xi ∈ ∪nl=1Sl can be reconstructed by a combination of
other points within the same subspace as:

xi = Xci, cii = 0. (4)

Since representations for each data point by the other should
be as sparse as possible, which results in an NP-hard problem,
different norm functions are applied to get around the NP
difficulty. Then, (4) can be reformulated in the fowllowing
form:

min ‖C‖norm s.t. X = XC, diag(C) = 0, (5)

where C , [c1c2...cN ] ∈ RN×N corresponds to the non-
trivial subspace-sparse representation for all the data points xis
and ‖ · ‖norm can be selected in favor of different application
focuses.

Since user-item interaction data is exceedingly sparse and
high-dimensional, many dimensions are irrelevant and covered
by noise. Meanwhile, latent variables, representing the profiles
of individuals, are not strictly around any centroids. Thus,
conventional clustering methods that utilizing the spatial prox-
imity is not applicable in this case while subspace clustering
has several advantages. Firstly, subspace clustering methods
aim at grouping the points that are not necessarily close but
lie in the same subspace, which does not depend on the
spatial characteristic of the data anymore. Then, as sparse
subspace clustering deploys a convex approach to pick out the
sparse representation of each point, the optimization process
automatically eliminates some common issues of clustering
methods, such as sensitivity to the ideal cluster size and
bordering matter of the overlapped subspace.

III. GROUP-SPECIFIC 1-BIT MATRIX COMPLETION
(GS1MC)

In this section, we utilize known cluster identities with 1-
bit matrix completion task, such that the group effects can be
learned along with latent variable training process.

A. Model Framework

Suppose Ŷ is the observed n1×n2 binary rating matrix with
entries equal to ‘+1’ or ‘−1’, corresponding to “interested” or
“not interested”, where n1/n2 is the number of users/items,
the “not observed” entries are represented by ‘0’. Ω stands for
the observed user-item pairs, i.e. entries with same indexes as
‘+1’ and ‘−1’ in Ŷ. We construct the latent variable matrix
as M ∈ Rn1×n2 . To make predictions for missing entries by
(2), our main objective is to find the estimation of M that best
approximates the observed data.
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Since it has been proved that the exact low-rank method
results in a high convergence rate (Bhaskar and Javanmard,
2015), especially when the fraction of revealed entries is small
(cold-start problem), we choose to apply an exact low-rank
constraint on M. We assume that every user/item is classified
into one single user/item group, respectively. We formulate the
latent variable matrix M by integrating group bias into matrix
factorization. Then each entry in M can be written as:

Mui = (pu + svu)′(qi + tji). (6)

Here pu ∈ RK and qi ∈ RK are K-dimensional latent factors
standing for user u’s preference and item i’s character, while
svu ∈ RK and tji ∈ RK represent biases of clusters that
individuals belong to. For instance, svu means the cluster
effect of user cluster vu, i.e. the cluster user u belongs to. Here
we have assumed that there are m1 users clusters and m2 item
clusters, such that vu ∈ {1, 2, ...,m1} and ji ∈ {1, 2, ...,m2}.
Then, the group effects of the user and item clusters can be
formalized as:

SU = [s1, s2, ..., sm1
]T ∈ Rm1×K , and

TJ = [t1, t2, ..., tm2
]T ∈ Rm2×K .

For the sake of convenience, in terms of matrix notations,
we assume the user-item interaction data Ŷ = (Ŷui) and
its corresponding latent variable M = (Mui) have been
permuted such that the first U1 rows corresponds user cluster
1, followed by U2 rows corresponding to user cluster 2, ...,
and the last Um1 rows corresponding to user cluster m1.
Similarly, the columns have been rearranged accordingly. After
this alteration, the decomposition (6) can be written as the
following matrix format:

M = (P + S)(Q + T)T (7)

where

P = [p1,p2, ...,pn1
]T ∈ Rn1×K ;

Q = [q1,q2, ...,qn2
]T ∈ Rn2×K ;

S = [s11
T
U1
, s21

T
U2
, ..., sm1

1TUm1
]T ∈ Rn1×K ;

T = [t11
T
J1
, t21

T
J2
, ..., tm2

1TJm2
]T ∈ Rn2×K .

Here 1m stands for m-dimensional (column) vector of all ‘1’s.
In other words, instances of group effects matrix SU and TJ

have been duplicated in order to match the dimension of matrix
P and T. For the convenience of the transformation between
S, T and SU , TJ , we define the following two matrices:

Im1×n1

U =


1TU1

0 · · · 0
0 1TU2

· · · 0
...

...
. . .

...
0 0 · · · 1TUm1

 , and

Im2×n2

J =


1TJ1

0 · · · 0
0 1TJ2

· · · 0
...

...
. . .

...
0 0 · · · 1TJm2

 .

Thus, it is clear that S, T and SU , TJ can be transformed to
each other by:

S = ITUSU and T = ITJTJ . (8)

Then, (7) can be rewritten as:

M = (P + ITUSU )(Q + ITJTJ). (9)

B. Objective and Optimization

Following the objective function of basic 1-bit matrix com-
pletion method (Bhaskar and Javanmard, 2015), the fundamen-
tal loss function is defined as:

FΩ,Ŷ(M) = −
∑

(u,i)∈Ω

{I(Ŷui=1) log(f(Mui))

+I(Ŷui=−1) log(1− f(Mui))},

where f(M) is the matrix operation of applying f over M
element-wise, and 1 is the all 1’s matrix. Here Iµ is the indi-
cator function, i.e. Iµ = 1 when µ is true, else Iµ = 0. Iµ can
be implemented as two mask matrices Yn1×n2

1 = (Y1(u, i))
and Yn1×n2

−1 = (Y−1(u, i)) of the same size as M, where
Y1(u, i) = 1 if Ŷui = 1, otherwise Y1(u, i) = 0. Similarly,
Y−1(u, i) = 1 if Ŷui = −1, otherwise Y−1(u, i) = 0. Then,
the fundamental loss function can be transformed into:

FΩ,Ŷ(M) = −
∑
Ω

(Y1 ◦ log f(M) + Y−1 ◦ log(1− f(M)),

(10)
where ◦ means the element-wise product of two matrices. We
notate Γ = (P,Q,SU,TJ) and R0 = {Ŷij : (i, j) ∈ Ω}.
After adding the regularization term, the new loss function
can be formulated as:

L(Γ|R0) = FΩ,Ŷ(M)+λ(‖P‖2F +‖SU‖2F +‖Q‖2F +‖TJ‖2F ).
(11)

Our goal is to predict the missing entries of the rating matrix,
which can be computed by:

Γ̂ = arg min
Γ

L(Γ|R0). (12)

We solve the optimization problem (12) via the Alternating
direction method of multipliers (ADMM). Firstly, to update
the latent factors of users and user clusters, we fix Q and TJ ,
and minimize (12) by estimating P̂ and ŜU:

P̂ = arg min
P
{FΩ,Ŷ(M) + λ‖P‖2F }, (13)

ŜU = arg min
SU

{FΩ,Ŷ(M) + λ‖SU‖2F }. (14)

Then for items and item clusters, we fix P and SU ,
conducting following computations:

Q̂ = arg min
Q
{FΩ,Ŷ(M) + λ‖Q‖2F }, (15)

T̂J = arg min
TJ

{FΩ,Ŷ(M) + λ‖TJ‖2F }. (16)

Each of sub-problems (13) - (16) can be solved by the
gradient descent algorithm. We can work out the gradient in
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the following way. First we take f as the sigmoid function
defined in (3), then it is easy to check that:

∂FΩ,Ŷ(M)

∂M
= Y1 ◦ (f(M)− 1) + Y−1 ◦ f(M).

Considering (7), with the matrix differentiation chain rule, it
can be proved that:

∂FΩ,Ŷ(M)

∂P
= [Y−1 + (Y1 + Y−1) ◦ (f(M)− 1)](Q + T)

(17)
∂FΩ,Ŷ(M)

∂Q
= [YT

−1 + (YT
1 + YT

−1) ◦ (f(MT )− 1)]T (P + S).

(18)

On the one hand, we have

∂FΩ,Ŷ(M)

∂S
=
∂FΩ,Ŷ(M)

∂P
and

∂FΩ,Ŷ(M)

∂T
=
∂FΩ,Ŷ(M)

∂Q
.

On the other hand, according to (8), it is clear to state that:

∂S

∂SU
= IK ⊗ ITU and

∂T

∂TJ
= IK ⊗ ITJ ,

where IK is the identity matrix.
According to the chain rules, we finally get:

∂FΩ,Ŷ(M)

∂SU
= IU

∂FΩ,Ŷ(M)

∂S
, and

∂FΩ,Ŷ(M)

∂TJ
= IJ

∂FΩ,Ŷ(M)

∂T
.

In other words, the sum of the first U1 rows of
∂FΩ,Ŷ(M)

∂S is
the first row of

∂FΩ,Ŷ(M)

∂SU
, the sum of the next U2 rows of

∂FΩ,Ŷ(M)

∂S is the second row of
∂FΩ,Ŷ(M)

∂SU
, ..., and the sum

of the last Um1 rows of
∂FΩ,Ŷ(M)

∂S becomes the m1-th row
(the last row) of

∂FΩ,Ŷ(M)

∂SU
. The similar way can be used to

construct
∂FΩ,Ŷ(M)

∂TJ
from

∂FΩ,Ŷ(M)

∂T .
GS1MC has been thoroughly tested on synthetic and real-

world dataset with promising results. The experiment details
has been discussed in section V.

IV. CLUSTER DEVELOPING MATRIX COMPLETION
(CDMC)

In this section, based on the compelling results of GS1MC,
we take one step further. In terms of the case that cluster infor-
mation is not available, we aggregate GS1MC and subspace
clustering to learn the cluster identities of users/items auto-
matically. This section will be divided into three parts. Firstly,
we provide a description for the problem setting. Secondly,
we validate the feasibility of using self-expressive matrix in
1-bit matrix completion task via experiments. Afterwards, the
CDMC algorithm is introduced in detail.

A. Problem Setting

We decide to introduce subspace clustering into GS1MC
according to three main reasons. Firstly, the model (GS1MC)
proposed in section III takes cluster identities as preliminary
information. However, in most practical scenarios, it might
be inaccessible to such details, especially for the cold-start
problem. Secondly, since the original binary user-item inter-
action data is extremely sparse, it is controversial to apply
standard clustering techniques directly. Thirdly, common clus-
tering methods may take advantage of distance between points
to divide the space into different partitions. Nevertheless,
regarding a latent variable model, market segments may not
necessarily congregate based on spatial proximity but lie in a
subspace.

A common dilemma for most clustering techniques is the
drawback that they might be decidedly sensitive to improper
initialization, such as cluster size and centroids. As long as
the size of user/item clusters is unrevealed and each data
points can have an infinite number of expressions in terms
of the other, it is advisable to incorporate subspace clustering
technique to optimize a sparse representation among these
expressions through a convex realization approach.

B. Feasibility of Subspace Clustering Technique in 1-Bit Ma-
trix Completion

Since subspace clustering is mainly founded on the self-
expressive matrix (5), which has not been discussed in the 1-bit
matrix completion latent variable framework before, we test
the feasibility of such technique via the following formulation:

FΩ,Ŷ(M)+λ1‖Z‖∗+
λ2

2
‖M−MZ‖2F , s.t. Z = ZT . (19)

Instead of applying the low-rank constraint directly on M,
we extract its intrinsic structure as Z via the Frobenius
norm ‖M−MZ‖F and transfer the low-rank constraint on
it through ‖Z‖∗. In other words, this approach is the relaxed
form of the original formulation and more concerned about
users/items “hidden similarities (Z)” other than their “hidden
profiles (M)”.

We conducted the Augmented Lagrange Multiplier (ALM)
with Alternating Direction Minimizing (ADM) method to
solve (19). Every optimization iteration can be divided into
two steps.
1. Updating M when fixing Z to its current value Z(t):

While Z has been fixed, it can be treated as the constant
matrix, so the problem (19) can be simplified as:

L1(M) = FΩ,Ŷ(M) +
λ2

2
‖M−MZ(t)‖2F . (20)

It is not difficult to notice that minimizing L1(M) with
respect to M can be treated as a regularized logistic regression
problem when f is defined as a sigmoid function. Then (20)
can be solved by using the standard gradient descent algorithm.
Denote ZI = (I− Z(t))(I− Z(t))T , we have:

∂L1(M)

∂M
= Y1◦(f(M)−1)+Y−1◦f(M)+λ2MZI . (21)
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TABLE I: %Prediction Accuracy: Introducing subspace clus-
tering in 1-bit matrix completion.

λ1 = 800;λ2 = 0.006 jester-1 jester-2 jester-3 Movielens-100k
Subspace Clustering Assisted - 1BMC 71.8 72.6 72.6 71.4

1BMC 71.6 72.8 72.7 72.3

2. Updating Z when fixing M to its current value M(t):
In this case, (19) becomes the following problem

L2(Z) = ‖Z‖∗ +
λ2/λ1

2
‖M(t) −M(t)Z‖2F . (22)

(22) can be solved by using the following theorem:
Theorem 1 (Vidal and Favaro (2014)): Let M(t) = UΣV

be the singular vector decomposition (SVD) of M(t), where
the diagonal entries of Σ = diag({σi}) are the singular values
of M(t) in descending order. The optimal solution to (22) is
given by:

Z∗ = VPλ2/λ1
(Σ)VT (23)

where the operator Pλ2/λ1
acts on the diagonal entries of Σ

as

Pλ2/λ1
(x) =

1− λ1

λ2x2 ; x >
√

λ1

λ2

0; x ≤
√

λ1

λ2

. (24)

With the above formulation, we conduct decisive experi-
ments to prove the feasibility of introducing subspace clus-
tering techniques into 1-bit matrix completion method. We
compare the subspace clustering-assisted 1-bit matrix com-
pletion with 1BMC (Davenport et al., 2014) on benchmark
datasets: Jester (Goldberg et al., 2001) and Movielens 100k
(Harper and Konstan, 2016)1. Following the problem setting
of previous literature (Bhaskar and Javanmard, 2015; Cai and
Zhou, 2013; Davenport et al., 2014), the original observations,
have been quantized as ‘+1’ and ‘-1’ according to whether they
are above or below the average score. The comparison results
are listed in Table I.

As shown in Table I, the relaxed subspace clustering-
assisted method has achieved comparable performance even
the low-rank constraint has been only applied on the intrinsic
structure. Thus, we deduce the feasibility of self-expressive
matrix in 1-bit matrix completion task. In the following
section, we will introduce this technique into the proposed
GS1MC algorithm.

C. CDMC Algorithm

Based on GS1MC, we extend the scope of the method to
developing clusters during the latent variable training process.
Since subspace clustering encourages data points lie on a low-
rank subspace, the original formulation of GS1MC (25) is
modified as:

L(Γ|R0) =FΩ,Ŷ(M) + λ1(‖P‖2F + ‖SU‖2F + ‖Q‖2F + ‖TJ‖2F )

+ λ2(||P + S||∗ + ||Q + T||∗),
(25)

1The proposed method is implemented with Intel Xeon CPU (2.8GHz) and
128GB memory.

where the nuclear norm encourages the blocklike pattern of
user/item latent variables, i.e. points tend to gather around
low-rank subspace. With similar ADMM process to GS1MC,
we have:

P̂ = min
P
{FΩ,Ŷ(M) + λ1‖P‖2F + λ2||P + S||∗} (26)

ŜU = min
SU

{FΩ,Ŷ(M) + λ1‖SU‖2F + λ2||P + S||∗} (27)

Q̂ = min
Q
{FΩ,Ŷ(M) + λ1‖Q‖2F + λ2||Q + T||∗} (28)

T̂J = min
TJ

{FΩ,Ŷ(M) + λ1‖TJ‖2F + λ2||Q + T||∗} (29)

The other difference is that instead of having pre-defined
cluster identities, we insert a clustering procedure based on the
gradually recovering matrix and re-utilize this group identity
in the next iteration. After each iteration of updating latent
variables P,SU ,Q and TJ , we construct M and MT via (9).
We consider M lie in m2 disjoint subspaces {Si}m2

i=1 while
MT lie in {Si}m1

i=1. To get the low-rank blocklike pattern (Liu
et al., 2010), we deploy nuclear-norm relaxation of the self-
expressive matrix to obtain the sparse representation C1 and
C2 for users and items respectively, namely:

min ‖Cl‖∗ s.t.

{
M = MC1 or

M = CT
2 M,

}
l = {1, 2}. (30)

Next, a non-directional weighted graph of C1 is built as
G1 = (N1,W1), where N1 is the nodes regarding all sparse
representations in C1, and W1 is the weighted edges between
each pair of N1. A natural choice of the weighted matrix
is that the nodes within the same subspace will share non-
zero weighted edges while the other edges are zero-weighted.
In other words, an adjacency matrix can be constructed by
W1 = |C1| + |CT

1 | (Elhamifar and Vidal, 2013), where the
non-zero entries represents latent variable pairs that actually
lie in the same subspace. Then, we apply spectral clustering
(Ng et al., 2002) on W1 to procure item clusters. Similar
method is conducted to build W2 for user cluster developing.

After estimating new clusters in each iteration, we update
the identities of users/items and learn their new group ef-
fects. Alternatively speaking, CDMC conducts sparse subspace
clustering and GS1MC iteratively. The complete algorithm is
shown in Algorithm 1.

V. EXPERIMENTS

In this section, we evaluate the proposed GS1MC and its
extension CDMC respectively. The experiments are based on
simulation analysis as well as benchmark comparison with the
benchmark methods.

A. Experiments on GS1MC

1) Simulation Analysis: To start with, to verify the effec-
tiveness of GS1MC, a synthetic dataset with group information
was designed in the following way. Firstly, we set n1 = 200,
n2 = 800, m1 = 10 and m2 = 10. Then we generate
P̂ ∼ N(0, In1×K) and Q̂ ∼ N(0, In2×K), where Im×K is
an (m × K) × (m × K)-order identity matrix. To include
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Algorithm 1 Cluster Developing 1-bit Matrix Completion

1 procedure CDMC

2 Randomly initialize user/item groups.

3 Update latent variables P,SU ,Q,TJ by (13) to (16).

4 loop:

5 Construct M Matrix by (9).

6 Build adjacency matrices W1, W2 by Wl = |Cl| +
|CT

l |, l = {1, 2} (Elhamifar and Vidal, 2013).

7 Apply spectral clustering (Ng et al., 2002) on W1 and
W2.

8 Update cluster identities.

9 Update latent variables P,SU ,Q,TJ by (26) to (29)
in a smaller inner loop.

10 If not converged, goto Step 4: loop.

TABLE II: Synthetic Dataset: The relative error is computed
by: ‖M−M̂‖

2
F

‖M̂‖2F
.

Dimension Observ. Rate: π 10% 15% 20% 25%

K = 3 GS1MC 1.00 0.85 0.78 0.73
Trace-Norm 1.89 1.74 1.67 1.59

K = 6 GS1MC 1.00 0.92 0.81 0.74
Trace-Norm 2.53 2.27 2.15 2.02

K = 10 GS1MC 0.95 0.91 0.90 0.89
Trace-Norm 2.16 1.69 1.46 1.31

K = 20 GS1MC 0.95 0.94 0.93 0.93
Trace-Norm 3.20 2.62 2.34 2.19

K = 50 GS1MC 0.98 0.97 0.97 0.97
Trace-Norm 5.65 5.10 4.67 4.32

the group information, we taks ŜU = (̂sv) and T̂J = (̂tj),
where ŝv ∼ N(−2 + 0.4v,1K), t̂j ∼ N(−3 + 0.6j,1K),
v ∈ {1, ...,m1} and j ∈ {1, ...,m2}. Then, we construct the
latent variable matrix by M̂ = (P̂ + ITU ŜU )(Q̂ + ITJ T̂J)
and scale it so that ‖M̂‖∞ = 1. Now, we take the 1-bit
transformation and add the noise by f(M̂) + N(0, In1×n2).
We keep a certain percentage π of entries as observations.

We set K from small to large and randomly split the
data in terms of different training size, namely π =
{25%, 20%, 15%, 10%}. we assume the right group identities
are preliminary and compare our method with the baseline
(Davenport et al., 2014). The results for both methods, shown
in Table II, are taken as the average among 10 replications of
cross-validation. It is indicated that GS1MC has a much more
robust performance compared to traditional 1-bit matrix com-
pletion, especially when the observed data is sparse (cold-start
problem) or when the latent variable have higher dimensions.

2) Benchmark Comparison: We compare GS1MC on Jester
(Goldberg et al., 2001) and Movielens 100k (Harper and Kon-
stan, 2016) with (a) the trace-norm frequentist logistic model
(Trace-norm) (Davenport et al., 2014); (b) the exact low-rank
model (Exact-rank) (Bhaskar and Javanmard, 2015); and (c)
a max-norm constrained minimization approach (Max-norm)

TABLE III: Benchmark comparison on Movielens-100k and
Jester dataset.

% Prediction accuracy
Max-norm Trace-norm Exact-rank GS1MC

95% Mov. 71.5 ± 0.7 72.4 ± 0.6 72.3 ± 0.7 73.8 ± 0.2
10% Mov. 58.4 ± 0.6 58.5 ± 0.5 60.4 ± 0.6 65.7 ± 0.2
5% Mov. 50.3 ± 0.2 49.2 ± 0.7 53.7 ± 0.8 62.6 ± 0.3
jester-1 - 71.3 ± 0.5 71.0 ± 0.2 71.7 ± 0.4
jester-2 - 72.4 ± 0.2 71.5 ± 0.4 72.5 ± 0.3
jester-3 - 72.5 ± 0.6 70.8 ± 0.4 71.7 ± 0.6

(Cai and Zhou, 2013). We show the best results appeared
in previous literature without augmentation. Movielens 100k
dataset is split into different training-test size.

Since the fact that the cluster information of most user-item
interaction data is not available, to provide GS1MC cluster
information, we group the original dataset according to their
implicit feedback. Implicit feedback refers to the frequency of
items receiving comments or users giving feedback. It only
concerns about the identity of ratings irrespective of actual
rating values (Devooght et al., 2015). It is expected that people
giving more ratings tend to be more curmudgeon while items
with more feedback tend to have higher average ratings (Bi
et al., 2017). Thus, we group users and items according to the
number of ratings they have given or received.

The converged accuracy results are displayed in Table III.
The proposed method outperforms most of the baselines.
Conspicuously, regarding the scenario when the training size
is extremely small (5%), our method has greatly boosted
traditional binary matrix completion method by utilizing the
group information.

B. Experiments on CDMC

1) Quantitative Comparison: To evaluate the performance
of CDMC, we compare it with various settings of GS1BC
and use exact low-rank 1-Bit matrix completion (Bhaskar and
Javanmard, 2015) as the baseline on Movielens-100K dataset.
Approaches include:

• CDMC: Randomly initialize group identities and learn
clusters along with matrix completion.

• GS1MC+IF: Use implicit feedback as group identities.
• GS1MC+KM: Fill missing entries with zero and use

result from k-means as group identities.
• GS1MC+SSC: Fill missing entries with zero and use

result from sparse subspace clustering (Elhamifar and
Vidal, 2013) as group identities.

• Exact-rank: Exact-rank 1-Bit matrix completion (Bhaskar
and Javanmard, 2015).

We split Movielens-100K dataset with different training
sizes. Then, we randomly initialize group identities of user-
s/items for CDMC to start. The method is validated with crite-
ria: (1) clustering error; and (2) completion error (Elhamifar,
2016). We compute:

Clustering Error =
#Missclassified entries

#test entries
, (31)
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(a) CDMC: Item clusters. (b) Genre identities on CDMC embeddings. (c) Genre identities on Exact-rank embeddings.

Fig. 1: (a) Item clustering results of CDMC. (b) Using (Q + ITJTJ) from CDMC as coordinates, products’ genre identities
are visualized in different colors. (c) Using embeddings from Exact-rank matrix completion (Bhaskar and Javanmard, 2015)
as coordinates, products’ genre identities are visualized in different colors.

and

Completion Error =
‖Ŷ −Y‖

Y
. (32)
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Fig. 2: Performance comparison between CDMC and different
GS1MC settings with exact-rank 1-bit matrix completion
(Bhaskar and Javanmard, 2015) as the baseline.

The result is shown in Figure 2. As shown, GS1MC+IF
with implicit feedback identities achieves the best performance
while CDMC without knowing group identities ranks the sec-
ond. Meanwhile, it is noteworthy that all methods considering
group effects, including CDMC, GS1MC+IF, GS1MC+KM
and GS1MC+SSC, have much more robust performance com-
pared to conventional method such as exact-rank 1-bit matrix
completion.

To notice, this experiment also demonstrates the second
usage scenario of GS1BC. Since in realistic situation, most
clustering problems may not have the ground-truth, one could
use GS1MC to validate the clustering quality from a quanti-
tative perspective, i.e. in respect of their completion errors.

2) Insight Generation: To validate the practical influence of
CDMC, we project the actual profile features of Movieslens-
100k dataset onto the latent variable CDMC learned and
discovered some noteworthy findings.

In Movielens-100K dataset, movies are labeled with 19
categories, and each movie can be labeled as multiple genres.
We construct a genre matrix A = (Aig) ∈ Rn2×19, here

Aig = 1 means item-i can be classified in category-g. As items
in A share the 1-to-1 exact same index with (Q+ ITJTJ), we
apply k-means clustering method on this generic information
and visualize its results corresponding to the latent variable
that CDMC learned.

We consider using three-dimensional embedding space for
CDMC. Latent variable (Q + ITJTJ) are constructed as
coordinates for each entity. The genre clusters learned from
products profile are visualized by different colors in Figure 1b.
To evaluate the performance, we take exact low-rank 1-bit
matrix completion as the baseline. Similarly, we construct
learned latent variables as coordinates and visualize each entity
regarding to its genre identity. The results for exact low-rank
approach are shown in Figure 1c.

As shown, one could notice that the genre identities have a
more discernible pattern on learned latent variable (Q+ITJTJ)
compare to the conventional method. In other words, even
though the fact that our proposed CDMC method did not take
any generic information, it has captured items’ factual profile
with the sparse binary matrix. Besides, as CDMC conducts
subspace clustering and group-specific matrix completion in
an iterative manner, along with gradually learning the hidden
profiles, the model can integrate this information immediately
into matrix completion task.

VI. CONCLUSION

In this paper, we introduce group-specific matrix factoriza-
tion into 1-bit matrix completion and proposed GS1MC. Then
we integrate subspace clustering with matrix completion task
and proposed CDMC. Instead of receiving pre-known cluster
information, CDMC learn cluster identities during matrix com-
pletion and utilize their group effects. Experiments demon-
strate that GS1MC outperforms conventional 1-bit methods
on both synthetic and real-world data, especially for the cold-
start problem, and CDMC successfully captures items’ hidden
generic features from the sparse 1-bit rating matrix. Notably,
GS1MC can serve as a quantitative protocol to compare the
efficacy of different clustering methods while CDMC is an
insightful tool to explore unrevealed social phenomena.

978-1-7281-6926-2/20/$31.00 ©2020 IEEE



REFERENCES

Bell, R., Y. Koren, and C. Volinsky
2007. Modeling relationships at multiple scales to improve
accuracy of large recommender systems. Proceedings of the
13th ACM SIGKDD.

Bhaskar, S. and A. Javanmard
2015. 1-bit matrix completion under exact low-rank con-
straint. arXiv:1502.06689.

Bi, X., A. Qu, J. Wang, and X. Shen
2017. A group-specific recommender system. Journal of
the American Statistical Association.

Billsus, D. and M. J. Pazzani
2000. User modeling for adaptive news access. UMUAI.
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