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Abstract—The current mainstream point cloud instance seg-
mentation methods are mainly divided into two steps. Firstly,
the points of each instance are aggregated in the feature space
by means of metric learning to make the features of the same
instance are as similar as possible, and then the aggregated vector
clusters are segmented to construct the proposal of each instance.
Much of the previous work has focused on the aggregation
of vectors and ignored how the instance is divided after the
vector aggregation. In this paper, we propose a seed point
selection network. The seed point selection network selects a
better seed point generation proposal by judging the “seedness”
of each point, and completes the instance-level segmentation of all
points. In addition, the speed of instance segmentation effectively
improved by the fast processing of the generated instance points
and the low ”seedness” points. In the experiment, we graft the
seed point selection network onto different instance segmentation
networks, and the accuracy and efficiency of segmentation are
improved in different degrees.

Index Terms—point cloud, seed point, instance segmentation

I. INTRODUCTION

Compared to 2D images, point clouds can describe the
real scene more intuitively and accurately. In addition to the
information of width and height, which is also contained in the
2D images, the point cloud depicts the depth of the scene. The
point clouds have a wide range of applications especially in the
scenes where high accuracy is required , such as autonomous
driving and AR.

In the early stage, the point clouds are processed by trans-
forming the point cloud into voxels [1] [2] [3], multi-view
pictures [3] [4] or other data methods which can realize convo-
lution processing based on ”local spatiality” due to the disorder
of point clouds [5] [6] and other properties. But without
exception, all the processing methods mentioned above make
the data and the network used for processing very voluminous.
Pointnet [7] realizes the classification of point clouds and
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semantic segmentation by directly processing the point cloud
data for the first time, based on which, SGPN [8] realizes the
direct instance segmentation of point cloud data. The majority
of papers in recent work related to instance segmentation of
point clouds [8] [9] [10], with the help of metric learning [11]
[12] [13], realize the feature map according to the principle
that the points aggregated are from the same instance and the
distance between instances should be ensured, after which,
instance segmentation is realized by dividing the aggregated
vector space. The focus of all the current papers is on the
mapping of points in feature space, but how to perform a more
accurate segmentation of the aggregated vector space has not
been probed too much yet.

Although the aggregation of vectors is the basis of instance
segmentation and directly affects the upper limit of the effect
of instance segmentation, in fact, the vectors of the same
instance are not always able to be perfectly aggregated to-
gether, and a lot of confusion is generated in many cases. For
aggregated vector clusters, the segmented instances can be
different, depending on the reference points selected. When
the selected reference points are more ”centered”, a better
proposal partition can be obtained, and if the reference point
is at the junction of two aggregated vector clusters, then it
is highly probable that both of the identifiable instances will
be misclassified. Based on the reasons above, we expect to
find the ”center point” of each vector cluster as accurately as
possible, so as to achieve a better division effect.

The premier problem we need to solve is how to define
the ”center point” of the vector cluster, that is, the measure
and selection of the ”seedness”. Inspired by a large amount
of previous work of instance segmentation [8] [14], we use
the Intersection over Union(IoU ) between the proposal and
the groudtruth generated by the point to define it. A higher
IoU means that the generated proposal contains more points
of the instance and fewer noise points, which indicates the
higher ”seedness” of the point. On the contrary, a lower IoU
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means that there are many noise points and fewer points in
the groundtruth in the proposal, indicating that the point is not
suitable as a seed point.

Our pipeline first uses SGPN/ASIS [8] [9] to perform
feature extraction in both semantic space and instance space.
For the extracted features of the instance, we used SPSN to
evaluate the seed property of some sampled points. According
to the specific score value and semantic features, we completed
the partition of the entire instance and each partition instance
is attached with a specific semantic label.

In SPSN, since the input is an aggregated feature vector,
the points of the same instance converge and the points of
different instances are far away from each other. Therefore,
for any point in the feature space, when we determine the
threshold value, we can get the instance divided based on this
point. SPSN is also based on this idea, but the difference is
that our threshold adopts an approximate dynamic threshold.
For the same point, we try our best to reduce the influence
of threshold parameters on instance segmentation by selecting
the best value after multiple partition (as shown in Fig. 1).

Multi-

threshold Max

Prediction

Fig. 1. After dividing the threshold for several times to obtain its optimal
value, we get the best proposal corresponding to the seed point.

For each proposal segmented by a threshold, we use 3D-
Pooling to pool the feature information and spatial information
of the points of the proposal, and in order to obtain better
experimental results, we adopt classification loss instead of
regression loss to complete the prediction of “seedness” of
points. For the distribution of IoU , although it is intuitive to
think that regression loss should be adopted, using classifica-
tion loss can predict the network more accurately and thus get
better segmentation results. In summary, our contribution can
be attributed into the following three points: (1) We propose
a general post-processing method for completing point cloud
instance segmentation in a metric learning manner, which
can be grafted on any instance features aggregated and thus
complete the final instance segmentation. (2) The method we
propose can provide confidence for the segmented instance
and solve the problem of no label in existing cluster method.
(3)We choose multiple instance segmentation networks in
the experiment and by comparing the difference between the
original network and the grafted one, we announce that our
method obtain different degrees of improvement on every
network, as well as the improvement of both accuracy and
reasoning speed on SGPN.

II. RELATED WORKS

Instance segmentation from 2D images [15] [16] [17] [18]
has made great progress currently. In 2D instance segmenta-

tion, the mainstream method performs instance segmentation
based on object detection [19] [20] [21] [22] [23] [24] [25]
[26], apart from which, some papers also explore the instance
segmentation based on metric learning. The masterpiece of
instance segmentation based on object detection is Mask R-
CNN [27], which is based on Faster RCNN [19], realizing
instance segmentation by adding FCN [28] network to each
proposal. Instance segmentation based on object detection
has high accuracy because of the outstanding performance
of RCNNs in object detection. After that, Mask Scoring
R-CNN [29] and Hybrid Task Cascade [30] are proposed
and further improve the accuracy of instance segmentation.
Papers of instance segmentation based on metric learning [14]
[31] [32], different from the one based on object detection,
adopt a bottom-up model, that is, directly learns the relevance
between each pixel and then obtains the result of instance
segmentation. Instance segmentation based on metric learning
can effectively avoid the impact caused by overlapping objects,
which is common in methods based on object detection.
Among them, Newell et al. [33] aggregates the points of
the same instance. Braban-dere et al. proposes discriminative
loss [31] which makes aggregation of vectors more accurate
and efficient. Alireza proposes instance segmentation based on
metric learning, which uses mean-shift after finding the seed
points randomly to complete instance segmentation. Shu Kong
proposed a Gaussian Blur Mean Shift (GBMS) [32] to find the
center of the instance, which is iterable with a slow rate. After
completing the basic segmentation of the hand, Chutisant used
the deterministic clustering algorithm [34] to find the reference
point on the fingertip more accurately, and realized more
reasonable and accurate gesture tracking. Although instance
segmentation of images is not exactly the same as point cloud,
they share a lot in common. In this paper, we propose a
general post-processing framework of point cloud instance
segmentation and realize the fast and accurate division of the
features of the separately aggregated instances.

a) 3D Instance Segmentation: The current 3D instance
segmentation methods mainly depend on metric learning while
some papers focus on instance segmentation based on object
detection [35]. The reason why methods based on metric
learning is still the mainstream is that the accuracy of object
detection is still insufficient due to the fact that 3D object
detection should also estimate the posture of the object in
addition to the functions of positioning and classification
which are provided by 2D object detection.Simultaneously,
the search space for object detection exponentially rises in
3D space. At present, SGPN realizes instance segmentation
directly by using point cloud through learning the similarity
matrix under the idea of metric learning. ASIS improves the
accuracy of each other through instance segmentation and
semantic segmentation. JSIS3D proposes the use of multi-
valued conditional random field (MV-CRF) to improve the
results of semantic segmentation and instance segmentation.
SSCNet [36] proposes a novel loss function and adds GCN
network to it to refine the results of instance segmentation.
In addition to the methods of instance segmentation based on
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Fig. 2. The overall framework of instance segmentation. (a) Overall Struture. (b) illustration of SPSN module.

metric learning listed above, GSPN [37] first reconstructs the
shape of the object and then performs refining segmentation
to obtain the result of instance segmentation while 3D-SIS
[38] combines the features of both 2D and 3D to enhance the
accuracy of the proposal obtained. 3D-BoNet [35] obtains the
result of instance segmentation based on the fuzzy region of
the object, which is generated by returning to the bounding
box first. Majority of papers related to the work based on
metric learning as listed focuses on the feature map of the
instance space and simply processes the division of features.
In this paper, we propose a seed point selection network, which
improves the results of instance segmentation by varying
degrees when grafted to the papers mentioned above.

b) Learning point cloud features: Different from con-
verting point cloud to voxels or multi-view pictures, Pointnet
proposed by Qi realizes the direct feature extraction of point
cloud for the first time and achieve good results in classifi-
cation and segmentation, based on which, Pointnet++ [39],
RSNet [40], etc. makes improvement from the perspective
of partial information. In addition, PointCNN [41], PointSift
[42], etc. further improve the capacity of learning features of
point cloud through the combination of Pointnet and other
features. Our work achieves accurate classification of seed
points by extracting features of point cloud, thereby improving
the results of instance segmentation.

III. METHODS

In this section, we thoroughly introduce the seed point
selection network, a powerful and general post-processing
framework for point cloud instance segmentation, the overall

structure of which is shown in Fig. 2(a). First of all, we briefly
introduce the current general instance segmentation framework
as the preface of SPSN and how to generate the final mask by
using the “seed score” output from SPSN. Then, we describe
the specific structure of the network of SPSN, that is, how to
predict the “seed score”, and finally we explain the details of
training the seed point selection network.

A. The brief introduction of the framework of point cloud
instance segmentation

The current framework of point cloud instance segmentation
based on metric learning generally consists of a shared encoder
used for encoding the semantic features of the point cloud and
two parallel decoders, one of which used for predicting the
semantic category and the other used for obtain the features
of the point in the instance space based on metric learning.
Among the features, the ones belonging to the same instance
share great similarities while those from different instances
are far away, which obviously indicates that labels of instance
segmentation of point cloud can not be obtained directly from
the features mentioned above. Nevertheless, SPSN is a general
framework to complete the segmentation of features in the
instance space and therefore obtain the specific instance labels.
Specifically, when inputting the point cloud information, the
current instance segmentation framework generally extracts
features of the point cloud by using Pointnet/Pointnet++,
which can perform semantic segmentation itself and thus
features of the middle layer of Pointnet/Pointnet++ is generally
used to encode. At the same time, the semantic segmentation
branch can be obtained through several layers of networks



followed by Pointnet/Pointnet++. For the decoding of features
in instance segmentation branches, the current framework
usually adopts loss function related to metric learning after
adding new neural network layers to complete the features
mapping. Specifically, in the double-hinge loss used by SGPN,
the distance between points from the same instance should be
less than K1 and tend to 0, otherwise some penalty should
be imposed. Simultaneously, distance of points from different
instances should be greater than K2, which is greater than
K1. Double-hinge loss ensures that distance between points
from the same instance is small(distance < K1) and that
from different instances is large (distance > K2) through the
methods mentioned above and thereby completes the mapping
of the points in the instance space. In the discriminative loss
used by ASIS/JSIS3D, the loss function ensures that in one
instance, the distance between every point and the center point
is smaller than δv while the distance between center points of
different instances is greater than δd, δd > 4δv be ensured,
through which, the division of the instance space is completed.

In general, the current framework consists of a shared
encoder and two parallel decoder and the encoder completes
the extracting of the features of the point cloud while the two
decoder complete the prediction of semantic segmentation and
the mapping of the points in the instance space respectively.

B. Seed score calculation and generation of masks

When the mapping of the points in the instance space is
obtained, we generate a series of masks through the following
methods. First we select a seed point and determine a certain
threshold for it and then by calculating the distance between
the selected point and other points, a point is considered to
be within the mask if the distance is less than the threshold.
As what is mentioned above, two factors are needed to
generate the mask: (1) Select the seed point. (2) Determine
the threshold.

We use the approximate dynamic threshold method to
determine the threshold. For a certain seed point, if ths is used
to represent the threshold, then the range of the is ths ∈ [0, ρ],
ρ is the maximum of the distance between the seed point and
all points. If the range is divided into n shares equally, that
is, the range can be divided into n intervals with a total of
(n + 1) endpoints. Excluding the starting and ending points,
there are (n − 1) intermediate endpoint values, so when the
seed generates the mask, its optimal threshold can be expressed
as:

thsbest = max
ρi

IoU(seedgt, seedρi)

That is the threshold adopted when the IoU between the
generated mask and the instance where the seed point is
located is the largest. Among them, ρi means the value of the
ith endpoint among the (n − 1) intermediate points. seedρi
means the mask generated from the selected seed point when
adopting ρi as the threshold. IoU represents the Intersection
over Union between groundtruth and mask. Through the
approximate coverage of the selectable threshold range, we
obtain the optimal threshold, under which, the IoU between

the mask generated from the seed point and the groundtruth
is called seed score, that is

seedscore = IoU(seedgt, seedthsbest)

When the network performs inference, because seedgt is
unknown, we obtain the seed score of the seed point through
predicting the IoU of a selected seed point under different
thresholds and then obtain the corresponding threshold value
as the optimal one. In the selection of n, it is obvious that
the larger the value of n is, the better results will be obtained,
but we choose 5 as the current default value because of the
limitation of the network convergence and inference speed. We
choose the default value through counting the distribution of
IoU under different values of n (detailed in the experimental
part). So when we choose 5 as the default value it means
that the range is divided into 5 equal parts. We choose the
4 intermediate endpoints to predict IoU and then obtain the
seed score and the optimal threshold by adopting the maximum
value.

In the selection of seed point, we can calculate the seed
score of each point and then generate the final instance through
NMS ideally, but it costs huge loads of calculation and the
number of points in the point cloud is much larger than the
number of instances. So we can sample points and calculate
the seed score of them to select the final seed point. When
sampling points, to ensure the diversity of the sampling points
in space, we adopt the farthest point sampling (FPS) algorithm
to make the sampling points evenly distributed in the point
cloud. When we use the algorithm to sample points ,the default
number of points Sg is 64.

C. Seed score prediction model

The overall network results of the seed score predicting
model is shown in Fig. 2(b). Firstly, we use the farthest point
sampling (FPS) algorithm to sample the points in the point
cloud Np and then predict the seed score of the sampling point
set Ns. For each point in Ns, different proposal segmentation
results are generated under multiple thresholds selected. We
predict the IoU value of each proposal and then adopt the
maximum value to obtain the seed score and the corresponding
threshold.

With a determined threshold for each proposal, we use 3D-
Pooling to randomly sample points of the number of Sp,
ensuring that the number of the sampling points in each
proposal is the same. After that, the feature matrix Ep which
is the result of the feature pooling of points of proposal
generated from each seed point with different selected thresh-
olds is obtained through the concatenation of the semantic
features and instance features of each point. Its shape is
(n×Sg)×Sp×E(ins+ sem), in which E(ins+sem) means
the feature dimension after the concatenation of semantic
features and instance features while Sg is the number of seed
points, multiplying which by n, the approximate dynamic
threshold parameter , the final number of proposals is obtained.

When predicting the IoU of each proposal, we adopt
the structure of vanilla Pointnet which is performing max
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operation on each proposal after convolution to obtain the
maximum value of each proposal in each feature dimension,
after which, the classification result is obtained by connecting
the fully connected layer. We currently use 0.8 as the threshold
and if IoU < 0.8, it is 0, otherwise it is 1. Compared with
regarding the prediction of IoU as a regression problem, we
obtain better results through the above classification method.
We use Weighted Softmax Cross Entropy loss as the loss of
classification to balance the uneven distribution between the
two classes. The loss function is as follows:

L(Ps, Pt) = −
∑

WcPtlogPs

The Ps is the predicted value and Pt is the corresponding
label. Wc is 2 when it is class 0 and Wc is 1 when it is class
1.

D. Implementation Details

Because the seed point selection network is the judgement
of the “position” of the basically fitted features, so we train the
seed point selection network at the last 20 epochs or graft the
seed point selection network after the network is completely
fitted and then perform the training. Currently we adopt the
second method, which is more convenient for grafting the
seed point selection network into any networks for effect
verification and debugging the network. When training the
network for seed score predicting, we use ADAM optimizer
with initial learning rate 0.001, momentum 0.9 and batch size
4. The learning rate is divided by 2 every 300k iterations.
Simultaneously, we compare the two methods and obtain
approximate results.

IV. EXPERIMENTS

A. Experiments Settings

a) Datasets: We evaluate our work on Stanford 3D
Indoor Semantics DatasetS3DISand compare the effect of
grafting the seed point selecting network into SGPN and
ASIS. S3DIS performed 3D scanning on a total of 272
rooms in 6 regions and in the generated point cloud, each
point contains semantic labels and instance annotations. The
accurate semantic labels and instance labels can be obtained
by processing the datasets.

b) Evalution Metrics: We use k-fold cross-validation to
compare the results when evaluating the network. Due to the
fact that SPSN is aimed at instance segmentation and does
not change the results of the semantic segmentation of the
original paper, we just evaluate the results of the instance
segmentation. We use Cov and WCov in the setting of instance
segmentation indicators. Cov is the average value of IoU
between each instance generated by prediction and the ground
truth, based on which, WCov weights according to the size
of the instance.The fact is that the more points the instance
has, the greater the weight is. Cov and WCov are defined as
follows:

Cov(g, p) =

|g|∑
i=1

1

|g|
max
j

IoUrGi , r
P
j (1)

WCov(g, p) =

|g|∑
i=1

ωimax
j

IoUrGi , r
P
j (2)

ωi =
|rGi |∑
k |rGk |

(3)

Among them, G represents Ground truth, P represents predic-
tion, |riG| represents the number of points in the ith instance
in the ground truth. Simultaneously, we provide the common
index of the accuracy (mPrec) and the recall rate (mRec) which
are calculated when the threshold of IoU is 0.5.

B. Overall network results on S3DIS

Table 1 shows the results of grafting SPSN on SGPN and
ASIS separately. On SGPN, we achieved growth of Cov by
3.2%, while mCov achieved 3.4% of growth. On ASIS, we
achieved an increase of 1.3% in Cov and an increase of 1.2%
in mCov. In addition, we also provided common accuracy
and recall rate results. On SGPN, we achieved an accuracy
increase of 4.4% and a recall rate increase of 3.9%. On ASIS,
our accuracy decreased slightly by 0.4%, but our recall rate
increased by 0.8%. In the results of instance segmentation, the
increase is mainly due to the re-segmentation of the aggregated
vectors, which generates the proposal of better quality. On
SGPN, we achieved a relatively high improvement by using
SPSN instead of the Group Merging algorithm used in the
original network, while in ASIS, we obtained a better effect
of instance segmentation and provided confidence labels for
the segmented instances by using SPSN instead of mean-shift
algorithm used in the original network. We also reported per
class result of the dataset in table 2.

We also compared the results of each category in Table 2.
The accuracy of the segmentation mainly rises in the categories
with good aggregation of the original features such as floors,
windows, beams, and doors. For example, in the category floor
, our Cov has increased 1.5%, Wcov rose by 1.8%, in the
category window , the Cov rose by 1.5 %, Wcov rose by 1.5%.
While for categories such as columns that may not have been
aggregated, our indicator even appeared extremely small drop.
It shows that when we generate instances based on confidence,
we first consider the examples with good aggregation, and then
segment the examples with poor aggregation, which also meets
the principle of accurate segmentation.

TABLE I
COMPARISON OF OVERALL PERFORMANCE BETWEEN DIFFERENT

NETWORKS.

Method mCov mWcov mPrec mrec
SGPN 37.9 40.8 38.2 31.2

SGPN+SPSN 40.1 44.2 44.6 35.1
ASIS 51.3 55.2 63.6 47.5

ASIS+SPSN 52.5 56.3 62.5 48.1

C. Ablative Analysis

a) Approximate dynamic threshold: In the experimental
setting of hyperparameter selection for approximate dynamic
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TABLE II
PER CLASS RESULTS ON S3DIS DATASET

mean ceiling floor wall beam column window door table chair sofa bookcase board clutter
Cov ASIS 51.3 74.4 76.5 53.8 56.4 14.3 63.7 50.5 53.2 59.9 32.1 38.8 56.4 37.4

ASIS+SPSN 52.5 75.6 78.0 55.2 58.6 14.1 65.2 51.9 54.4 61.5 33.7 38.3 58.2 37.3
WCov ASIS 55.2 80.4 76.6 67.3 58.3 14.6 63.8 51.4 55.3 62.4 34.5 44.3 57.1 51.4

ASIS+SPSN 56.3 82.3 78.4 68.7 59.4 15.1 65.3 52.5 57.1 64.3 34.0 45.1 58.6 50.5

threshold, we adopt the method described in Section 3. By
dividing the range of threshold of each point into n equal parts
and adopt the maximum value of IoU between the proposal
generated from points in each interval and the groundtruth
to obtain the optimal proposal generated from each point.
Obviously, the larger the value of n, the more likely it is to
approximate the theoretical optimal value, but the larger the
number of IoU values of proposals that need to be predicted
and the more resources. So we establish balance between the
two factors. In the specific experiment, we obtain the final
hyperparameter results by calculating the distribution of the
maximum IoU value of all points in the training set.

The maximum IoU value distribution is shown in Fig. 3.
In Fig. 3, lines of different colors represent different values,
and points on the lines represent the proportion of the points
that meet the condition when IoU is greater than or equal to
the abscissa value, so all the maximum IoU value of each
point in the training set is greater than 0 and the overall curve
shows a downward trend. We can find in Fig. 3 that when
n = 4, the distribution of IoU has no huge difference from
that when n = 20, which simultaneously closely fits the line
of IoU distribution when n = 5. However, when n < 4, the
distribution of IoU has great attenuation and the ratio of the
best IoU value greater than 0.8 greatly reduced. Therefore,
we adopt 4 as the default value. In the above experiment, by
comparing the distribution of IoU , other parameters can be
prevented from being mixed, and thus a accurate result of the
selected parameter can be obtained.

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

0 0.5 0.8 0.9

20 10 5 4 3 2

Fig. 3. Multi-threshold parameter selection. The different lines represent
the distribution of IoU under different parameters. The points in the graph
represent the percentage of points when the IoU is greater than the abscissa.

b) Sampling points of FPS algorithm : Ideally, we can
calculate the seed score of all seed points and select the
best point to generate proposals by sorting them. But it will
generate a huge amount of calculation and occupy a lot of
explicit memory during training. At the same time, because
the number of points in the point cloud is far greater than
the number of instances, we can sample parts of these points
and generate proposals based on these points. We use FPS
(farthest point sampling) algorithm to sample which can ensure
that the sampling points are evenly distributed in the whole
point cloud. In the experiment of sampling points, We directly
use the groundtruth of the seed scores , which can avoid
the impact of the seed score prediction model. We use the
result of proposal segmentation as a measure of judgment. At
the same time, when all points are taken for segmentation,
it represents the upper bound of the segmentation that the
backbone network can reach.

The experimental results are shown in Fig. 4. The two lines
represent the values of mCov and mWCov respectively. When
taking all points as seed points to generate proposals, we get
the best segmentation result. At the same time, the fewer the
points, the worse the segmentation result. In the results of
experiment, we still get great segmentation results when we
choose 16 points. It shows that FPS sampling points are evenly
distributed in each instance and avoid the degradation of
segmentation performance because of no sampling seed point
in the instance. In the selection of final sampling points, we
use the default value of 128, which makes the training speed
of seed scoring prediction model faster. When the memory is
large enough, 512 is a better value to choose.

c) Proposed sampling points: In the seed score predic-
tion network, the number of points in each proposal generated
by seed points according to the threshold is different, so it is
necessary to fix the number of points in each proposal during
processing. For the determination of the number of points,
we have carried out many experiments and the results of
experiments are shown in Fig. 5. At the same time, according
to Fig. 5, we report the prediction results of the seed score
prediction network. In this experiment, we choose 128 points
and our seed scoring network has high accuracy.

d) Qualitative Results: Fig. 6 shows some visualization
examples. Different colors represent different instances in
instance segmentation and different colors represent different
classes in semantic segmentation. It is worth noting that the
color itself is meaningless.

e) Computation Time: In Table 3, we measure the in-
ference time of the network. The experiment was completed
on a Nvidia2080Ti. Compared with mean-shift used in ASIS,
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Fig. 4. The result of instance segmentation under different sampling points.
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Fig. 5. The accuracy of the seed scoring network in sampling different points
for each proposal.

Fig. 6. Qualitative results of SPSN.

we lose some efficiency with an improvement in accuracy,
but compared with SGPN and the Group Merging algorithm
it uses, We greatly improve the accuracy and speed up the
inference.

TABLE III
COMPARISON OF COMPUTATION SPEED BETWEEN DIFFERENT NETWORK.

Method Overall Network Grouping
SGPN 748 40 708

SGPN+SPSN 457 55 402
ASIS 246 35 211

ASIS+SPSN 454 52 402

V. CONCLUSION

In this paper, we present a seed point selection network,
a generic method for post-processing point cloud instance
segmentation. In the processing, we can complete the instance
segmentation more effectively based on the existing algorithm
by selecting the seed point. The current instance segmentation
of point cloud is still in a relatively early stage. We hope to
have more excellent backbone network and get better segmen-
tation results. At the same time, for post-processing, there are
still many shortcomings in this paper. We expect more novel
networks to improve the result of instance segmentation and
broaden our learning horizon.
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