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Abstract—Deep neural networks (DNNs) are used in var-
ious domains, such as image classification, natural language
processing and face recognition, etc. However, the presence of
malicious examples, generated by specific methods, could result in
DNNs misclassification. Such maliciously modified examples are
called adversarial examples. So far, most work about adversarial
examples mainly focuses on the multi-class classification tasks,
and only a little work has been done in the field of multi-label
classification.

In this study, we have proposed a novel algorithm that
generates effective multi-label adversarial examples by solving
a linear programming problem (MLA-LP). We minimize the
l∞ norm of distortion while constraining the changes in the
label loss of the example after being perturbed. Then, we
transform this constrained optimization problem into a linear
programming problem for reducing the time cost. In comparison
to the existing multi-label classification model attack algorithms,
the attack performance of the proposed MLA-LP is found to be
competitive, and the adversarial examples generated by MLA-LP
have significantly smaller distortions.

Index Terms—Deep Neural Networks, Multi-label Classifica-
tion, Adversarial Examples, Linear Programming

I. INTRODUCTION

Deep neural networks (DNNs) have been playing an increas-
ingly important role in the fields of image recognition, speech
recognition, and natural language processing [1]. However, in
recent years, security issues related to DNNs have been signif-
icantly emphasized [2]. When a small distortion, which cannot
be recognized by humans, is added to a well-classified image,
the confidence level of the wrong category can be considerably
increased, thereby resulting in the classifier misclassification.
These findings have made it difficult to guarantee security
in some deep learning application systems, such as face
recognition and autonomous driving. Typically, Szegedy et al.
[2] defined the examples that are originally classified correctly
after being perturbed to cause model misclassification as
adversarial examples. Adversarial examples have become one
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of the main risks that threaten the security of deep learning
models.

Existing work about generating adversarial examples is
mainly dedicated to the field of multi-class classification,
wherein the classification label has only one positive label.
Accordingly, when the confidence level of any one of the
negative labels becomes higher than that of the only one
positive label, the attack is successful [3].

However, in the real world, many objects contain multiple
labels. For example, a landscape image contains mountains,
water, and clouds, while a piece of text may contain multiple
categories of emotions. Correspondingly, multi-label adversar-
ial examples are more likely to exist in real-world applications
and they pose a threat to our daily lives. For example,
autonomous driving vision systems can recognize multiple
objects simultaneously, such as speed limit signs, vehicles,
and pedestrians. If an adversary successfully hides any one
of the positive labels, while the classifier fails to predict this
label, the system will encounter serious consequences.

In DNNs for multi-label classification, if an adversary
attempts to attack one or more specific labels, it is likely to
change the confidence of the remaining non-attack labels. This
is because the multi-label predictors depend on a specified
threshold and the labels are often correlated [4]. Thus, the at-
tack techniques for multi-class classification cannot be directly
applied to DNNs for multi-label classification.

To the best of our knowledge, only [4], [5] have focused on
multi-label adversarial examples. Song et al. [4] proposed a
multi-label attack framework based on classification and rank-
ing, and presented some multi-label attack methods based on
existing multi-class attack techniques. Some methods achieve
a high attack success rate, but the distortions in the adversarial
examples are relatively large. Wu et al. [5] adopted multi-label
adversarial examples for adversarial training to improve the
robustness of the models.

In this study, the problem of generating multi-label ad-
versarial examples is transformed into a linear programming
problem, which minimizes the maximum distortions added
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over all dimensions (l∞ norm). By solving this linear pro-
gramming problem, we can obtain a small distortion in each
dimension; meanwhile, the linear problem-solving speed is
very fast. Thus, the proposed algorithm is named MLA-LP.
Experimental results for two multi-label classification models
and two datasets indicate that the performance of MLA-LP is
very comparable.

The rest of this paper is organized as follows. Section
II introduces some background details, including multi-label
classification and adversarial attacks. The proposed method is
described in section III. Section IV discusses the experimental
setting, results, and analyses. Section V presents a brief
summary of this work.

II. RELATED WORK

A. Notation Definition

Multi-label classification can be described as the d-
dimensional input space X ∈ Rd is mapped to the l-
dimensional output space Y ∈ {−1, 1}l. That is, for each
input vector x = [x1, x2, · · · , xd]T , the corresponding output
y = [y1, y2, · · · , yl]T , where yj = 1 (j = 1, 2, ..., l), which
implies that x owns the label yj ; otherwise, yj = −1.

Generally, in the prediction phase, for an example x, the
output confidence o = [o1, o2, · · · , ol]T for a series of labels
is obtained through a map function f(·), and the prediction
of the example is y′ = H(f(x)). Here, H(·) is a function
indicating that the label is positive when the output is greater
than or equal to the threshold t, while it is negative when the
output is less than t, as shown below.

y
′

j =

{
1, if oj ≥ t
−1, if oj < t

(1)

Without loss of generality, the problem of generating ad-
versarial examples can be considered as a constrained opti-
mization problem. The objective is to minimize the amount
of distortion while constraining the example after adding the
distortion r to be classified as target labels y∗, which is defined
as [4]

min
r

||r||

s.t. H(f(x∗)) = y∗.
(2)

Here, the distortion is denoted as r = [r1, r2, ..., rd]
T , || · ||

denotes norm term of r, d is the dimension size of the input
space, x∗ = x + r, and y∗ is the expected label vector of
the adversarial example. If the ground-truth label vector of
example x is y, y∗ 6= y.

B. Multi-label Classification

Multi-label classification has been studied for many years
and many algorithms have been proposed for it, including
binary relevance [6], MLKNN [7], along with classifier chain
[8], and its variants [9]–[11].

Neural networks are a popular solution to multi-label classi-
fication problems [12]–[14]. Back-propagation for multi-label
learning (BPMLL) [15] is a typical multi-label classification
algorithm based on neural networks. It exploits the loss

function to mine label dependencies. Many algorithms are
extensions or improvements of BPMLL. For example, Rafał
et al. [16] modified the loss function of BPMLL.

CNN-WARP [17] extends a convolutional neural network
(CNN) to the multi-label image classification field, which
modifies the loss function to make the algorithm more suitable
for multi-label image classification. Based on CNNs, CNN-
RNN [18] attempts to encode the label information with the
long short-term memory (LSTM) [19] to obtain the dependen-
cies between labels. ML-GCN [20] encodes the dependencies
between labels by constructing a directed acyclic graph (DAG)
between the labels and processing the label graph using a
graph convolutional network (GCN) [21].

C. Adversarial Attack

DNNs have achieved excellent results in many complex
tasks, such as image classification. However, adversarial at-
tacks could damage the networks if tiny noise is added to the
input to cause model misclassification. Recently, an increasing
number of studies has indicated that the security of DNNs is
a problem that cannot be ignored.

1) Multi-class Adversarial Attack: Goodfellow et al. [3]
believed that the adversarial examples are caused by the
linearity of the deep learning model, and proposed a method
(named FGSM) for quickly generating adversarial examples
based on the gradient sign. There are many variants based on
FGSM [22]–[24]. Nicolas et al. [25] used the Jacobian matrix
to determine the pixels that can reduce the confidence of the
correct category and increase the confidence of the wrong cat-
egory, and iteratively modified these pixels to achieve the goal
of attacking the model. Luo et al. [26] proposed an algorithm
named RDA, which implements the hill-climbing method to
determine a direction that can increase the confidence of the
wrong category. The above algorithms are mainly verified in
the field of image classification. At present, there are also some
studies in the field of speech and text classification [27]–[29].

2) Multi-label Adversarial Attack: Unlike the multi-class
model, which only outputs one positive label, the multi-
label model outputs multiple positive labels. The multi-label
classification model often sets a threshold for the confidence of
classification. If the confidence is greater than or equal to the
threshold, the label is positive. Otherwise, the label is negative.
When attacking a multi-label DNN model, we want to make
the output probability changes of the attacked labels as large
as possible and ensure that the confidence changes of other
non-attacked labels within a reasonable range. This can make
these non-attacked labels still be classified correctly after the
attack. Thus, multi-class adversarial attack methods cannot be
directly applied to the multi-label model.

As stated in Section I, there are only two studies that
focus on multi-label adversarial attacks. In [5], Wu et al. used
adversarial training to improve the performance of specific
algorithms in text relation extraction tasks, where multi-
label adversarial examples were used to train the model. In
[4], based on the existing popular multi-class model attack
methods C&W [30], DeepFool [31], and FGSM [3], Song et
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al. proposed multiple classification and ranking-based multi-
label adversarial attack methods, such as ML-DeepFool and
ML-CW.

ML-DeepFool proposed in [4], which is based on DeepFool
[31], is closely related to this study, and it will be introduced
in the next subsection.

D. ML-DeepFool

ML-DeepFool [4] was inspired by DeepFool [31]. It is
assumed that the influence of the distortion added to the
example on the output of the model is linear. By calculating
the gradient of the output to the input as the weight of
the distortion on output change, the corresponding amount
of distortion can be calculated by defining a desired output
according to the attack goal.

The optimization goal of the algorithm in [4] is defined as

min
r

||r||2
s.t. − y∗ � f(x∗) ≤ −y∗ � t,

(3)

where r ∈ Rd denotes the distortion and d denotes the
dimension of the input vector. || · ||2 represents the l2 norm,
� represents the Hadamard product, x∗ = x + r, f(·) ∈ Rl
is a multi-label classification model, l is the dimension of the
label, t = [t, t, · · · , t︸ ︷︷ ︸

l

]T is the threshold constant vector, and t

is set to 0.5 when the model output f(·) is in the interval [0, 1].
The symbol ‘≤’ between the vectors means that the value of
each dimension of the left vector must be no greater than the
value of the corresponding dimension of the right vector.

Because the ML-DeepFool algorithm assumes that the effect
of distortion on the model output is linear, formula (3) can be
approximately transformed to formula (4).

min
r

||r||2

s.t. − y∗ � (f(x) +
∂f(x)

∂x
· r) ≤ −y∗ � t.

(4)

For simplification, ML-DeepFool does not solve the ob-
jective function minr ‖r‖2. Instead, it directly transforms the
inequality constraint into an equation, and solves this equation
to obtain the solution r, which is shown as follows.

−y∗ � (f(x) +
∂f(x)

∂x
r) = −y∗ � t

r = (
∂f(x)

∂x
)((
∂f(x)

∂x
)T (

∂f(x)

∂x
))−1(t− f(x)).

(5)

The distortion r is calculated by the above formula. Then,
the adversarial example is x∗ = x+ r. ML-DeepFool applies
the above method iteratively and continuously updates x∗ until
the attack succeeds or the maximum number of iterations is
reached.

III. PROPOSED METHOD

A. Basic Idea

ML-DeepFool defines the problem of generating adversarial
example as a constrained optimization problem, as shown in
(4), which includes constraining the output of the example

after adding the distortion while minimizing the l2 norm of
the distortion amount. However, as shown in formula (5), ML-
DeepFool does not solve this constrained optimization problem
directly but uses a greedy method to solve its constraint
condition. This often leads to a larger distortion in generating
an effective adversarial example.

In this study, to obtain smaller distortion and generate an
adversarial example quickly, we define the objective function
of the constrained optimization problem to minimize the l∞
norm of the distortion amount; then, it is transformed into
a linear programming problem. Thus, the well-studied linear
programming methods can be used to solve this problem.

B. MLA-LP
Because the DNN models are trained by minimizing the loss

function, there is a tight correlation between the prediction of
the model and the loss. For convenience, we define the target
loss vector as

loss(t,y∗) = [loss1, loss2, · · · , lossl]T ,

where y∗ is the prediction target, and lossi ∈ loss(t,y∗) is
the specific loss for the threshold ti ∈ t.

We use the Jacobian matrix to measure the effect of changes
in input on the labels. The output of the model is not used
directly to get the Jacobian matrix like ML-DeepFool [4].
Instead, MLA-LP calculates the first-order partial derivative
of the loss of the output against the input to get the Jacobian
matrix. It is believed that the changes in the input will be more
sensitive to those in the loss. The matrix is defined as

A =
∂loss(f(x),y∗)

∂x

=


∂loss(f1(x),y

∗
1 )

∂x1

∂loss(f1(x),y
∗
1 )

∂x2
...

∂loss(f1(x),y
∗
1 )

∂xd
∂loss(f2(x),y

∗
2 )

∂x1

∂loss(f2(x),y
∗
2 )

∂x2
...

∂loss(f2(x),y
∗
2 )

∂xd

... ... ... ...
∂loss(fl(x),y

∗
l )

∂x1

∂loss(fl(x),y
∗
l )

∂x2
...

∂loss(fl(x),y
∗
l )

∂xd

 ,
(6)

where A is the Jacobian matrix and loss(·) is a specific loss
function. In the case of very small distortion, the changes in
loss and distortion are approximately linear. That is,

loss(f(x+ r),y∗) ≈ loss(f(x),y∗) + ∂loss(f(x),y∗)

∂x
· r.
(7)

Owing to the classification threshold in multi-label classifi-
cation models, it is necessary to significantly change the con-
fidence of attacked labels while ensuring that the confidence
changes in other non-attacked labels are minimal. Therefore,
we make the loss in the model output of the adversarial
example is less than the target loss loss(t,y∗), and this
will enable the confidence of the attacked labels to cross the
threshold and prevent the non-attacked label from crossing the
threshold. That is,

loss(f(x+ r),y∗) ≤ loss(t,y∗), (8)

where ‘≤’ between the vectors indicates that the value of each
dimension of the left vector must be less than the value of the
corresponding dimension of the right vector.
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Now, we substitute formula (7) into formula (8), and define
the optimization problem as

min
r

||r||α

s.t.
∂loss(f(x),y∗)

∂x
· r ≤ loss(t,y∗)− loss(f(x),y∗).

(9)
Here, α could denote any norm.

Evidently, if α=2, formula (9) is similar to formula (4),
except that it uses the loss function. To effectively solve the
above constraint optimization problem, the norm term of the
objective function is selected to use l∞ as the minimization
goal. Thus, we have

min
r

||r||∞

s.t.
∂loss(f(x),y∗)

∂x
· r ≤ loss(t,y∗)− loss(f(x),y∗),

(10)
where l∞ of the distortion amount is the maximum absolute
value of the distortion amount, i.e., ‖r‖∞ = max{|ri| : i =
1, 2, . . . , n}. Now, our objective function becomes

min
r

max{|ri| : i = 1, 2, . . . , d}

s.t.
∂loss(f(x),y∗)

∂x
· r ≤ loss(t,y∗)− loss(f(x),y∗).

(11)
To effectively solve the above optimization problem with the

non-linear objective function, we need to convert this objective
function into a linear objective function. Thus, we introduce
a variable z and define

z ≥ |ri|, i = 1, 2, ..., d. (12)

It should be noted that formula (12) can be transformed into

z ≥ −ri, i = 1, 2, ..., d,

z ≥ ri, i = 1, 2, ..., d.
(13)

Finally, the optimization problem (11) is transformed into
the following formula.

min
z,r

z

s.t. z ≥ ri, i = 1, 2, ..., d,

z ≥ −ri, i = 1, 2, ..., d,

∂loss(f(x),y∗)

∂x
· r ≤ loss(t,y∗)− loss(f(x),y∗).

(14)

By solving the above linear programming problem, we can
get z and r; consequently, the adversarial example is

x∗ = x+ r. (15)

Owing to the use of linear hypothesis, the adversarial
example obtained by one iteration may not perform successful
attack. Therefore, similar to ML-DeepFool [4] and DeepFool
[31], we use multiple iterations to obtain the adversarial
example. The algorithm flow of MLA-LP is presented in
Algorithm 1.

In addition, for the linear programming problem shown
in (14), because the dimension of the input example is too

Algorithm 1 MLA-LP
Input: Image x, ground-truth label y, target label y∗, map
function f , classification function H , threshold vector t,
maximum iterations maxiter.
Output: Adversarial example x∗.

1: Let i = 0, y
′
= y, x∗ = x, r0 = 0.

2: while i ≤ maxiter and y
′ 6= y∗ do

3: o = f(x∗)
4: loss1 = loss(o,y∗)
5: loss2 = loss(t,y∗)
6: b = loss2− loss1
7: A = 5x∗ loss1
8: Transform A and b to Az and bz according to (14)
9: (z, ri+1) = InteriorPointSolver(Az,bz)

10: x∗ = x∗ + ri+1

11: y
′
= H(f(x∗))

12: end while
13: return x∗

high, the coefficient matrix is too large to be stored directly.
Therefore, we use the sparse matrix form and it only store
the non-zero values in the original coefficient matrix, which
enable us to solve it using the interior point method in the
mosek package [32].

IV. EXPERIMENTS

A. Multi-label Classification Model

Two multi-label classification models are used in exper-
iments, i.e., ML-GCN [20] and the model used in ML-
DeepFool [4] for experimental verification. For convenience,
the second one is named ML-LIW in this paper. The classifi-
cation performance of ML-GCN is better than ML-LIW.

1) ML-GCN: ML-GCN uses a conditional probability be-
tween two labels in the dataset to obtain a directed acyclic
graph (DAG). Then, it takes all labels’ word vector as the
node information of the DAG. It encodes this graph using a
GCN [21] to obtain the correlations within the labels. The
confidence of the label output is obtained by integrating the
extracted feature information and the label information.

First, the image passes the CNN model to obtain a feature
vector

feature = fcnn(x), (16)

where feature ∈ Rd
′
, d′ is the dimension of the fully

connected layer of the CNN and the node feature dimension
output in the last GCN layer.

Second, a GCN layer is expressed as

Hout = h(ÂHinW ), (17)

where Â ∈ Rl∗l is the weight matrix of the DAG (the weight
matrix is the conditional probability between all labels in
the dataset). Hin ∈ Rl∗d is a GCN input, d is the input
feature dimension of each node, In the first GCN layer, Hin

is initialized by the label’s word vector matrix. Hout ∈ Rl∗d′

is the output node feature matrix, d′ is the output feature
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dimension of each node, h(·) is a non-linear function, d is
the input feature dimension of each node, and W ∈ Rd∗d′ is
the model parameter that we need to train.

The output of the final model is

o = σ(Hout ∗ feature), (18)

where σ is the sigmoid activation function.
2) ML-LIW: ML-LIW was used as the classification model

in [20]. Based on BPMLL’s [15] label-wise ranking loss, the
instance-wise ranking loss is added. For the training dataset
D = {(xi,yi)|i = 1, 2, ..., n}, the loss function is

E =λ
1

n

n∑
i=1

1

|yi‖yi|
∑

(k,l)∈yi�yi

exp
(
−
(
oik − oil

))
+

1

l

l∑
j=1

1∣∣yj‖yj∣∣
∑

(p,q)∈yj�yj

exp
(
−
(
ojp − ojq

))
,

(19)

where λ balances two types of losses, yi represents the
collection of labels belonging to the example xi, yi represents
the collection of labels that are not a part of the example, and
| · | represents the size of the collection. oik and oil indicate the
neural network outputs corresponding to the labels yik ∈ yi
and yil ∈ yi, respectively, where yj represents the collection
of instances that contain the j-th label, yj represents the
collection of instances that don’t have the j-th label, and ojp
and ojq indicate the neural network outputs corresponding to
the labels yjp ∈ yj and yjq ∈ yj , respectively.

B. Dataset

We chose two benchmark datasets, PASCAL VOC2007 [33]
and VOC2012 [34], for multi-label image classification in the
experiments.

We apply the classification algorithms ML-GCN and ML-
LIW on VOC2007 and VOC2012, respectively. The size of all
input images for ML-GCN is adjusted to 448×448 and that
for ML-LIW is adjusted to 299×299; the image pixel values
are normalized to [0, 1].

C. Model Training

The dataset VOC2007 contains a training set, a validation
set, and a test set. However, the dataset VOC2012 only
comprises a training set and a validation set. Therefore, for
VOC2012, we randomly select 80% of the original training
set as the real training set of the model, while the remaining
20% of the original training set is used as the real validation
set. The original validation set is used as the test set.

For the ML-GCN model, the training parameters are con-
sistent with those presented in [20], i.e., there are 100 training
epochs; the learning rate is 0.01, initially, and it reduces by
10% every 40 epochs. Additionally, SGD is the optimizer used
here. For the ML-LIW model, there are 100 training epochs,
the learning rate is 0.001, and the Adam optimizer is used.

The evaluation indicators of the model include the hamming
loss, ranking loss, micro-f1, macro-f1, and average precision

[35]. The performances of the multi-label classification models
on these two datasets are presented in Table I .

First, we use the trained model to make predictions for the
examples in the test set and select all examples whose positive
label number is greater than two as those to be attacked. The
number of test examples and that of examples to be attacked
are listed in Table II.

D. Compared Algorithms

We select four multi-label attack methods, i.e., ML-CW,
ML-DeepFool, ML-Rank1, and ML-Rank2 [4] for compar-
isons. The experimental parameters of the algorithms to be
compared are consistent with those presented in their original
work. The maximum number of iterations for ML-CW, ML-
Rank1, and ML-Rank2 is 1000, the number of binary searches
is 10, and the initial value of λ is set to 1e5. The maximum
number of iterations for ML-DeepFool is 20.

Additionally, the maximum number of iterations for MLA-
LP is 10.

E. Experimental Results

In the experiments, we randomly select one label from the
positive labels as the attack label. That is, we hide one label
and construct the targeted attack label dataset accordingly.

The experimental results are presented in Table III, which
shows the performance of all algorithms under the VOC2007
and VOC2012 datasets. Bold text indicates the best perfor-
mance out of the five algorithms. The upward arrow in the
table column name indicates that the larger the value, the
better the algorithm’s performance in the indicator; otherwise,
the smaller the value, the better. The attack success rate in
the table is the ratio of the number of examples of successful
attacks to that of examples to be attacked. l2, l∞, and root
mean squared deviation (RMSD) calculates the average of all
successful adversarial example distortions, where l2 norm and
l∞ norm are calculated by pixel values in [0, 1] and RMSD
is calculated by pixel values in [0, 255], which is presented
in [36].

From the table III, it is evident that in comparison to
ML-DeepFool, MLA-LP achieves better performance for all
indicators because ML-DeepFool does not fully consider the
objective function (minimize the l2 norm of distortion); it
uses a greedy solution instead. Therefore, the distortions in
the adversarial examples generated by it are very large, and
the l∞ norm is close to 1, which means that the pixels are
flipped. A large distortion may reduce the confidence of the
attacked label, but it also may change other non-attacked labels
significantly, resulting in a lower attack success rate.

In comparison to other algorithms, the distortions observed
in the adversarial examples of MLA-LP are relatively small
in terms of the l2 norm, l∞ norm, and RMSD indicators. The
attack success rate of MLA-LP is considerably higher than
those of ML-Rank1 and ML-DeepFool, but lower than those
of ML-CW and ML-Rank2. Because MLA-LP minimizes the
amount of distortion in the l∞ norm, we can obtain relatively
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TABLE I
PERFORMANCE OF ML-GCN AND ML-LIW ON VOC2007 AND VOC2012 DATASETS

model dataset hamming loss ranking loss micro-f1 macro-f1 average precision

ML-GCN
VOC2007 0.0157 0.0065 0.8912 0.8747 0.9687
VOC2012 0.0192 0.0098 0.8630 0.8512 0.9585

ML-LIW
VOC2007 0.0429 0.0219 0.7435 0.7560 0.9126
VOC2012 0.0467 0.0212 0.7305 0.7443 0.9201

TABLE II
NUMBER OF TEST EXAMPLES AND EXAMPLES TO BE ATTACKED BY
ML-GCN AND ML-LIW ON VOC2007 AND VOC2012 DATASETS

model dataset test examples examples to be attacked

ML-GCN
VOC2007 4952 1113
VOC2012 5823 862

ML-LIW
VOC2007 4952 739
VOC2012 5823 585

small changes in each dimension, thereby resulting in a smaller
l∞ norm; meanwhile, the l2 norm and RMSD also decrease.

It is also evident that the attack success rates of all attack
methods over the ML-LIW classification model are higher than
that of the ML-GCN classification model. This may due to the
ML-GCN classification model is more complicated. The ML-
GCN model uses a GCN to encode the correlations between
labels based on Resnet101 [37]. Therefore, when an attack is
performed, changes in the confidence of the attacked label will
make the confidence of other related non-attacked labels more
likely to change, thereby complicating the attack. The ML-
LIW model adds a specific loss function based on inceptionV3
[38]. The correlation of the label is weak and the model is
simpler than ML-GCN; thus, the attack success rate is higher.

F. An Example

To better understand the characteristics of MLA-LP, adver-
sarial examples of an image in the dataset VOC2012 are shown
in Fig. 1. The ML-GCN model is used in this experiment.
Fig. 1 demonstrates the original example, the distortions in
the three channels, and the adversarial examples for different
attack methods.

From Fig. 1, it is evident that the original example contains
the labels “Person” and “Tvmonitor”. However, the adversarial
examples by all attack methods are labeled with “Tvmonitor,”
but without “Person.”

On observing the distortions of different channels, it is
evident that the distortions produced by ML-DeepFool sig-
nificantly vary and the values of distortions over many pixels
are close to 1, which means that the pixel values are opposite.
The distortions generated by the ML-CW algorithm are con-
centrated in some areas, the size of pixels in these areas varies
between -0.01 and 0.01, and the sizes of remaining pixels
are close to 0. The ML-Rank1 and ML-Rank2 algorithms
interfere with almost all areas of the image, and the ML-Rank1
algorithm produces larger distortions. However, MLA-LP has

smaller distortion, with values ranging between -0.005 and
0.005; it is also more uniform.

Overall, in all adversarial examples, one of them generated
by ML-DeepFool is evident and it completely change the
original image. The distortion example of ML-Rank1 is small;
however, some of the noise observed in the image can be
detected by the human eyes. The distortions generated by other
algorithms are relatively small and these adversarial examples
are very similar to the original example. The distortion amount
in the adversarial example by MLA-LP is found to be the
smallest.

V. CONCLUSION

DNNs have been widely implemented to solve multi-label
classification problems. However, the security of DNNs for
multi-label classification remains to be an issue. In this study,
an algorithm to generate multi-label adversarial examples
based on linear programming is proposed. This algorithm
solves the distortion vector by constraining the label loss
of the perturbed example while minimizing the l∞ norm
of distortion. Experimental results for the two classification
models ML-GCN and ML-LIW and two datasets VOC2007
and VOC2012 demonstrate that the multi-label adversarial
examples generated by the proposed algorithm have smaller
distortions. In the future, we will attempt to verify the pro-
posed method on more complex datasets.
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